科学计算方法21(常微分方程数值解)
微分方程的数值解法

微分方程的数值解法微分方程是自然科学和现代技术领域中一种最基本的数学描述工具,它可以描述物理世界中的各种现象。
微分方程的解析解往往很难求出,因此数值解法成为解决微分方程问题的主要手段之一。
本文将介绍几种常见的微分方程的数值解法。
一、欧拉法欧拉法是微分方程初值问题的最简单的数值方法之一,它是由欧拉提出的。
考虑一阶常微分方程:$y'=f(t,y),y(t_0)=y_0$其中,$f(t,y)$表示$y$对$t$的导数,则$y(t_{i+1})=y(t_i)+hf(t_i,y_i)$其中,$h$为步长,$t_i=t_0+ih$,$y_i$是$y(t_i)$的近似值。
欧拉法的精度较低,误差随着步长的增加而增大,因此不适用于求解精度要求较高的问题。
二、改进欧拉法改进欧拉法又称为Heun方法,它是由Heun提出的。
改进欧拉法是在欧拉法的基础上进行的改进,它在每个步长内提高求解精度。
改进欧拉法的步骤如下:1. 根据当前$t_i$和$y_i$估算$y_{i+1}$:$y^*=y_i+hf(t_i,y_i),t^*=t_i+h$2. 利用$y^*$和$t^*$估算$f(t^*,y^*)$:$f^*=f(t^*,y^*)$3. 利用$y_i$、$f(t_i,y_i)$和$f^*$估算$y_{i+1}$:$y_{i+1}=y_i+\frac{h}{2}(f(t_i,y_i)+f^*)$改进欧拉法具有比欧拉法更高的精度,但是相较于其他更高精度的数值方法,它的精度仍然较低。
三、龙格-库塔法龙格-库塔法是一种广泛使用的高精度数值方法,它不仅能够求解一阶和二阶常微分方程,还能够求解高阶常微分方程和偏微分方程。
其中,经典的四阶龙格-库塔法是最常用的数值方法之一。
四阶龙格-库塔法的步骤如下:1. 根据当前$t_i$和$y_i$估算$k_1$:$k_1=f(t_i,y_i)$2. 根据$k_1$和$y_i$估算$k_2$:$k_2=f(t_i+\frac{h}{2},y_i+\frac{h}{2}k_1)$3. 根据$k_2$和$y_i$估算$k_3$:$k_3=f(t_i+\frac{h}{2},y_i+\frac{h}{2}k_2)$4. 根据$k_3$和$y_i$估算$k_4$:$k_4=f(t_i+h,y_i+hk_3)$5. 根据$k_1$、$k_2$、$k_3$和$k_4$计算$y_{i+1}$:$y_{i+1}=y_i+\frac{h}{6}(k_1+2k_2+2k_3+k_4)$龙格-库塔法的精度较高,在求解一些对精度要求较高的问题时,龙格-库塔法是一个比较好的选择。
常微分方程的数值解

f ( x, y1 ) f ( x, y2 ) L y1 y2
(其中 L 为 Lipschitz 常数)则初值问题( 1 )存 在唯一的连续解。
求问题(1)的数值解,就是要寻找解函数在一 系列离散节点x1 < x2 <……< xn < xn+1 上的近似 值y1, y 2,…,yn 。 为了计算方便,可取 xn=x0+nh,(n=0,1,2,…), h称为步长。
(1),(2)式称为初值问题,(3)式称为边值问题。 在实际应用中还经常需要求解常微分方程组:
f1 ( x, y1 , y2 ) y1 ( x0 ) y10 y1 (4) f 2 ( x, y1 , y2 ) y2 ( x0 ) y20 y2
本章主要研究问题(1)的数值解法,对(2)~(4)只 作简单介绍。
得 yn1 yn hf ( xn1 , yn1 )
上式称后退的Euler方法,又称隐式Euler方法。 可用迭代法求解
二、梯形方法 由
y( xn1 ) y( xn )
xn1 xn
f ( x, y( x))dx
利用梯形求积公式: x h x f ( x, y( x))dx 2 f ( xn , y( xn )) f ( xn1 , y( xn1 ))
常微分方程的数言 简单的数值方法 Runge-Kutta方法 一阶常微分方程组和高阶方程
引言
在高等数学中我们见过以下常微分方程:
y f ( x, y, y) a x b y f ( x, y ) a x b (2) (1) (1) y ( x ) y , y ( x ) y 0 0 0 0 y ( x0 ) y0 y f ( x, y, y) a x b (3) y(a) y0 , y(b) yn
常微分方程的数值解算法

常微分方程的数值解算法常微分方程的数值解算法是一种对常微分方程进行数值计算的方法,这可以帮助我们更好地理解和研究自然现象和工程问题。
在本文中,我们将介绍一些常用的数值解算法,探讨它们的优缺点和适用范围。
常微分方程(ODE)是描述自然现象和工程问题的重要数学工具。
然而,对于许多ODE解析解是无法求出的,因此我们需要通过数值方法对其进行求解。
常微分方程可以写作:y' = f(t, y)其中,y是函数,f是给定的函数,表示y随t的变化率。
这个方程可以写成初始值问题(IVP)的形式:y'(t) = f(t,y(t)),y(t0) = y0其中,y(t0)=y0是方程的初始条件。
解决IVP问题的典型方法是数值方法。
欧拉方法欧拉方法是最简单的一阶数值方法。
在欧拉方法中,我们从初始条件开始,并在t = t0到t = tn的时间内,用以下公式逐步递推求解:y n+1 = y n + hf (t n, y n)其中,f(t n,y n)是点(t n,y n)处的导数, h = tn - tn-1是时间间隔。
欧拉方法的优点是简单易懂,容易实现。
然而,它的缺点是在整个时间段上的精度不一致。
程度取决于使用的时间间隔。
改进的欧拉方法如果我们使用欧拉方法中每个时间段的中间点而不是起始点来估计下一个时间点,精度就会有所提高。
这个方法叫做改进的欧拉方法(或Heun方法)。
公式为:y n+1 = y n + h½[f(t n, y n)+f(tn+1, yn + h f (tn, yn))]这是一个二阶方法,精度比欧拉方法高,但计算量也大一些。
对于易受噪声干扰的问题,改进的欧拉方法是个很好的选择。
Runge-Kutta方法Runge-Kutta方法是ODE计算的最常用的二阶和高阶数值方法之一。
这个方法对定义域内的每个点都计算一个导数。
显式四阶Runge-Kutta方法(RK4)是最常用的Runge-Kutta方法之一,并已得到大量实践的验证。
微分方程数值解法

微分方程数值解法微分方程数值解法微分方程数值解法【1】摘要:本文结合数例详细阐述了最基本的解决常微分方程初值问题的数值法,即Euler方法、改进Euler法,并进行了对比,总结了它们各自的优点和缺点,为我们深入探究微分方程的其他解法打下了坚实的基础。
关键词:常微分方程数值解法 Euler方法改进Euler法1、Euler方法由微分方程的相关概念可知,初值问题的解就是一条过点的积分曲线,并且在该曲线上任一点处的切线斜率等于函数的值。
根据数值解法的基本思想,我们取等距节点,其中h为步长,在点处,以为斜率作直线交直线于点。
如果步长比较小,那么所作直线与曲线的偏差不会太大,所以可用的近似值,即:,再从点出发,以为斜率作直线,作为的近似值,即:重复上述步骤,就能逐步求出准确解在各节点处的近似值。
一般地,若为的近似值,则过点以为斜率的直线为:从而的近似值为:此公式就是Euler公式。
因为Euler方法的思想是用折线近似代替曲线,所以Euler方法又称Euler折线法。
Euler方法是初值问题数值解中最简单的一种方法,由于它的精度不高,当步数增多时,由于误差的积累,用Euler方法作出的折线可能会越来越偏离曲线。
举例说明:解: ,精确解为:1.2 -0.96 -1 0.041.4 -0.84 -0.933 0.9331.6 -0.64 -0.8 0.161.8 -0.36 -0.6 0.242.0 0 -0.333 0.332.2 0.44 0 0.44通过上表可以比较明显地看出误差随着计算在积累。
2、改进Euler法方法构造在常微分方程初值问题 ,对其从到进行定积分得:用梯形公式将右端的定积分进行近似计算得:用和来分别代替和得计算格式:这就是改进的Euler法。
解:解得:由于 ,是线形函数可以从隐式格式中解出问题的精确解是误差0.2 2.421403 2.422222 0.000813 0.021400.4 2.891825 2.893827 0.00200 0.051830.6 3.422119 3.425789 0.00367 0.094112.0 10.38906 10.43878 0.04872 1.1973通过比较上表的第四列与第五列就能非常明显看出改进Euler方法精度比Euler方法精度高。
常微分方程中的数值方法

常微分方程中的数值方法常微分方程是数学中的一个重要分支。
它主要研究的对象是随时间变化的函数。
在实际应用中,我们需要求解这些函数的解析解,但通常情况下,解析解并不容易得到,甚至是不可能得到。
因此,我们需要使用数值方法来求解这些函数的数值近似解。
在本文中,我们将介绍常微分方程中的数值方法。
一、欧拉法欧拉法是常微分方程数值解法中最基本的一种方法。
它是根据欧拉公式推导而来的。
具体地,我们可以将一阶常微分方程dy/dt=f(t,y)写成如下形式:y(t+h)=y(t)+hf(t,y(t))其中,h是步长,f(t,y)是t时刻y的导数。
欧拉法就是通过上面的公式进行逐步逼近,然后得到最终的数值解。
欧拉法的计算过程非常简单,但所得到的解可能会出现误差。
这是因为欧拉法忽略了f(t+h,y(t+h))和f(t,y(t))之间的变化。
因此,我们需要使用更为精确的数值方法来解决这个问题。
二、改进欧拉法为了解决欧拉法中的误差问题,我们可以使用改进欧拉法。
改进欧拉法又称作四阶龙格-库塔法。
它的基本思想是对欧拉法公式进行改进,以提高计算精度。
具体地,根据龙格-库塔公式,可将改进欧拉法表示为:y(t+h)=y(t)+1/6(k1+2k2+2k3+k4)其中,k1=h*f(t,y)k2=h*f(t+h/2,y+k1/2)k3=h*f(t+h/2,y+k2/2)k4=h*f(t+h,y+k3)改进欧拉法的计算过程比欧拉法要复杂些,但所得到的数值解比欧拉法更精确。
这种方法适用于一些特殊的问题,但在求解一些更为复杂的问题时,还需要使用其他的数值方法。
三、龙格-库塔法龙格-库塔法是求解常微分方程中数值解的常用方法之一。
它最常用的是四阶龙格-库塔法。
这种方法的基本思想是使用四个不同的斜率来计算数值解。
具体地,我们可以将四阶龙格-库塔法表示为:y(t+h)=y(t)+1/6(k1+2k2+2k3+k4)其中,k1=h*f(t,y)k2=h*f(t+h/2,y+k1/2)k3=h*f(t+h/2,y+k2/2)k4=h*f(t+h,y+k3)与改进欧拉法相比,龙格-库塔法的计算复杂度更高,但所得到的数值解更为精确。
数值积分与微分方程数值解法

数值积分与微分方程数值解法数值积分和微分方程数值解法是数值计算中的重要组成部分,在科学计算、工程分析和实际问题求解中起着不可或缺的作用。
本文将介绍数值积分的基本概念和常用方法,以及微分方程数值解法的应用和实现过程。
一、数值积分的基本概念和常用方法数值积分是求解定积分近似值的方法,通过将连续函数的积分转化为离散形式的求和,以达到近似计算的目的。
常用的数值积分方法包括矩形法、梯形法、辛普森法等。
(1)矩形法:将积分区间等分为若干子区间,然后在每个子区间内取点,用函数在相应点处的取值近似代替该子区间内的函数值,最后将所有子区间的函数值相加得到近似积分值。
(2)梯形法:与矩形法类似,但是将每个子区间近似为一个梯形,通过计算梯形的面积来近似计算积分值。
(3)辛普森法:将积分区间等分为若干子区间,然后在每个子区间内取三个点,根据这三个点构造出一个二次函数,并用该二次函数的积分来近似计算积分值。
二、微分方程数值解法的应用和实现过程微分方程数值解法是对微分方程进行近似求解的方法,通过离散化微分方程来构造数值格式,然后通过数值计算来求解。
常用的微分方程数值解法包括常微分方程的欧拉法、改进欧拉法和龙格-库塔法,以及偏微分方程的有限差分法、有限元法等。
(1)常微分方程数值解法:- 欧拉法:根据微分方程的定义,将微分项近似为差分项,通过迭代逼近真实解。
- 改进欧拉法:在欧拉法的基础上,通过利用两个点的斜率来逼近解的变化率,提高精度。
- 龙格-库塔法:通过多次迭代,根据不同的权重系数计算不同阶数的近似解,提高精度。
(2)偏微分方程数值解法:- 有限差分法:将偏微分方程中的一阶和二阶导数近似为差分项,通过离散化区域和时间来构造矩阵方程组,然后通过求解线性方程组来获得数值解。
- 有限元法:将区域进行剖分,将偏微分方程转化为变分问题,通过选取适当的试函数和加权残差法来逼近真实解。
总结:数值积分和微分方程数值解法是数值计算中重要的工具,能够帮助我们处理实际问题和解决科学工程中的复杂计算。
常微分方程数值解

常微分方程数值解常微分方程数值解是数学中的一门重要学科,主要研究如何求解常微分方程,在科学计算中有着重要的应用。
常微分方程模型是自然界中广泛存在的现象描述方法,有着广泛的应用领域。
比如,在物理学中,运动中的物体的位置、速度和加速度随时间的关系就可以通过微分方程描述;在经济学中,经济变化随时间的变化也可以用微分方程来描述。
而常微分方程数值解的求解方法则提供了一种快速、高效的计算手段。
一、常微分方程数值解的基本概念常微分方程就是一个描述自变量(通常是时间)与其导数之间关系的方程。
其一般形式如下:$\frac{dy}{dt} = f(y,t)$其中 $f(y,t)$ 是一个已知的函数。
常微分方程数值解就是对于一个常微分方程,对其进行数字计算求解的方法。
常微分方程数值解常使用数值积分的方法来求解。
由于常微分方程很少有解析解,因此数值解的求解方法显得尤为重要。
二、常微分方程数值解的求解方法常微分方程数值解的求解方法很多,以下介绍其中两种方法。
1.欧拉法欧拉法是最简单的一种数值算法,其思想是通过将一个微分方程转化为一个数值积分方程来求解。
其数值积分方程为:$y_{i+1}=y_i+hf(y_i,t_i)$其中 $h$ 为步长,可以理解为每次计算的间隔。
欧拉法的主要缺点是其精度比较低,收敛速度比较慢。
因此,当需要高精度的数值解时就需要使用其他的算法。
2.级数展开方法级数展开法是通过将一个待求解的微分方程进行Taylor级数展开来求解。
通过对Taylor级数展开的前若干项进行求和,可以得到微分方程与其解的近似解。
由于级数展开法的收敛速度很快,因此可以得到相对较高精度的数值解。
但是,当级数过多时,会出现截断误差。
因此,在实际应用中需要根据所需精度和计算资源的限制来选择适当的级数。
三、常微分方程数值解的应用常微分方程数值解在现代科学技术中有着广泛的应用。
以下介绍其中两个应用领域。
1.物理建模常微分方程的物理建模是常见的应用领域。
常微分方程数值解法

欧拉方法
总结词
欧拉方法是常微分方程数值解法中最基础的方法之一,其基本思想是通过离散化时间点上的函数值来 逼近微分方程的解。
详细描述
欧拉方法基于微分方程的局部线性化,通过在时间点上逐步逼近微分方程的解,得到一系列离散点上 的近似值。该方法简单易行,但精度较低,适用于求解初值问题。
龙格-库塔方法
总结词
影响
数值解法的稳定性对计算结果的精度和可靠 性有重要影响。
判断方法
通过分析数值解法的迭代公式或离散化方法, 判断其是否具有稳定性和收敛性。
数值解法的收敛性
定义
数值解法的收敛性是指随着迭代次数的增加, 数值解逐渐接近于真实解的性质。
影响
数值解法的收敛性决定了计算结果的精度和 计算效率。
分类
根据收敛速度的快慢,可以分为线性收敛和 超线性收敛等。
判断方法
通过分析数值解法的迭代公式或离散化方法, 判断其是否具有收敛性。
误差分析
定义
误差分析是指对数值解法计算过程中 产生的误差进行定量分析和估计的过 程。
分类
误差可以分为舍入误差、截断误差和 初始误差等。
影响
误差分析对于提高计算精度和改进数 值解法具有重要意义。
分析方法
通过建立误差传递公式或误差估计公 式,对误差进行定量分析和估计。
生物学
生态学、生物种群动态和流行病传播 等问题可以通过常微分方程进行建模
和求解。
化学工程
化学反应动力学、化学工程流程模拟 等领域的问题可以通过常微分方程进 行描述和求解。
经济学
经济系统动态、金融市场模拟和预测 等问题可以通过常微分方程进行建模 和求解。
02 常微分方程的基本概念
常微分方程的定义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y( xn1 ) y( xn1 ) 2h
y( xn )
f ( xn , y( xn ))
若用y(xn)和y(xn-1)的近似值yn和yn-1代入上式, 并记所得
结果为yn+1
yn1 yn1 2hf ( xn , yn )
显式Euler公式和隐式Euler公式都是单步法, 其特 点是计算yn+1时只用到前一步的信息yn,然而上述格式需 要前一步的信息yn和更前一步的信息yn-1。即利用了前 面两步的信息, Euler两步公式因此得名。
y( xn1 ))
若用y(xn)的近似值yn代入上式, 并记所得结果为yn+1
隐式Euler法 yn1 yn hf ( xn1 , yn1 )
P(t ) r(1 P(t ) / K )P(t ), P(t0 ) P0
其中K是所研究地区人口的上界。
2/45
引例2. 神经元活动的数学模型 Hodgkin和Huxley通过建立神经细胞或神经元的仿
真启动模型使计算机神经科学得以诞生。因为这个工 作,他们获得了1963年的诺贝尔生物学奖。
3/45
并用后向差分格式代替其中的导数项
y( xn1 ) h
y( xn )
y( xn1 )
f ( xn1 , y( xn1 ))
若用y(xn)的近似值yn代入上式, 并记所得结果为yn+1
隐式Euler公式: yn1 yn hf ( xn1 , yn1 )
9/45
为了改善精度, 可以用中心差商代替其中的导数项
y f ( x, y)
y(
x0
)
y0
设在区间[xn, xn+1]的左端点xn 列出方程。
y( xn ) f ( xn , y( xn ))
并用前向差分格式代替其中的导数项
y( xn1 ) h
y( xn )
y( xn )
f ( xn , y( xn ))
若用y(xn)的近似值yn代入上式, 并记所得结果为yn+1
4/45
一阶微分方程的初值问题:
y( x) f ( x, y( x))
y(
x0
)
y0
其中已知f(x, y)和初值 y0。
理论上寻找满足条件的函数是困难的。 寻找函数 y(x)在一系列离散结点
x0 x1 x2 xn
上的近似值y0, y1, y2,···,yn,···。相邻两个节点的间距 h=xi+1 – xi称为步长。
xn1 y( x)dx
xn
xn1 f ( x, y( x))dx
xn
左矩形积分公式
xn1 xn
f (x,
y( x))dx
hf
( xn ,
y( xn ))
若用y(xn)的近似值yn代入上式, 并记所得结果为yn+1
显式Euler方ቤተ መጻሕፍቲ ባይዱ yn1 yn hf ( xn , yn )
11/45
y' = f (x, y)
《数值分析》 23
解一阶常微分方程欧拉法 局部截断误差与p阶精度 Range-Kutta公式 一阶常微分方程组和二阶方程 线性多步法简介
1/45
引例1. 人口模型 1798年Malthus提出了如下人口模型
P(t ) rP(t ), P(t0 ) P0
相对更加合理的模型是如下的logistic模型
0.5 1.4351 1.4142 1.0 1.7848 1.7321
8/45
方程中含有导数项y′, 这是微分方程的本质特征, 也是它难以求解的症结所在。
y f ( x, y)
y(
x0
)
y0
设在区间[xn, xn+1]的右端点xn+1 列出方程。
y( xn1 ) f ( xn1 , y( xn1 ))
Euler公式: yn1 yn hf ( xn , yn )
7/45
例1. 用Euler法求初值问题的数值解。
y
y 2x , y
0
x1
y(0) 1
解析解y( x) 1+2x
解:取步长h=0.1, xn= nh (n = 0, 1,···, 10)
Euler公式: yn+1 = yn + 0.1( yn- 2xn /yn) (n = 0, 1, ···,10)
xn
yn
y(xn)
xn
yn
y(xn)
0.1 1.1000 1.0954 0.6 1.5090 1.4832
0.2 1.1918 1.1832 0.7 1.5803 1.5492
0.3 1.2774 1.2649 0.8 1.6498 1.6125
0.4 1.3582 1.3416 0.9 1.7178 1.6732
10/45
方程中含有导数项y′, 这是微分方程的本质特征, 也是微分方程难以求解的症结所在。常见解决思路 通常为数值微分和数值积分。
y' = f (x, y)
xn1 y( x)dx xn1 f ( x, y( x))dx
xn
xn
微积分基本定理
b
y( x)dx y(b) y(a)
a
y( xn1) y( xn )
xn1 y( x)dx xn1 f ( x, y( x))dx
xn
xn
微积分基本定理
b
y( x)dx y(b) y(a)
a
y( xn1) y( xn )
xn1 y( x)dx xn1 f ( x, y( x))dx
xn
xn
右矩形积分公式
xn1 xn
f (x,
y( x))dx hf ( xn1,
5/45
前向差分公式
f ( x)= f ( x h) f ( x) h f ( )
h
2
后向差分公式
f ( x)= f ( x) f ( x h) h f ( )
h
2
中心差分公式
f ( x)=
f ( x h)
f ( x h) h2
f ( )
2h
6
6/45
方程中含有导数项y′, 这是微分方程的本质特征, 也是它难以求解的症结所在。
引例3. Lorenz模型 (lorenzgui) 根据大气运动的规律,Lorenz建立了简化的数学
模型。Lorenz经过研究发现,天气预测具有对初始条 件的敏感依赖性, 即初始条件最微小的差异都会导致 天气的行为无法准确预测。Lorenz结论說天气的长期 预报是不可能的。1979年12月, Lorenz在华盛顿的美 国科学促进会的一次演讲中提出:一只蝴蝶在巴西扇 动翅膀有可能会在美国的德克萨斯引起一场龙卷风。 他的结论給人们留下了极其深刻的印象。从此以后, 所谓蝴蝶效应之说不胫而走。