基于物联网的室内环境甲醛监控系统设计与实现

合集下载

室内甲醛污染智能监控系统的研制的开题报告

室内甲醛污染智能监控系统的研制的开题报告

室内甲醛污染智能监控系统的研制的开题报告一、选题背景随着现代建筑装修和室内家居环境越来越重视舒适度和美观性,越来越多的人对室内环境的质量提出了更高的要求。

然而,由于建筑装饰材料使用的广泛性和质量的不均衡性,以及室内通风条件不佳等原因,室内空气中的甲醛等物质污染已成为影响人们健康的主要因素之一。

因此,开发一种可以监测和控制室内甲醛污染的智能监测系统变得尤为必要。

二、选题目的本研究旨在研发一种高效、稳定、实用的室内甲醛污染智能监测系统,能够对室内空气中的甲醛含量进行实时监测,并依据监测结果进行智能控制,以实现室内环境的稳定和人体健康保护。

三、研究内容1、系统硬件设计。

系统硬件由传感器、单片机、通信模块、显示屏等组成,其中传感器负责实时监测室内空气中的甲醛含量,单片机进行数据处理并控制通信模块传输数据,显示屏提供数据显示和操作界面。

2、系统软件设计。

系统软件由传感器驱动程序、数据采集程序、数据处理程序、控制程序和显示程序等组成,其中传感器驱动程序负责读取传感器和进行数据转换,数据采集程序负责对传感器的输出数据进行采集、存储和处理,数据处理程序负责对采集的数据进行分析和处理,控制程序根据数据处理结果控制通风设备达到甲醛浓度控制,显示程序负责界面设计和数据显示。

3、系统集成及测试。

将系统硬件和软件进行集成,进行测试和调试,不断优化系统性能,最终验证系统的实用性和准确性。

四、研究意义本研究是在室内空气质量现状的基础上,探寻新型的室内环境监测和控制方案,能够监测室内环境甲醛含量,保证室内空气清洁,提高人们生活质量,保护人们健康。

五、研究方法本研究采用实验研究和工程技术方法,对传感器、单片机、通信模块、显示屏等进行硬件设计与软件开发,首先完成硬件系统的组成和各组件之间电路连接及数据通信的实现,其次只要测试传感器对室内空气中甲醛浓度的检测灵敏度、准确度和稳定性,调试单片机程序,编写软件程序,验证系统性能及控制效果。

物联网智能家居系统的设计与实现

物联网智能家居系统的设计与实现

物联网智能家居系统的设计与实现随着科技的不断发展,物联网智能家居系统正在逐渐走进人们的生活。

这一系统利用传感器、网络等技术集成各种家居设备,实现智能化控制和管理,为人们带来更加便捷、舒适、安全的居住体验。

本文将探讨物联网智能家居系统的设计与实现。

一、系统设计物联网智能家居系统的设计需要考虑以下几个方面:1. 传感器与设备集成:智能家居系统需要借助各种传感器来感知环境和用户行为。

例如,温度传感器、湿度传感器、光线传感器等可以用来感知室内环境的变化;门窗传感器、烟雾传感器、摄像头等可以用来感知家庭安全状态。

这些传感器和设备需要通过网络连接到智能家居系统,以实时传输数据和接收指令。

2. 数据存储和处理:智能家居系统需要将传感器采集到的大量数据进行存储和处理。

数据存储可以选择云服务或本地服务器,根据用户的需求和隐私要求进行选择。

数据处理可以利用机器学习和数据挖掘等技术,提取出有价值的信息,并做出相应的控制决策。

3. 用户界面设计:智能家居系统需要为用户提供友好的界面,方便用户控制和管理各种设备。

用户可以通过手机、平板电脑或电视等终端设备登录系统,查看设备状态、控制设备行为,甚至制定自动化规则。

用户界面的设计需要简洁明了、易于操作,最好支持多种语言和个性化定制。

4. 安全与隐私保护:智能家居系统需要对数据传输、用户隐私和设备安全进行保护。

在系统设计过程中,需要采取加密和身份验证等手段,确保数据传输的安全性。

此外,还需要制定合理的权限管理机制,保护用户隐私不被恶意利用。

二、系统实现物联网智能家居系统的实现需要涉及硬件和软件两个方面。

1. 硬件实现:硬件上,智能家居系统需要有相应的传感器和设备。

传感器的选型要考虑可靠性、精度以及适应各种环境的能力。

在选择智能设备时,需要考虑兼容性、可扩展性和可选择性。

此外,还需要设计合理的电路连接和供电方案,确保设备的正常运行。

2. 软件实现:软件上,智能家居系统需要有中央控制软件和用户界面软件。

基于物联网的室内环境甲醛监控系统设计与实现

基于物联网的室内环境甲醛监控系统设计与实现

基于物联网旳室内环境甲醛监控系统设计与实现目录第一章绪论 01.1 选题背景 01.2小结 0第二章作品方案设计 (1)2.1 作品方案 (1)2.1.1 作品概述 (1)2.1.2 上位机软件设计及WEB服务器设计 (3)2.1.3 网关设计 (4)2.1.4 ZigBee无线传感器网络旳设计 (5)2.2 预期目旳 (5)2.3 小结 (6)第三章上位机与WEB服务器设计 (6)3.1上位机软件设计 (6)3.1.1功能模块 (8)3.2 小结 (13)第四章网关数据收发软件设计 (14)4.1硬件系统 (14)4.1.1 SIM900A 开发板 (14)4.1.2 协调器 (15)4.2 软件系统 (17)4.2.1 GPRS模块程序设计 (17)4.2.3 ZigBee协调器程序设计 (19)4.3小结 (20)第五章底层ZigBee节点软硬件设计 (21)5.1硬件系统 (21)5.1.1 ZigBee节点底板电路设计 (21)5.1.2 甲醛检测传感器MS1100-P111 (22)5.2软件设计 (23)5.3小结 (24)第六章测试和成果分析 (26)6.1测试目旳与方案 (26)6.2 上位机软件测试 (27)6.3 网关测试 (28)6.4 底层ZigBee网络测试 (29)参照文献 (30)附件 (30)第一章绪论1.1 选题背景甲醛具有比较高旳毒性并且被我国列入在有毒化学品优先控制名单上。

甲醛己经被世界卫生组织确定为致癌和致畸形物质。

它是公认旳变态反应源,也是潜在旳强致突变物质之一。

甲醛问题己成为全球公共卫生关注旳焦点。

近年来,家庭装修成为人们时尚旳追求,但在美化了居室环境旳同步,也因诸多装饰材料中具有毒物质,导致室内空气污染,尤其是室内甲醛污染更为严重,对人体旳健康导致了极大旳危害。

因此加强对甲醛污染旳监测和控制,对于保护人类平常生活旳健康具有要旳理论意义和实践意义。

除采用常规措施将其清除外,对存在甲醛旳环境及时通风是关键。

基于arduino的室内环境监测报警系统设计与实现

基于arduino的室内环境监测报警系统设计与实现

摘要近些年雾霾愈演愈烈,环境问题逐渐受到人们的关注。

人们有将近90%的时间在室内渡过,室内环境自然成为人们关注的重点。

实现一套能够对自己室内环境状况进行监控,并对一些环境参数突破警戒线时做出报警的系统已经成为不少人的迫求。

本文利用“互联网”+“硬件”设计一套室内环境监测与报警系统,对一些人们普遍关注的室内环境数据进行监测。

系统主要包括数据采集端、服务端和移动客户端。

数据采集端以Arduino UNO R3为主控制板,搭载传感器模块,对室内温湿度、PM2.5值、烟雾浓度这些数据进行采集,再以传统互联网时代发展成熟的Netty框架搭建服务端,接收处理硬件端传感器的数据和客户端用户反馈的热舒适评估信息。

为了让用户能够随时随地查看室内环境状况和接收服务端报警信息,本文在Android 操作系统设计了一款App作为移动客户端,通过与硬件端设备id进行绑定,App就可以以形象简明的方式将硬件端采集的数据呈现给用户。

为了确保数据的安全性,服务端和移动客户端采用了HTTPS通信方式,对网络传输数据加密。

同时,为了确保警报信息能够实时推送到客户端,我们采用了极光推送在服务端和客户端建立长连接,并对客户端进程进行优化,减小客户端进程在后台被回收概率,确保用户能接受到警报信息。

本系统为了实现将来能够对室内环境调控设备自动控制,我们结合Fanger热舒适方程和支持向量机SVM算法对室内热舒适度进行评估计算。

本文在系统设计时,对各部分进行了多方案分析,在满足系统功能需求的同时,做到更加高效和友好。

关键词:室内环境监测Arduino Andorid互联网AbstractIn recent years,as the haze is getting worse,environmental problems have gradually attracted people’s attention.People spend nearly90%of their time indoors,the indoor environment has naturally become the focus of attention.People are logging for a monitoring system that can track the indoor environment conditions and alarm the users when in critical condition.This paper designs a set of indoor environment monitoring and alarm system based on Internet and hardware to monitor some of the indoor environmental data that people are generally concerned about.The system mainly consists of data acquisition hardware, server and mobile client.In this paper,Arduino UNO R3has taken as the main control board which equips sensor modules to collect indoor temperature,humidity,PM2.5value and smoke concentration data.Then the Netty framework which develops maturely in traditional Internet era is used to build the server client.The server client receives the data from the sensors in the hardware side and the thermal comfort evaluation information from the client.In order to enable users to view the indoor environment and receive alarm information from the server client at any time,in this paper,an App is designed on Android platform,which can be bound with the device id in hardware side.So that App can present the data from hardware side to the user in a concise way.To ensure the security of the data,the server and the mobile client use the HTTPS communication mode to encrypt the network transmission data.At the same time,in order to ensure that the alarm information can be pushed to the client in real time,we use the aurora push to establish long connections in the server and client and optimize the mobile client to reduce client process recovery probability in the background,so that users can receive alarm information.In order to control the indoor environmental control equipment automatically int the future,we use Fanger thermal comfort equation and SVM(support vector machine) algorithm to evaluate the indoor thermal comfort.To meet the functional requirements,the system is designed with comprehensive analysis of different schemes while the efficiency and friendliness are also considered. Key words:Indoor environment monitoring Arduino Android Internet目录摘要 (I)Abstract (II)1绪论1.1课题研究背景及其意义 (1)1.2研究现状 (2)1.3论文研究主要内容及结构 (4)2相关技术介绍2.1Arduino介绍 (6)2.2服务端开发 (7)2.3Fanger热舒适方程 (9)2.4面向Android端推送技术介绍 (10)2.5本章小结 (11)3系统的总体设计 (12)3.1系统的需求分析 (12)3.2系统框架设计分析 (13)3.3系统设计方案 (14)3.4系统开发平台 (20)3.5本章小结 (21)4系统的具体实现4.1数据采集端实现 (22)4.2服务端实现 (27)4.3客户端实现 (40)4.4本章小结 (49)5系统测试5.1数据采集端测试 (50)5.2系统整体测试 (53)5.3本章小结 (56)6总结与展望6.1研究工作总结 (57)6.2未来展望 (57)致谢 (59)参考文献 (60)1绪论1.1课题研究背景及其意义随着中国经济的快速发展,在高品质的生活下人们已不再满足于温饱,更多的将眼光放在生活质量上面来,环境便是着重点[1]。

基于物联网的环境监测系统设计与实现研究

基于物联网的环境监测系统设计与实现研究

基于物联网的环境监测系统设计与实现研究摘要本文介绍了基于物联网的环境监测系统设计与实现研究。

首先概述了物联网的基本概念和技术特点,然后介绍了环境监测系统的设计思路和实现方法,并详细讨论了系统的各个模块的设计和实现。

最后,介绍了系统的应用场景和实际效果,展望了未来的发展前景。

第一章物联网的基本概念和技术特点物联网(Internet of Things,IoT)是指通过各种传感器、标签、读写器、控制器等物理设备和网络互连技术,实现对智能物品互联互通、感知识别、数据采集、信息处理、自动控制等功能的网络。

物联网的主要技术特点包括:大规模分布式、异构网络、嵌入式感知、智能识别、实时交互、服务化管理等。

物联网的典型应用场景包括智能家居、智能医疗、智能交通、智能农业、智能工厂等。

第二章环境监测系统的设计思路和实现方法环境监测系统是一种智能硬件系统,用于实时监测和诊断环境参数,以评估环境质量和预警环境危害。

环境监测系统一般由传感器、信号处理器、数据存储器、通信模块、计算机系统等组成。

环境监测系统的设计要考虑到数据采集的实时性、可靠性和精度,以及数据的存储和传输的安全性和稳定性。

1.传感器的设计和选择传感器是环境监测系统的核心组成部分,其设计和选择直接影响系统的实时性和精度。

传感器的设计应考虑:环境参数的类型、量程和灵敏度、噪声和干扰的抑制、长时间稳定性和耐用性等因素。

在选择传感器时,应根据具体应用场景和环境要求,选择合适的传感器类型和品牌。

目前常用的传感器类型包括气体传感器、温湿度传感器、光照传感器、压力传感器等。

2.信号处理器和AD转换器的设计信号处理器是负责对传感器输出信号进行增益、滤波、放大、调制等处理的电路模块。

AD转换器是将模拟信号转换为数字信号的核心器件。

信号处理器和AD转换器的设计应考虑:信号处理算法的复杂度、噪声和干扰的抑制、数据的精度和实时性等因素。

在选择信号处理器和AD转换器时,应根据传感器的输出信号特点和数据的处理要求,选择合适的芯片型号和参数配置。

基于物联网的智能家居控制系统设计共3篇

基于物联网的智能家居控制系统设计共3篇

基于物联网的智能家居控制系统设计共3篇基于物联网的智能家居控制系统设计1随着科技的发展,以及人们对生活质量的需求日益提高,智能家居也由此应运而生。

智能家居通过将传感器、控制设备和网络等技术集成到房屋中,实现家居设备间的通信和控制,从而提高家居的舒适度、安全性和能耗效率。

其中,物联网技术(Internet of Things, IoT)作为智能家居的基础,为智能家居的实现提供了可靠的支撑。

本文将介绍基于物联网的智能家居控制系统的设计。

首先,我们需要选择合适的传感器和控制设备。

对于智能家居来说,其控制系统需要采用广泛的传感器和控制设备。

例如,温度传感器可以用来感知室内温度,风扇或者空调可以用来控制室内温度,灯光传感器可以用来感知室内光线强度,智能插座可以用来控制插入其中的电器设备的开关等。

选用传感器和控制设备时,需按照实际需要进行选择,避免浪费。

其次,我们需要将各种设备相连接,这位于智能家居控制系统的核心。

传感器、控制设备和网络需要有合适的连接方式,必须使其互相交互。

这意味着系统需要一个合适的通信方式,比如Zigbee、Z-wave、Wi-Fi或者蓝牙等。

选择通信方式时,也需考虑控制设备之间的距离和噪声。

然后,智能家居控制系统需要一个合适的平台,以便进行智能化控制。

智能控制平台可以让用户轻松地控制房屋中的设备,同时还能够根据用户的习惯来实现个性化的控制。

例如,用户可以预置好一些场景,如“通风”、“睡眠”、“晚餐时间”等,一键启动相应场景即能自动调节相应设备,从而方便快捷。

智能家居控制平台的设计与实现将极大地提高家居的智能化水平。

最后,智能家居控制系统需要具有良好的安全性。

随着智能家居应用的普及,我们需要采取措施来防止黑客入侵,保护用户隐私等。

智能家居系统中的数据库应进行加密存储和传输,防止敏感信息泄露。

同时,通讯协议也应该经过安全验证、防止欺诈和消息篡改等。

总之,基于物联网的智能家居控制系统的设计需要经过详细的调研,充分考虑用户的需求和实际情况,注意系统间的协同工作,同时提高系统的安全性。

基于物联网技术的室内环境监测系统设计与实现

基于物联网技术的室内环境监测系统设计与实现

基于物联网技术的室内环境监测系统设计与实现室内环境对人的健康和生活质量有着重要的影响。

基于物联网技术的室内环境监测系统可以帮助我们实时了解室内环境状况,提供有效的管理和控制,为人们创造一个更加舒适、安全和健康的居住环境。

本文将介绍基于物联网技术的室内环境监测系统的设计与实现。

一、系统设计方案1. 硬件设计室内环境监测系统的硬件设计主要包括传感器、数据采集设备、数据处理设备和数据通信模块。

(1)传感器:通过采集室内环境的数据,包括温度、湿度、二氧化碳浓度、烟雾浓度等。

可以选择可靠、稳定、高精度的传感器进行数据采集。

(2)数据采集设备:将传感器采集到的数据进行采集和处理,将其转化为数字信号,并进行数据预处理和滤波,以提高数据的准确性。

(3)数据处理设备:对采集到的数据进行分析和处理,根据不同的应用场景提供相应的功能。

可以使用嵌入式系统或单片机进行数据处理。

(4)数据通信模块:将处理后的数据通过无线通信方式传输到监测系统的云端或服务器,实现远程监测和管理。

可以选择WiFi、蓝牙、LoRa等无线通信技术。

2. 软件设计室内环境监测系统的软件设计主要包括数据采集和处理、数据存储和管理、数据呈现和分析等功能。

(1)数据采集和处理:实时采集传感器获得的数据,并进行相应的数据处理,如校准、滤波、归一化等,以确保数据的准确性和可靠性。

(2)数据存储和管理:将处理后的数据存储到数据库中,建立合理的数据模型和数据表结构,便于后续数据存取和管理。

(3)数据呈现和分析:通过可视化的界面展示监测到的室内环境数据,包括实时数据、历史数据和统计数据等,方便用户进行数据分析和决策。

二、系统实现步骤1. 硬件搭建(1)选择合适的传感器,并按照需求进行布置和安装。

可以根据室内布局和功能需求,选择不同类型的传感器,并将其连接到数据采集设备。

(2)将数据采集设备连接到数据处理设备,并进行相应的设置和调试。

确保传感器的数据能够准确地传输到数据处理设备。

智能家居环境监测系统的设计

智能家居环境监测系统的设计

智能家居环境监测系统的设计一、概述随着科技的快速发展和人们生活水平的不断提升,智能家居已成为现代家庭生活中不可或缺的一部分。

智能家居环境监测系统作为智能家居的重要组成部分,旨在实时监测和调控家庭环境,为居住者提供更加舒适、健康、安全的生活空间。

智能家居环境监测系统综合运用了物联网、传感器、云计算等先进技术,通过布设在家庭各个角落的传感器节点,实时采集温度、湿度、光照、空气质量等环境参数,并将数据传输至中央控制系统。

系统根据预设的阈值和算法,对采集到的数据进行处理和分析,进而控制智能家居设备自动调整环境状态,如调节空调温度、开启加湿器、控制窗帘开合等。

智能家居环境监测系统的设计与实现,不仅提高了家居生活的便捷性和舒适性,还有助于节能减排和绿色环保。

通过实时监测和智能调控,系统能够避免能源的过度消耗,降低家庭碳排放量,为可持续发展做出贡献。

本文将对智能家居环境监测系统的设计方案进行详细介绍,包括系统架构、硬件选型、软件开发等方面。

通过本文的阐述,读者将能够深入了解智能家居环境监测系统的原理、功能和实现方法,为相关领域的研究和应用提供参考和借鉴。

1. 智能家居的发展背景与意义随着科技的飞速发展,人们的生活水平日益提高,对于居住环境的要求也在不断提升。

在这样的背景下,智能家居应运而生,以其独特的优势逐渐改变着人们的生活方式。

智能家居的发展背景可以追溯至人们对更高效、更便捷、更舒适生活的追求,以及物联网、人工智能等技术的不断进步和普及。

智能家居,或称智能住宅,是以住宅为平台,兼备建筑设备、网络通讯、信息家电和设备自动化,集系统、结构、服务、管理为一体的高效、舒适、安全、便利、环保的居住环境。

它摆脱了传统居住环境的被动模式,成为具有能动性智能化的现代工具。

智能家居的意义在于,它不仅能够提供全方位的信息交换功能,还能优化人们的生活方式和居住环境,帮助人们有效地安排时间、节约各种能源,实现家电控制、照明控制、室内外遥控、窗帘自控、防盗报警、计算机控制、定时控制以及电话远程遥控等功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于物联网的室内环境甲醛监控系统设计与实现目录第一章绪论 01.1 选题背景 01.2小结 0第二章作品方案设计 (1)2.1 作品方案 (1)2.1.1 作品概述 (1)2.1.2 上位机软件设计及WEB服务器设计 (2)2.1.3 网关设计 (3)2.1.4 ZigBee无线传感器网络的设计 (4)2.2 预期目标 (5)2.3 小结 (5)第三章上位机与WEB服务器设计 (6)3.1上位机软件设计 (6)3.1.1功能模块 (7)3.2 小结 (12)第四章网关数据收发软件设计 (12)4.1硬件系统 (13)4.1.1 SIM900A 开发板 (13)4.1.2 协调器 (14)4.2 软件系统 (15)4.2.1 GPRS模块程序设计 (15)4.2.3 ZigBee协调器程序设计 (17)4.3小结 (18)第五章底层ZigBee节点软硬件设计 (19)5.1硬件系统 (19)5.1.1 ZigBee节点底板电路设计 (19)5.1.2 甲醛检测传感器MS1100-P111 (20)5.2软件设计 (21)5.3小结 (22)第六章测试和结果分析 (23)6.1测试目的与方案 (23)6.2 上位机软件测试 (24)6.3 网关测试 (25)6.4 底层ZigBee网络测试 (26)参考文献 (27)附件 (28)第一章绪论1.1 选题背景甲醛具有比较高的毒性并且被我国列入在有毒化学品优先控制名单上。

甲醛己经被世界卫生组织确定为致癌和致畸形物质。

它是公认的变态反应源,也是潜在的强致突变物质之一。

甲醛问题己成为全球公共卫生关注的焦点。

近年来,家庭装修成为人们时尚的追求,但在美化了居室环境的同时,也因很多装饰材料中含有毒物质,造成室内空气污染,特别是室内甲醛污染更为严重,对人体的健康造成了极大的危害。

因此加强对甲醛污染的监测和控制,对于保护人类日常生活的健康具有要的理论意义和实践意义。

除采用常规方法将其去除外,对存在甲醛的环境及时通风是关键。

本项目针对甲醛检测、开风扇或其他排气装置进行通风、报警展开设计,稀释甲醛浓度,使其达到允许浓度,同时报警,提醒人们注意健康。

当然,本系统不仅仅只是适用于家庭室内,也适用于生产装演材料、家具厂等场合。

1.2小结结合以上所述,研究一套低成本,高效率的甲醛监控系统,对于解决家庭室内环境甲醛浓度监测难、不好控制、保障人们日常生活安全具有重要意义,同时也具有很大的市场前景和现实意义。

第二章作品方案设计本章详细介绍了基于室内环境甲醛监控系统设计框架与流程,包括上位机软件及WEB服务器的设计方法、网关的设计过程以及底层ZigBee无线传感器网络的相关设计方案。

2.1 作品方案2.1.1 作品概述作品总体由3层网络组成:底层为无线传感器网络,中层为GPRS网络,上层为Internet网络。

底层和中层通过无线网关连接,中层和上层则利用GPRS 网络交互信息。

底层无线传感器网络由基于ZigBee无线通讯协议传感器节点构成。

ZigBee 技术作为一种新兴的无线通信技术,具有微功耗、低成本、自组网和节点布置灵活等特点,非常适合在多点监测、无人值守的环境监控中应用。

中层GPRS网络由各网关节点组成,完成传感器节点的信息交汇、数据转发、指令收发等功能。

上层Internet 网络由上位机组成,上位机作为用户对室内环境甲醛监测数据进行实时查看,确保室内时刻安全正常。

总体结构图如2-1所示。

室内环境Zigbee 感知节点1Zigbee 感知节点2Zigbee 感知节点3采集甲醛浓度信息协调器信息上传信息上传网关模块电脑数据显示手机实时查询打开通风排气装置报警浓度超标图2-1 室内环境甲醛监控总体框图2.1.2 上位机软件设计及WEB 服务器设计上位机采用HTML 、Css 、Javascript 、MySQL 、PHP 编写的网站,运行于Windows 系统,连接数据库服务器,数据可视化操作,以及远程参数的设置。

其总体框图,如图2-2所示。

图2-2 上位机软件结构框图数据接收部分利用TCP网络协议提供了与 Internet 的标准接口,简化了ZigBee网络采集环境参数;数据处理则是室内甲醛监控系统上位机软件的核心部分,提供了友好的图形用户界面、直观展示网络拓扑结构、节点参数曲线对比,并提供手机安卓APP下载功能,用户通过下载手机APP,无论身在何处,即可时刻查询相关甲醛浓度数据,快捷方便,而在WEB服务器方面,则通过AppServ配置系统环境,搭建Apache WEB服务器,配置MySQL数据库以及PHP解释器[11]。

选用PHP语言开发WEB服务器程序,连接数据库服务器,实现最新数据更新以及历史数据查询。

2.1.3 网关设计ZigBee节点采集的数据要想通过GPRS网络上传至Internet远程服务器,实现ZigBee网络与互联网的数据互通,就必须用到网关。

网关作为无线传感器网络的关键器件,其性能直接关系到整体系统的稳定性,实用性,健壮性。

由于设计开发的网关针对的是数据传输量少的ZigBee网络,故接收环境参数可选用串口接口。

网关接收ZigBee数据,解析处理后,经GPRS网络转发至Internet,因此网关兼具TCP/IP协议[12],方便数据网络转发。

网关结构框图,如图2-3所示。

图2-3 网关硬件结构框图网关采用了重庆DQ电子的SIM900A开发板,此开发板集成了SIM900A GSM功能通信模块,各种接口如2.4G 模块接口等等,对于物联网的开发提供了很大的便利条件。

开发板上使用的SIM900A模块设计成熟,市场使用率高,性能稳定可靠,其双频段适合在国内网络环境使用。

SIM900A支持AT 指令,包括短信,语音数据传输,同时内置TCP/IP协议,与Internet广域网无缝对接。

ZigBee协调器采用的是丘捷的ZigBee核心板和自主设计的底板。

通过串口与32位单片机开发板相连实现数据传输。

协调器在ZigBee无线网络中起组建网络,维护网络,网络管理的作用。

2.1.4 ZigBee无线传感器网络的设计底层的ZigBee无线传感器网络由众多的ZigBee数据采集节点组成。

节点采用TI公司的Zs-tack无线数据传输协议,实现自组网与数据传输。

ZigBee节点采用丘捷的基于cc2530的射频模块,底板为自主设计制作。

2.2 预期目标根据作品要求,室内环境甲醛监控系统,需要实现以下功能:(1) 设计上位机软件实现对种家居室内的实时环境监测数据进行实时查看,确保整个环境处于安全状态;并提供二维码生成功能,生成相应的二维码提供给消费者进行扫描,扫描后即可下载相应APP,通过手机查看实时参数。

(2) 开发WEB服务器,支持多客服端访问;(3) sim900GPRS模块与ZigBee协调器构成硬件平台;(4) 实现 ZigBee底层节点组网,采集数据并上传;(5) 实现 ZigBee网络数据与GPRS网络、Internet信息交互;(6) 系统的整体调试与测试。

2.3 小结方案设计是设计系统的一个重要环节,将项目的任务规范化,列出所要完成的所有工作,在后期项目制作的时候可以极大提高效率,使得项目开发工作有条不紊,也可以让开发的成本降到最低,设计之初即考虑好各种硬件模块的性价比。

第三章上位机与WEB服务器设计3.1上位机软件设计作品上位机采用HTML、Css、Javascript、MySQL、PHP编写的网站,该上位机软件由数据接收,数据处理,数据管理三部分组成,并形成了前台信息展示和后台数据管理两大模块。

数据接收部分利用TCP网络协议提供了与Internet 的标准接口,简化了ZigBee网络采集环境参数接收以及控制信息传递;数据处理则是系统上位机软件的核心部分,提供图形用户界面、直观展示节点参数曲线对比,并提供二维码生成功能,生成相应的二维码提供给消费者进行扫描,扫描后即可生成连接,下载相应手机APP,随时随地查询家居环境甲醛浓度;数据保存部分主要针对数据保存查询处理等工作,亦可将数据导出为表格文件,方便对数据进行详细分析。

试验结果表明:所开发的上位机软件具有良好的稳定性、完善的功能性和便捷的人机接口等优点,实现了对各种传感数据和系统数据的有效组织与管理。

3.1.1上位机总体概述上位机监控软件由数据接收,数据处理,数据管理三个部分组成,并形成了前台信息展示、后台数据管理两大模块,同时每个模块即为一个单独的线程,确保监测系统健壮性;每个模块完成相应功能,相互联系。

数据处理部分为上位机核心部分,负责全部的可视化操作。

上位机软件总体功能,如图3-1所示。

图3-1 系统整体框图3.1.3功能模块上位机软件由账户设置、实时数据显示、历史数据数查询,和设备管理功能模块组成四大功能模块。

(1)账户管理账户管理是为用户提供的一个方便快捷的管理界面,包括基本功能用户名更改,登入密码更改,绑定QQ、邮箱等,其中最为重要的是API KEY生成功能,API KEY是该上位机平台识别底层设备的一个序号,通过该序号即可准确的识别室内不同房间,如卧室、厨房、客厅、卫生间等分布在不同地方的传感器。

如图3-2所示为账户管理界面。

图3-2 账户管理界面(2)实时数据显示实时数据显示界面主要功能是显示当前时刻节点发送过来的数据,通过该数据可以实时查询室内甲醛浓度,方便快捷如图3-3所示。

图3-3 实时数据显示页面(3)历史数据数查询通过历史记录功能,用户可以查询前一个月内节点发送过来的数据,方便对大量的实测数据进行分析处理,如图3-4所示。

图3-4 历史数据数查询(4)设备管理设备管理又由增加新设备和对已注册设备进行管理两部分组成,用户可以随时在原有基础上增加新增添的传感器设备,并进行数据显示,方便对对设备同时进行管理,如图3-5所示。

图3-5 新增设备设备管理界面主要功能就是对已加入设备进行详细的描述,具体包括设备名称、设备备注、标签、所在位置、经度纬度等,通过设备管理界面,用户可以清楚地知道自己所布置的传感器设备的所有信息,如图3-6所示。

图3-6 设备管理界面数据保存采用MySQL数据库,MySQL是最流行的关系型数据库管理系统,它是一种关联数据库管理系统,关联数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就提高了速度并增加了灵活性。

MySQL所使用的SQL语言是用于访问数据库的最常用标准化语言。

上位机软件系统通过PHP技术针对网络上传的数据进行处理,导出存储在MySQL的数据并进行整合生成动态的曲线图,系统网络连接则显得尤为重要。

网络数据处理技术主要任务是数据的接收,数据的解析。

通过网关上传到服务器,存储到数据库中,利用数据库的数据,生成相应的折线图,将节点开始监测的数据到当前监测的数据进行显示,使用户能实时观察到室内环境甲醛浓度信息,从而减少人工观测的复杂性和不确定性,如图3-7所示。

相关文档
最新文档