2019-2020郑州市中考数学试卷及答案

合集下载

河南省郑州市2019-2020学年中考中招适应性测试卷数学试题(2)含解析

河南省郑州市2019-2020学年中考中招适应性测试卷数学试题(2)含解析

河南省郑州市2019-2020学年中考中招适应性测试卷数学试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,菱形ABCD 中,∠B =60°,AB =4,以AD 为直径的⊙O 交CD 于点E ,则»DE的长为( )A .3πB .23π C .43π D .76π 2.将5570000用科学记数法表示正确的是( )A .5.57×105B .5.57×106C .5.57×107D .5.57×1083.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(31)+米4.已知:二次函数y=ax 2+bx+c (a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b<m (am+b )(m≠-1);④ax 2+bx+c=1两根分别为-3,1;⑤4a+2b+c>1.其中正确的项有( )A .2个B .3个C .4个D .5个5.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为()6.已知二次函数2()y x h =-(h 为常数),当自变量x 的值满足13x -剟时,与其对应的函数值y 的最小值为4,则h 的值为( ) A .1或5B .5-或3C .3-或1D .3-或57.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .8.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为( ) A .零上3℃B .零下3℃C .零上7℃D .零下7℃9.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根10.已知△ABC 中,∠BAC=90°,用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形,其作法不正确的是( )A .B .C .D .方体最少有()A.4个B.5个C.6个D.7个12.已知a=12(7+1)2,估计a的值在()A.3 和4之间B.4和5之间C.5和6之间D.6和7之间二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点.若DE=1,则DF的长为________.14.= .15.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.16.计算:sin30°﹣(﹣3)0=_____.17.计算:2sin245°﹣tan45°=______.18.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,若⊙O的半径是5,CD=8,则AE=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10(1)按如下分数段整理、描述这两组数据:成绩x70≤x≤7475≤x≤7980≤x≤8485≤x≤8990≤x≤9495≤x≤100学生甲______ ______ ______ ______ ______ ______乙 1 1 4 2 1 1(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲______ 83.7 ______ 86 13.21乙24 83.7 82 ______ 46.21(3)若从甲、乙两人中选择一人参加知识竞赛,你会选______(填“甲”或“乙),理由为______.20.(6分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y 轴,垂足为点C,连结AB,AC.求该反比例函数的解析式;若△ABC的面积为6,求直线AB的表达式.21.(6分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA 级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元.(1)求每千克A级别茶叶和B级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.23.(8分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;小王自网店开业起,最快在第几个月可还清10万元的无息贷款?24.(10分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证:(1)△ABF≌△DCE;四边形ABCD是矩形.25.(10分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M 在线段AB上,点N在线段AC上.①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.26.(12分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD 沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.27.(12分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.参考答案题目要求的.)1.B【解析】【分析】连接OE,由菱形的性质得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性质和三角形内角和定理求出∠DOE=60°,再由弧长公式即可得出答案.【详解】解:连接OE,如图所示:∵四边形ABCD是菱形,∴∠D=∠B=60°,AD=AB=4,∴OA=OD=2,∵OD=OE,∴∠OED=∠D=60°,∴∠DOE=180°﹣2×60°=60°,∴»DE的长=602180π⨯=23π;故选B.【点睛】本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE的度数是解决问题的关键.2.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=1.【详解】5570000=5.57×101所以B正确3.D【分析】在热气球C 处测得地面B 点的俯角分别为45°,BD=CD=100米,再在Rt △ACD 中求出AD 的长,据此即可求出AB 的长. 【详解】∵在热气球C 处测得地面B 点的俯角分别为45°, ∴BD =CD =100米,∵在热气球C 处测得地面A 点的俯角分别为30°, ∴AC =2×100=200米,∴AD∴AB =AD+BD =100( 故选D . 【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形. 4.B 【解析】 【分析】根据二次函数的图象与性质判断即可. 【详解】①由抛物线开口向上知: a >1; 抛物线与y 轴的负半轴相交知c <1; 对称轴在y 轴的右侧知:b >1;所以:abc<1,故①错误; ②Q 对称轴为直线x=-1,12ba∴-=-,即b=2a, 所以b-2a=1.故②错误;③由抛物线的性质可知,当x=-1时,y 有最小值, 即a-b+c <2am bm c ++(1m ≠-), 即a ﹣b <m (am+b )(m≠﹣1), 故③正确;④因为抛物线的对称轴为x=1, 且与x 轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故④正确; ⑤由图像可得,当x=2时,y >1, 即: 4a+2b+c >1,故正确选项有③④⑤, 故选B. 【点睛】本题二次函数的图象与性质,牢记公式和数形结合是解题的关键. 5.D 【解析】∵⊙O 的半径OD ⊥弦AB 于点C ,AB=8,∴AC=AB=1. 设⊙O 的半径为r ,则OC=r -2, 在Rt △AOC 中,∵AC=1,OC=r -2,∴OA 2=AC 2+OC 2,即r 2=12+(r ﹣2)2,解得r=2. ∴AE=2r=3. 连接BE ,∵AE 是⊙O 的直径,∴∠ABE=90°.在Rt △ABE 中,∵AE=3,AB=8,∴2222BE AE AB 1086=--=.在Rt △BCE 中,∵BE=6,BC=1,∴2222CE BE BC 64213=+=+=D . 6.D 【解析】 【分析】由解析式可知该函数在x h =时取得最小值0,抛物线开口向上,当x h >时,y 随x 的增大而增大;当x h <时,y 随x 的增大而减小;根据13x -≤≤时,函数的最小值为4可分如下三种情况:①若13h x <-≤≤,1x =-时,y 取得最小值4;②若-1<h <3时,当x=h 时,y 取得最小值为0,不是4;③若13x h -≤≤<,当x=3时,y 取得最小值4,分别列出关于h 的方程求解即可. 【详解】解:∵当x >h 时,y 随x 的增大而增大,当x h <时,y 随x 的增大而减小,并且抛物线开口向上, ∴①若13h x <-≤≤,当1x =-时,y 取得最小值4,可得:24(1)h =--4,解得3h =-或1h =(舍去);∴此种情况不符合题意,舍去;③若-1≤x≤3<h ,当x=3时,y 取得最小值4,可得:24(3)h =-,解得:h=5或h=1(舍). 综上所述,h 的值为-3或5, 故选:D . 【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键. 7.A 【解析】 【分析】根据从正面看得到的图形是主视图,可得答案. 【详解】解:从正面看第一层是三个小正方形,第二层中间有一个小正方形, 故选:A . 【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图. 8.B 【解析】试题分析:由题意知,“-”代表零下,因此-3℃表示气温为零下3℃. 故选B.考点:负数的意义 9.C 【解析】 【详解】解:由题意可知4的算术平方根是2,4的算术平方根是, 2<,8的立方根是2, 故根据数轴可知, 故选C 10.D 【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于12两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B 不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.11.B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!12.D【解析】【分析】的范围,进而可得的范围.【详解】解:a=12×(,∵2<3,∴6<<7,∴a 的值在6和7之间,故选D .【点睛】此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.1【解析】【分析】求出EC ,根据菱形的性质得出AD ∥BC ,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可.【详解】∵DE=1,DC=3,∴EC=3-1=2,∵四边形ABCD 是菱形,∴AD ∥BC ,∴△DEF ∽△CEB , ∴DF DE BC CE=, ∴132DF =, ∴DF=1.1,故答案为1.1.【点睛】此题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明△DEF ∽△CEB ,然后根据相似三角形的性质可求解.14.2【解析】试题分析:根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a 的算术平方根,特别地,规定0的算术平方根是0.∵22=4,∴=2.考点:算术平方根.15.(6053,2).【解析】【分析】根据前四次的坐标变化总结规律,从而得解.【详解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…发现点P的位置4次一个循环,∵2017÷4=504余1,P2017的纵坐标与P1相同为2,横坐标为5+3×2016=6053,∴P2017(6053,2),故答案为(6053,2).考点:坐标与图形变化﹣旋转;规律型:点的坐标.16.-1 2【解析】【分析】sin30°=12,a0=1(a≠0)【详解】解:原式=12-1=-1 2故答案为:-1 2 .【点睛】本题考查了30°的角的正弦值和非零数的零次幂.熟记是关键. 17.0【解析】原式=22121=212⎛⎫⨯-⨯-⎪⎪⎝⎭=0,故答案为0.18.2【解析】【分析】连接OC,由垂径定理知,点E是CD的中点,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可【详解】设AE为x,连接OC,∵AB是⊙O的直径,弦CD⊥AB于点E,CD=8,∴∠CEO=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,52=42+(5-x)2,解得:x=2,则AE是2,故答案为:2【点睛】此题考查垂径定理和勾股定理,,解题的关键是利用勾股定理求关于半径的方程.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由见解析【解析】【分析】(1)根据折线统计图数字进行填表即可;(2)根据稽查,中位数,众数的计算方法,求得甲成绩的极差,中位数,乙成绩的极差,众数即可;(3)可分别从平均数、方差、极差三方面进行比较.【详解】(1)由图可知:甲的成绩为:75,84,89,82,86,1,86,83,85,86,∴70⩽x⩽74无,共0个;75⩽x⩽79之间有75,共1个;80⩽x⩽84之间有84,82,1,83,共4个;85⩽x⩽89之间有89,86,86,85,86,共5个;90⩽x⩽94之间和95⩽x⩽100无,共0个.故答案为0;1;4;5;0;0;(2)由图可知:甲的最高分为89分,最低分为75分,极差为89−75=14分;∵甲的成绩为从低到高排列为:75,1,82,83,84,85,86,86,86,89,∴中位数为12(84+85)=84.5;∵乙的成绩为从低到高排列为:72,76,1,1,1,83,87,89,91,96,1出现3次,乙成绩的众数为1.故答案为14;84.5;1;(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论)故答案为:甲,两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.【点睛】此题考查折线统计图,统计表,平均数,中位数,众数,方差,极差,解题关键在于掌握运算法则以及会用这些知识来评价这组数据.20.(1)y6x=;(2)y12=-x+1.【解析】【分析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程,求得b的值,进而求得a的值,根据待定系数法,可得答案.【详解】(1)由题意得:k=xy=2×3=6,∴反比例函数的解析式为y6x =;(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),∵反比例函数y 6x =的图象经过点B(a ,b), ∴b 6a=, ∴AD =36a-, ∴S △ABC 12=BC•AD 12=a(36a -)=6, 解得a =6,∴b 6a==1, ∴B(6,1),设AB 的解析式为y =kx+b ,将A(2,3),B(6,1)代入函数解析式,得2361k b k b +=⎧⎨+=⎩,解得:124k b ⎧=-⎪⎨⎪=⎩, 所以直线AB 的解析式为y 12=-x+1. 【点睛】本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC ,AD 的长是解题的关键.21.(1)100元和150元;(2)购进A 种级别的茶叶67kg ,购进B 种级别的茶叶133kg .销售总利润最大为26650元.【解析】试题分析:(1)设每千克A 级别茶叶和B 级别茶叶的销售利润分别为x 元和y 元;(2)设购进A 种级别的茶叶akg ,购进B 种级别的茶叶(200-a )kg .销售总利润为w 元.构建一次函数,利用一次函数的性质即可解决问题.试题解析:解:(1)设每千克A 级别茶叶和B 级别茶叶的销售利润分别为x 元和y 元.由题意, 解得, 答:每千克A 级别茶叶和B 级别茶叶的销售利润分别为100元和150元.(2)设购进A 种级别的茶叶akg ,购进B 种级别的茶叶(200﹣a )kg .销售总利润为w 元.由题意w=100a+150(200﹣a)=﹣50a+30000,∵﹣50<0,∴w随x的增大而减小,∴当a取最小值,w有最大值,∵200﹣a≤2a,∴a≥,∴当a=67时,w最小=﹣50×67+30000=26650(元),此时200﹣67=133kg,答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.22.112.1【解析】试题分析:(1)根据题意即可求得y与x的函数关系式为y=30﹣2x与自变量x的取值范围为6≤x<11;(2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.试题解析:解:(1)y=30﹣2x(6≤x<11).(2)设矩形苗圃园的面积为S,则S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴当x=7.1时,S最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1.点睛:此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.23.(1)当4≤x≤6时,w1=﹣x2+12x﹣35,当6≤x≤8时,w2=﹣12x2+7x﹣23;(2)最快在第7个月可还清10万元的无息贷款.【解析】分析:(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.详解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:44 62 k bk b+=⎧⎨+=⎩,解得:18kb=-⎧⎨=⎩,∴直线AB的解析式为:y=﹣x+8,同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣12x+5,∵工资及其他费作为:0.4×5+1=3万元,∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,当6≤x≤8时,w2=(x﹣4)(﹣12x+5)﹣3=﹣12x2+7x﹣23;(2)当4≤x≤6时,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴当x=6时,w1取最大值是1,当6≤x≤8时,w2=﹣12x2+7x﹣23=﹣12(x﹣7)2+32,当x=7时,w2取最大值是1.5,∴101.5=203=623,即最快在第7个月可还清10万元的无息贷款.点睛:本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高.24.(1)见解析;(2)见解析.【解析】【分析】(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF≌△DCE.(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C,从而得到一个直角,问题得证.【详解】(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四边形ABCD是平行四边形,∴AB=DC.在△ABF和△DCE中,∵AB=DC,BF=CE,AF=DE,∴△ABF ≌△DCE .(2)∵△ABF ≌△DCE ,∴∠B=∠C .∵四边形ABCD 是平行四边形,∴AB ∥CD .∴∠B+∠C=180°.∴∠B=∠C=90°.∴平行四边形ABCD 是矩形.25.(1)y=﹣18x 2﹣14x+3;(2)①点D 坐标为(﹣32,0);②点M (32,0). 【解析】【分析】(1)应用待定系数法问题可解;(2)①通过分类讨论研究△APQ 和△CDO 全等②由已知求点D 坐标,证明DN ∥BC ,从而得到DN 为中线,问题可解.【详解】(1)将点(-6,0),C (0,3),B (4,0)代入y=ax 2+bx+c ,得 366016400a b c a b c c -+⎧⎪++⎨⎪⎩===, 解得:18143a b c ⎧-⎪⎪⎪-⎨⎪⎪⎪⎩=== , ∴抛物线解析式为:y=-18x 2-14x+3; (2)①存在点D ,使得△APQ 和△CDO 全等,当D 在线段OA 上,∠QAP=∠DCO ,AP=OC=3时,△APQ 和△CDO 全等,∴tan ∠QAP=tan ∠DCO ,OC OD OA OC=, ∴3 63OD =, ∴OD=32, ∴点D 坐标为(-32,0).由对称性,当点D 坐标为(32,0)时, 由点B 坐标为(4,0),此时点D (32,0)在线段OB 上满足条件. ②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB ,∴BD=BC=5,∴OD=BD-OB=1,则点D 坐标为(-1,0)且AD=BD=5, 连DN ,CM ,则DN=DM ,∠NDC=∠MDC ,∴∠NDC=∠DCB ,∴DN ∥BC ,∴1AN AD NC DB==, 则点N 为AC 中点.∴DN 时△ABC 的中位线,∵DN=DM=12BC=52, ∴OM=DM-OD=32 ∴点M (32,0) 【点睛】 本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合.26.△A′DE 是等腰三角形;证明过程见解析.【解析】试题分析:当四边形EDD′F 为菱形时,△A′D E 是等腰三角形,△A′DE ≌△EFC′.先证明CD=DA=DB ,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB 推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.试题解析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠D EA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.考点:1.菱形的性质;2.全等三角形的判定;3.平移的性质.27.(1)1;(2)详见解析;(3)750;(4)15.【解析】【分析】(1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;(3)计算足球的百分比,根据样本估计总体,即可解答;(4)利用概率公式计算即可.【详解】(1)30÷15%=1(人).答:共抽取1名学生进行问卷调查;故答案为1.(2)足球的人数为:1﹣60﹣30﹣24﹣36=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°.如图所示:(3)3000×0.25=750(人).答:全校学生喜欢足球运动的人数为750人.(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)共有25种等可能的结果数,选同一项目的结果数为5,所以甲乙两人中有且选同一项目的概率P(A)=15.【点睛】本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.。

2019年河南中考数学真题--含解析

2019年河南中考数学真题--含解析

2019年河南省初中毕业、升学考试数学(满分120分,考试时间100分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019河南省,1,3)12的绝对值是()A.12- B.12C.2D.2-【答案】B【解析】本题考查了绝对值的概念,解题的关键是理解绝对值的意义.此类问题容易出错的地方是容易与倒数或相反数混淆.根据绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,从而可得12的绝对值是12,即1122.故答案选B【知识点】绝对值,相反数2.(2019河南省,2,3)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A. 46×10-7B. 4.6×10-7C.4.6×10-6D.0.46×10-5【答案】C【解析】本题考查了科学记数法,解题的关键是正确确定a的值以及n的值.0.0000046是绝对值小于1的数,这类数用科学计数法表示的方法是写成a×10-n(1≤a<10,n >0 )的形式,关键是确定-n,确定了n的值,-n的值就确定了.确定方法是:n 的值等于原数中左起第一个非零数前零的个数(含整数位数上的零).故0.0000046中左起第一个非零数为4,其左边六个零,即0.0000046=4.6×10-6.答案选C【知识点】科学记数法3.(2019河南省,3,3)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°【答案】B【解析】本题考查了(1)平行线的性质有:①两条平行线被第三条直线所截,同位角相等,②两条平行线被第三条直线所截,内错角相等,③两条平行线被第三条直线所截,同旁内角互补.(2)三角形内角和定理推论:三角形的一个外角等于与它不相邻的两个内角的和; ∵AB ∥CD ∠B =75° ∴∠B=∠CFE =75°∵∠CFE=∠D+∠E ∠E =27° ∴∠D=∠CFE-∠E =75°-27°=48° 故答案选B【知识点】平行线的性质,三角形内角和定理及其推论 4.(2019河南卷,4,3)下列计算正确的是( ) A.236a a a += B.22(3)6a a -= C.222()x y x y -=- D.32222-=【答案】D【解析】A 合并同类项系数2+3=5,,不是2×3=6,B 错-3的平方等于9,C 中乘法公式用错,D 正确,选D【知识点】合并同类项、积的乘方、乘法公式、合并同类二次根式.5.(2019河南卷,5,3)如图(1)是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图(2),关于平移前后几何体的三视图,下列说法正确的是( )A.主视图相同B.左视图相同C. 俯视图相同D.三种视图都不相同【答案】c【解析】考查三视图,对比平移前后结果A 主视图不同,B 左视图不同,AB 选项不对,C 俯视图相同,C 正确.故选C. 【知识点】平移,三视图6.(2019河南卷,6,3)一元二次方程(1)(1)23x x x +-=+的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根 【答案】A【解析】先化简,∵2123x x -=+,∴2240x x --=,△=2-+16=20(2)>0,故选A . 【知识点】一元二次方程化为基本形式,运用根的判别式判断根的情况7.(2019河南省,7,3) 某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元,3元,2元,1元.某天的销售情况如图所示,则这天销售矿泉水的平均单价是( ) A.1.95元 B.2.15元 C.2.25元 D.2.75元55%20%15%10%DCBA【答案】C【解析】本题考查了加权平均数的概念和意义,由题意可知各种不同价格的百分比就是权重,最终的平均数就等于每个价格乘以权重,所以平均单价为:5×10%+3×15%+2×55%+1×10%=2.25,所以最后的平均单价为2.25元.【知识点】加权平均数的意义;扇形统计图8.(2019河南省,8,3) 已知抛物线24y x bx =-++经过(-2,n )和(4,n )两点,则n 的值为( )A.-2B.-4C.2D.4【答案】B【解题过程】由题意知抛物线过(-2,n )和(4,n ),说明这两个点关于对称轴对称,即对称轴为直线x =1,所以-a b2=1,又因为a=-1,所以可得b =2,即抛物线的解析式为y=-x 2+2x +4,把x =-2代入解得n =-4.【知识点】二次函数的对称性;中点坐标公式;求对称轴的公式及二次函数解析式. 9.(2019河南省,9,3)如图,在四边形ABCD 中,AD ∥BC ,∠D =90°,AD =4,BC =3,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O ,若点O 是AC 的中点,则CD 的长为( )A.【答案】A【解题过程】过点A 做BM ⊥B C 与点M,∵AD ∥BC∴∠BCD+∠D=180°又∵∠D=90°∴∠BCD=90°∴∠BCD=∠D=∠BMD=90° 四边形BCDM 为矩形 ∴AB=BC=3 BM=CD由作图可知AE=CE 又∵O 是AC 的中点 ∴AB=BC=3在Rt △ABM 中,∠AMB=90°,AM=AD-MD=1 ∴BM= ∴CD=故选AMFE OBDAC【知识点】尺规作图 矩形的判定及性质 等腰三角形的性质 垂直平分线的性质 勾股定理 10.(2019河南省,10,3)如图,在△OAB 中,顶点O (0,0),A (-3,4),B (3,4).将△OAB与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为( ) A. (10,3) B. (-3,10) C. (10,-3) D. (3,-10)yxCDBAO【答案】D 【思路分析】由A 、B 两点的坐标可知线段AB 的长度和它与x 轴的关系,由正方形的性质可知AD=AB ,延长DA 交x 轴于点M ,则DA ⊥x 轴,Rt △DMO 中,MO=3,DM=10,将△OAB 和正方形ABCD 绕点O 每次顺时针旋转90°,Rt △DMO 也同步绕点O 每次顺时针旋转90°,D 点的落点坐标可由Rt △DMO 的旋转得到。

2019年河南省中考数学试卷及答案(Word解析版)

2019年河南省中考数学试卷及答案(Word解析版)

2019年河南省初中学业水平暨高级中等学校招生考试试卷数 学注意事项:1. 本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上。

参考公式:二次函数图像2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a-- 一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。

1、-2的相反数是【】(A )2 (B)2-- (C)12 (D)12- 【解析】根据相反数的定义可知:-2的相反数为2【答案】A2、下列图形中,既是轴对称图形又是中心对称图形的是【】【解析】轴对称是指在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形。

中心对称图形是指平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么就说这两个图形关于这个点成中心对称。

结合定义可知,答案是D【答案】D3、方程(2)(3)0x x -+=的解是【】(A )2x = (B )3x =- (C )122,3x x =-= (D )122,3x x ==-【解析】由题可知:20x -=或者30x +=,可以得到:122,3x x ==-【答案】D4、在一次体育测试中,小芳所在小组8个人的成绩分别是:46,47,48,48,49,49,49,50.则这8个人体育成绩的中位数是【】(A ) 47 (B )48 (C )48.5 (D )49【解析】中位数是将数据按照从小到大的顺序排列,其中间的一个数或中间两个数的平均数就是这组数的中位数。

本题的8个数据已经按照从小到大的顺序排列了,其中间的两个数是48和49,它们的平均数是48.5。

因此中位数是48.5【答案】C5、如图是正方形的一种张开图,其中每个面上都标有一个数字。

那么在原正方形中,与数字“2”相对的面上的数字是【】(A )1 (B )4 (C )5 (D )6【解析】将正方形重新还原后可知:“2”与“4”对应,“3”与“5”对应,“1”与“6”对应。

河南省郑州市2019-2020学年第五次中考模拟考试数学试卷含解析

河南省郑州市2019-2020学年第五次中考模拟考试数学试卷含解析

河南省郑州市2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.5ab﹣ab=4 B.a6÷a2=a4C.112a b ab+=D.(a2b)3=a5b32.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )A.1 B.12C.14D.153.将抛物线y=12x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=12(x﹣8)2+5 B.y=12(x﹣4)2+5 C.y=12(x﹣8)2+3 D.y=12(x﹣4)2+34.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为()A.1或2 B.2或3 C.3或4 D.4或55.在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H.∠CBE=∠BAD,有下列结论:①FD=FE;②AH=2CD;③BC•AD=2AE2;④S△BEC=S△ADF.其中正确的有()A.1个B.2个C.3个D.4个6.方程x2+2x﹣3=0的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣37.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()A .37B .38C .50D .518.计算a•a 2的结果是( )A .aB .a 2C .2a 2D .a 39.如图,65,AFD CD EB ∠=︒∕∕,则B Ð的度数为( )A .115°B .110°C .105°D .65°10.如图,E ,B ,F ,C 四点在一条直线上,EB =CF ,∠A =∠D ,再添一个条件仍不能证明△ABC ≌△DEF 的是( )A .AB =DE B .DF ∥AC C .∠E =∠ABCD .AB ∥DE11.点P (﹣2,5)关于y 轴对称的点的坐标为( )A .(2,﹣5)B .(5,﹣2)C .(﹣2,﹣5)D .(2,5)12.2017年人口普查显示,河南某市户籍人口约为2536000人,则该市户籍人口数据用科学记数法可表示为( )A .2.536×104人B .2.536×105人C .2.536×106人D .2.536×107人二、填空题:(本大题共6个小题,每小题4分,共24分.)131x -x 的取值范围是_______.144x -x 的取值范围为_____.15.如图,CE 是▱ABCD 的边AB 的垂直平分线,垂足为点O ,CE 与DA 的延长线交于点E .连接AC ,BE ,DO ,DO 与AC 交于点F ,则下列结论:①四边形ACBE 是菱形;②∠ACD =∠BAE ;③AF :BE =2:1;④S 四边形AFOE :S △COD =2:1.其中正确的结论有_____.(填写所有正确结论的序号)16.20-114+-3-2014-4+6⨯()()=________17.比较大小:13 ___1.(填“>”、“<”或“=”)18.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心,EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则sin ∠EAB 的值为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:025(3)tan 45π︒+--.化简:2(2)(1)x x x ---.20.(6分)有一个n 位自然数...abcd gh 能被x 0整除,依次轮换个位数字得到的新数bcd...gha 能被x 0+1整除,再依次轮换个位数字得到的新数cd...ghab 能被x 0+2整除,按此规律轮换后,d...ghabc 能被x 0+3整除,…,...habc g 能被x 0+n ﹣1整除,则称这个n 位数a ...bcd gh 是x 0的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”. (1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”. (2)若三位自然数abc 是3的一个“轮换数”,其中a=2,求这个三位自然数abc .21.(6分)如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.22.(8分)如图有A 、B 两个大小均匀的转盘,其中A 转盘被分成3等份,B 转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率.23.(8分)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=1.(1)求证:PC是⊙O的切线.(2)求tan∠CAB的值.24.(10分)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)25.(10分)如图,已知∠AOB=45°,AB⊥OB,OB=1.(1)利用尺规作图:过点M作直线MN∥OB交AB于点N(不写作法,保留作图痕迹);(1)若M为AO的中点,求AM的长.26.(12分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台.求甲、乙两种品牌空调的进货价;该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.27.(12分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】由整数指数幂和分式的运算的法则计算可得答案.【详解】A 项, 根据单项式的减法法则可得:5ab-ab=4ab,故A 项错误;B 项, 根据“同底数幂相除,底数不变,指数相减”可得: a 6÷a 2=a 4,故B 项正确;C 项,根据分式的加法法则可得:11a b a b ab++=,故C 项错误; D 项, 根据 “积的乘方等于乘方的积” 可得:2363()a b a b =,故D 项错误;故本题正确答案为B.【点睛】幂的运算法则:(1) 同底数幂的乘法: ·m n m n a a a +=(m 、n 都是正整数)(2)幂的乘方:()m n mn a a =(m 、n 都是正整数)(3)积的乘方:()n n n ab a b = (n 是正整数)(4)同底数幂的除法:m n m n a a a -÷=(a≠0,m 、n 都是正整数,且m>n)(5)零次幂:01a =(a≠0)(6) 负整数次幂: 1p p aa -=(a≠0, p 是正整数). 2.B【解析】【分析】直接利用概率的意义分析得出答案.【详解】解:因为一枚质地均匀的硬币只有正反两面, 所以不管抛多少次,硬币正面朝上的概率都是12,【点睛】此题主要考查了概率的意义,明确概率的意义是解答的关键.3.D【解析】【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【详解】 y=12x 2﹣6x+21 =12(x 2﹣12x )+21 =12[(x ﹣6)2﹣16]+21 =12(x ﹣6)2+1, 故y=12(x ﹣6)2+1,向左平移2个单位后, 得到新抛物线的解析式为:y=12(x ﹣4)2+1. 故选D .【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键. 4.A【解析】【分析】连接B′D ,过点B′作B′M ⊥AD 于M .设DM=B′M=x ,则AM=7-x ,根据等腰直角三角形的性质和折叠的性质得到:(7-x )2=25-x 2,通过解方程求得x 的值,易得点B′到BC 的距离.【详解】解:如图,连接B′D ,过点B′作B′M ⊥AD 于M ,∵点B 的对应点B′落在∠ADC 的角平分线上,∴设DM=B′M=x ,则AM=7﹣x ,又由折叠的性质知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:222''AM AB B M =-,即22(7)25x x -=-,解得x=3或x=4,则点B′到BC 的距离为2或1.【点睛】本题考查的是翻折变换的性质,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.5.C【解析】【分析】根据题意和图形,可以判断各小题中的结论是否成立,从而可以解答本题.【详解】∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵点F是AB的中点,∴FD=12AB,FE=12AB,∴FD=FE,①正确;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,AEH CEB AE BEEAH CBE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正确;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD∽△BCE,∴AB ADBC BE=,即BC•AD=AB•BE,∵∠AEB=90°,AE=BE,∴BEBE•BE ,∴AE 2;③正确;设AE=a ,则a ,∴a ﹣a ,∴BECABC CE?BE S CE 2AC?BE S AC 2===V V=22-,即BEC ABC S =V V , ∵AF=12AB , ∴ ADF ABD ABC 11S S S 24==V V V , ∴S △BEC ≠S △ADF ,故④错误,故选:C .【点睛】本题考查相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.6.B【解析】【分析】本题可对方程进行因式分解,也可把选项中的数代入验证是否满足方程.【详解】x 2+2x-3=0,即(x+3)(x-1)=0,∴x 1=1,x 2=﹣3故选:B .【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.7.D【解析】试题解析:第①个图形中有3 盆鲜花,第②个图形中有336+=盆鲜花,第③个图形中有33511++=盆鲜花,…第n 个图形中的鲜花盆数为23357(21)2n n ++++⋯++=+,则第⑥个图形中的鲜花盆数为26238.+=故选C.8.D【解析】a·a 2= a 3.故选D.9.A【解析】【分析】根据对顶角相等求出∠CFB =65°,然后根据CD ∥EB ,判断出∠B =115°.【详解】∵∠AFD =65°,∴∠CFB =65°,∵CD ∥EB ,∴∠B =180°−65°=115°,故选:A .【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.10.A【解析】【分析】由EB=CF ,可得出EF=BC ,又有∠A=∠D ,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC ≌△DEF ,那么添加的条件与原来的条件可形成SSA ,就不能证明△ABC ≌△DEF 了.【详解】∵EB=CF ,∴EB+BF=CF+BF ,即EF=BC ,又∵∠A=∠D ,A 、添加DE=AB 与原条件满足SSA ,不能证明△ABC ≌△DEF ,故A 选项正确.B 、添加DF ∥AC ,可得∠DFE=∠ACB ,根据AAS 能证明△ABC ≌△DEF ,故B 选项错误. C 、添加∠E=∠ABC ,根据AAS 能证明△ABC ≌△DEF ,故C 选项错误.D 、添加AB ∥DE ,可得∠E=∠ABC ,根据AAS 能证明△ABC ≌△DEF ,故D 选项错误,故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11.D【解析】【分析】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】点(25)P -,关于y 轴对称的点的坐标为(25),, 故选:D .【点睛】本题主要考查了平面直角坐标系中点的对称,熟练掌握点的对称特点是解决本题的关键.12.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】2536000人=2.536×106人.故选C .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1x ≥【解析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.∴x-1≥2,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于2.14.x≤1【解析】【分析】根据二次根式有意义的条件可求出x的取值范围.【详解】由题意可知:1﹣x≥0,∴x≤1故答案为:x≤1.【点睛】本题考查二次根式有意义的条件,解题的关键是利用被开方数是非负数解答即可.15.①②④.【解析】【分析】根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可. 【详解】∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵EC垂直平分AB,∴OA=OB=12AB=12DC,CD⊥CE,∵OA∥DC,∴EA EO OAED EC CD===12,∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四边形ACBE是平行四边形,∵AB⊥EC,∴四边形ACBE是菱形,故①正确,∵∠DCE=90°,DA=AE ,∴AC=AD=AE ,∴∠ACD=∠ADC=∠BAE ,故②正确,∵OA ∥CD , ∴AF OA 1CF CD 2==, ∴AF AF 1AC BE 3==,故③错误, 设△AOF 的面积为a ,则△OFC 的面积为2a ,△CDF 的面积为4a ,△AOC 的面积=△AOE 的面积=1a ,∴四边形AFOE 的面积为4a ,△ODC 的面积为6a∴S 四边形AFOE :S △COD =2:1.故④正确.故答案是:①②④.【点睛】此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.16.13【解析】20-114+-3-2014-4+6⨯()() =2+9-4+6=13.故答案是:13.17.<.【解析】【分析】根据算术平方根的定义即可求解.【详解】161,13161,131.故答案为<.【点睛】考查了算术平方根,非负数a 的算术平方根a 有双重非负性:①被开方数a 是非负数;②算术平方根a 本身是非负数.18.35. 【解析】试题分析:设正方形的边长为y ,EC=x ,由题意知,AE 2=AB 2+BE 2,即(x+y )2=y 2+(y-x )2,由于y≠0,化简得y=4x ,∴sin ∠EAB=3355BE y x x AE y x x -===+. 考点:1.相切两圆的性质;2.勾股定理;3.锐角三角函数的定义三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)5;(2)-3x+4【解析】【分析】(1)第一项计算算术平方根,第二项计算零指数幂,第三项计算特殊角的三角函数值,最后计算有理数运算. (2)利用完全平方公式和去括号法则进行计算,再进行合并同类项运算.【详解】(1)解:原式5115=+-=(2)解:原式224434x x x x x =-+-+=-+【点睛】本题考查实数的混合运算和整式运算,解题关键是熟练运用完全平方公式和熟记特殊角的三角函数值. 20. (1)见解析;(2) 201,207,1【解析】试题分析:(1)先设出两位自然数的十位数字,表示出这个两位自然数,和轮换两位自然数即可;(2)先表示出三位自然数和轮换三位自然数,再根据能被5整除,得出b 的可能值,进而用4整除,得出c 的可能值,最后用能被3整除即可.试题解析:(1)设两位自然数的十位数字为x ,则个位数字为2x ,∴这个两位自然数是10x+2x=12x ,∴这个两位自然数是12x能被6整除,∵依次轮换个位数字得到的两位自然数为10×2x+x=21x∴轮换个位数字得到的两位自然数为21x能被7整除,∴一个两位自然数的个位数字是十位数字的2倍,这个两位自然数一定是“轮换数”.(2)∵三位自然数是3的一个“轮换数”,且a=2,∴100a+10b+c能被3整除,即:10b+c+200能被3整除,第一次轮换得到的三位自然数是100b+10c+a能被4整除,即100b+10c+2能被4整除,第二次轮换得到的三位自然数是100c+10a+b能被5整除,即100c+b+20能被5整除,∵100c+b+20能被5整除,∴b+20的个位数字不是0,便是5,∴b=0或b=5,当b=0时,∵100b+10c+2能被4整除,∴10c+2能被4整除,∴c只能是1,3,5,7,9;∴这个三位自然数可能是为201,203,205,207,209,而203,205,209不能被3整除,∴这个三位自然数为201,207,当b=5时,∵100b+10c+2能被4整除,∴10c+502能被4整除,∴c只能是1,5,7,9;∴这个三位自然数可能是为251,1,257,259,而251,257,259不能被3整除,∴这个三位自然数为1,即这个三位自然数为201,207,1.【点睛】此题是数的整除性,主要考查了3的倍数,4的倍数,5的倍数的特点,解本题的关键是用5的倍数求出b的值.21.1 3【解析】【分析】画树状图展示所有9种等可能的结果数,再找出两次抽取的牌上的数字都是偶数的结果数,然后根据概率公式求解.【详解】画树状图为:共有9种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为2,所以两次抽取的牌上的数字都是偶数的概率=26=13.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式求事件A或B的概率.22.(1)答案见解析;(2)13.【解析】【分析】(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率.【详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,则P=412=13.23.(1)见解析;(2). 【解析】【分析】(1)连接OC、BC,根据题意可得OC2+PC2=OP2,即可证得OC⊥PC,由此可得出结论.(2)先根据题意证明出△PBC∽△PCA,再根据相似三角形的性质得出边的比值,由此可得出结论.【详解】(1)如图,连接OC、BC∵⊙O的半径为3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=1∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC是⊙O的切线.(2)∵AB是直径∴∠ACB=90°∴∠ACO+∠OCB=90°∵OC⊥PC∴∠BCP+∠OCB=90°∴∠BCP=∠ACO∵OA=OC∴∠A=∠ACO∴∠A=∠BCP在△PBC和△PCA中:∠BCP=∠A,∠P=∠P∴△PBC∽△PCA,∴∴tan∠CAB=【点睛】本题考查了切线与相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定与相似三角形的判定与性质.24.至少涨到每股6.1元时才能卖出.【解析】【分析】根据关系式:总售价-两次交易费≥总成本+1000列出不等式求解即可.【详解】解:设涨到每股x元时卖出,根据题意得1000x-(5000+1000x)×0.5%≥5000+1000,解这个不等式得x≥1205 199,即x≥6.1.答:至少涨到每股6.1元时才能卖出.【点睛】本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价-两次交易费≥总成本+1000”列出不等关系式.25.(1)详见解析;(1)2.【解析】【分析】(1)以点M为顶点,作∠AMN=∠O即可;(1)由∠AOB=45°,AB⊥OB,可知△AOB为等腰为等腰直角三角形,根据勾股定理求出OA的长,即可求出AM的值.【详解】(1)作图如图所示;(1)由题知△AOB为等腰Rt△AOB,且OB=1,所以,22又M为OA的中点,所以,AM=1222【点睛】本题考查了尺规作图,等腰直角三角形的判定,勾股定理等知识,熟练掌握作一个角等于已知角是解(1)的关键,证明△AOB 为等腰为等腰直角三角形是解(1)的关键.26.(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元【解析】【分析】(1)设甲种品牌空调的进货价为x 元/台,则乙种品牌空调的进货价为1.2x 元/台,根据数量=总价÷单价可得出关于x 的分式方程,解之并检验后即可得出结论;(2)设购进甲种品牌空调a 台,所获得的利润为y 元,则购进乙种品牌空调(10-a )台,根据总价=单价×数量结合总价不超过16000 元,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再由总利润=单台利润×购进数量即可得出y 关于a 的函数关系式,利用一次函数的性质即可解决最值问题.【详解】(1)由(1)设甲种品牌的进价为x 元,则乙种品牌空调的进价为(1+20%)x 元,由题意,得 ()720030002120%xx =++, 解得x=1500,经检验,x=1500是原分式方程的解,乙种品牌空调的进价为(1+20%)×1500=1800(元). 答:甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)设购进甲种品牌空调a 台,则购进乙种品牌空调(10-a )台,由题意,得1500a+1800(10-a )≤16000,解得 203≤a , 设利润为w ,则w=(2500-1500)a+(3500-1800)(10-a )=-700a+17000,因为-700<0,则w 随a 的增大而减少,当a=7时,w 最大,最大为12100元.答:当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元.【点睛】本题考查了一次函数的应用、分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价列出关于x 的分式方程;(2)根据总利润=单台利润×购进数量找出y 关于a 的函数关系式. 27.不公平【解析】【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得.【详解】根据题意列表如下:所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,∴P(甲获胜)=516,P(乙获胜)=1﹣516=1116,则该游戏不公平.【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.。

2019-2020郑州市中考数学试卷及答案

2019-2020郑州市中考数学试卷及答案

2019-2020郑州市中考数学试卷及答案一、选择题1.已知反比例函数 y =的图象如图所示,则二次函数 y =a x 2-2x和一次函数 y=bx+a 在同一平面直角坐标系中的图象可能是()A .B .C .D .2.下列四个实数中,比1-小的数是()A.2-B.0 C.1 D.23.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm4.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为()A.①②B.②③C.①②③D.①③5.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个6.不等式组213312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A .B .C .D .7.如果关于x 的分式方程11222ax x x -+=--有整数解,且关于x 的不等式组0322(1)x a x x -⎧>⎪⎨⎪+<-⎩的解集为x >4,那么符合条件的所有整数a 的值之和是( ) A .7 B .8 C .4 D .58.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D .529.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x 套,则x 应满足的方程为( ) A .96096054848x -=+ B .96096054848x +=+ C .960960548x-= D .96096054848x -=+ 10.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )A .B .C .D .11.an30°的值为( )A .B .C .D .12.若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或0二、填空题13.一列数123,,,a a a ……n a ,其中1231211111,,,,111n n a a a a a a a -=-===---,则1232014a a a a ++++=__________.14.如图:已知AB=10,点C 、D 在线段AB 上且AC=DB=2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.15.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.16.分解因式:2x 3﹣6x 2+4x =__________.17.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.18.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)19.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.20.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.三、解答题21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了名市民,扇形统计图中,C组对应的扇形圆心角是 °;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.22.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.23.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s)频数(人数)A90<s≤1004B80<s≤90xC70<s≤8016D s≤706根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n=,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.24.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt△ABC三个顶点都在格点上,请解答下列问题:(1)写出A,C两点的坐标;(2)画出△ABC关于原点O的中心对称图形△A1B1C1;(3)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并直接写出点C旋转至C2经过的路径长.25.如图1,在直角坐标系中,一次函数的图象l与y轴交于点A(0 , 2),与一次函数y =x﹣3的图象l交于点E(m ,﹣5).(1)m=__________;(2)直线l与x轴交于点B,直线l与y轴交于点C,求四边形OBEC的面积;(3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ在x 轴上平移,若矩形MNPQ与直线l或l有交点,直接写出a的取值范围_____________________________【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.2.A解析:A【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.3.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.4.D解析:D【解析】如图,连接BE,根据圆周角定理,可得∠C=∠AEB,∵∠AEB=∠D+∠DBE,∴∠AEB>∠D,∴∠C>∠D,根据锐角三角形函数的增减性,可得,sin∠C>sin∠D,故①正确;cos∠C<cos∠D,故②错误;tan∠C>tan∠D,故③正确;故选D.5.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C .考点:轴对称图形.6.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 7.C解析:C【解析】【分析】解关于x 的不等式组0322(1)x a x x -⎧>⎪⎨⎪+<-⎩,结合解集为x >4,确定a 的范围,再由分式方程11222ax x x-+=--有整数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求出所有符合条件的值之和即可.【详解】 由分式方程11222ax x x-+=--可得1﹣ax+2(x ﹣2)=﹣1解得x=22a -,∵关于x的分式方程11222axx x-+=--有整数解,且a为整数∴a=0、3、4关于x的不等式组322(1)x ax x-⎧>⎪⎨⎪+<-⎩整理得4x ax>⎧⎨>⎩∵不等式组322(1)x ax x-⎧>⎪⎨⎪+<-⎩的解集为x>4∴a≤4于是符合条件的所有整数a的值之和为:0+3+4=7故选C.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,然后在解集中求特殊解,了解求特殊解的方法是解决本题的关键.8.C解析:C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得PG=2,从而得出答案.详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FH AHP FHG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH ≌△FGH (ASA ),∴AP=GF=1,GH=PH=12PG , ∴PD=AD ﹣AP=1,∵CG=2、CD=1,∴DG=1, 则GH=12PG=122, 故选:C . 点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.9.D解析:D【解析】 解:原来所用的时间为:96048,实际所用的时间为:96048x +,所列方程为:96096054848x -=+.故选D . 点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x 套,结果提前5天加工完成,可列出方程求解.10.D解析:D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a >0, ∵对称轴为直线02b x a =->, ∴b <0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交,反比例函数a b cy x++=图象在第二、四象限, 只有D 选项图象符合. 故选:D. 【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.11.D解析:D 【解析】 【分析】直接利用特殊角的三角函数值求解即可. 【详解】 tan30°=,故选:D .【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.12.A解析:A 【解析】 【分析】把x =﹣1代入方程计算即可求出k 的值. 【详解】解:把x =﹣1代入方程得:1+2k +k 2=0, 解得:k =﹣1, 故选:A . 【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.二、填空题13.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++2 解析:20112【解析】 【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题. 【详解】 解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.14.3【解析】【分析】分别延长AEBF 交于点H 易证四边形EPFH 为平行四边形得出G 为PH 中点则G 的运行轨迹为三角形HCD 的中位线MN 再求出CD 的长运用中位线的性质求出MN 的长度即可【详解】如图分别延长A解析:3 【解析】 【分析】分别延长AE 、BF 交于点H ,易证四边形EPFH 为平行四边形,得出G 为PH 中点,则G 的运行轨迹为三角形HCD 的中位线MN .再求出CD 的长,运用中位线的性质求出MN 的长度即可. 【详解】如图,分别延长AE 、BF 交于点H . ∵∠A=∠FPB=60°, ∴AH ∥PF , ∵∠B=∠EPA=60°, ∴BH ∥PE ,∴四边形EPFH 为平行四边形, ∴EF 与HP 互相平分. ∵G 为EF 的中点,∴G 也正好为PH 中点,即在P 的运动过程中,G 始终为PH 的中点,所以G 的运行轨迹为三角形HCD 的中位线MN . ∵CD=10-2-2=6,∴MN=3,即G 的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.15.【解析】根据弧长公式可得:=故答案为解析:2π3【解析】根据弧长公式可得:602180π⨯⨯=23π,故答案为23π.16.2x(x﹣1)(x﹣2)【解析】分析:首先提取公因式2x再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2)故答案为2x(x﹣1)(x﹣2)点解析:2x(x﹣1)(x﹣2).【解析】分析:首先提取公因式2x,再利用十字相乘法分解因式得出答案.详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为2x(x﹣1)(x﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.17.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.18.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.19.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x =4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5∴矩形MNPQ的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.20.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下: -2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.三、解答题21.(1)2000,108;(2)作图见解析;(3).【解析】试题分析:(1)根据B 组的人数以及百分比,即可得到被调查的人数,进而得出C 组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可; (2)根据C 组的人数,补全条形统计图;(3)根据甲、乙两人上班时从A 、B 、C 、D 四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率. 试题解析:(1)被调查的人数为:800÷40%=2000(人),C 组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C 组对应的扇形圆心角度数为:×360°=108°,故答案为:2000,108; (2)条形统计图如下:(3)画树状图得:∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:=.考点:列表法与树状图法;扇形统计图;条形统计图. 22.(1)证明见解析;(22 【解析】 【分析】(1)在△CAD 中,由中位线定理得到MN ∥AD ,且MN=12AD ,在Rt △ABC 中,因为M 是AC 的中点,故BM=12AC ,即可得到结论; (2)由∠BAD=60°且AC 平分∠BAD ,得到∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,得到∠BMC =60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到222BN BM MN =+,再由MN=BM=1,得到BN 的长. 【详解】(1)在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN ∥AD ,且MN=12AD ,在Rt △ABC 中,∵M 是AC 的中点,∴BM=12AC ,又∵AC=AD ,∴MN=BM ; (2)∵∠BAD=60°且AC 平分∠BAD ,∴∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN ∥AD ,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴222BN BM MN =+,而由(1)知,MN=BM=12AC=12×2=1,∴. 考点:三角形的中位线定理,勾股定理.23.(1)14;(2)10、40、144;(3)恰好选取的是a 1和b 1的概率为16. 【解析】【分析】(1)根据D 组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x 的值;(2)用A 、C 人数分别除以总人数求得A 、C 的百分比即可得m 、n 的值,再用360°乘以C 等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a 1和b 1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人, ∴x=40﹣(4+16+6)=14, 故答案为14;(2)∵m%=440×100%=10%,n%=1640×10%=40%, ∴m=10、n=40,C 等级对应的扇形的圆心角为360°×40%=144°, 故答案为10、40、144;(3)列表如下:a 1和b 1的有2种结果,∴恰好选取的是a1和b1的概率为21 126=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.24.(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)见解析;(3)102π.【解析】【分析】(1)利用第二象限点的坐标特征写出A,C两点的坐标;(2)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(3)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,然后描点得到△A2B2C2,再利用弧长公式计算点C旋转至C2经过的路径长.【详解】解:(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)如图,△A1B1C1为所作;(3)如图,△A2B2C2为所作,OC=2213+=10,点C旋转至C2经过的路径长=9010180π⋅⋅=102π.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了弧长公式.25.(1)-2;(2);(3)≤a≤或3≤a≤6.【解析】【分析】(1)根据点E在一次函数图象上,可求出m的值;(2)利用待定系数法即可求出直线l1的函数解析式,得出点B、C的坐标,利用S四边形OBEC=S△OBE+S△OCE即可得解;(3)分别求出矩形MNPQ在平移过程中,当点Q在l1上、点N在l1上、点Q在l2上、点N在l2上时a的值,即可得解.【详解】解:(1)∵点E(m,−5)在一次函数y=x−3图象上,∴m−3=−5,∴m=−2;(2)设直线l1的表达式为y=kx+b(k≠0),∵直线l1过点A(0,2)和E(−2,−5),∴,解得,∴直线l1的表达式为y=x+2,当y=x+2=0时,x=∴B点坐标为(,0),C点坐标为(0,−3),∴S四边形OBEC=S△OBE+S△OCE=××5+×2×3=;(3)当矩形MNPQ的顶点Q在l1上时,a的值为;矩形MNPQ向右平移,当点N在l1上时,x+2=1,解得x=,即点N(,1),∴a的值为+2=;矩形MNPQ继续向右平移,当点Q在l2上时,a的值为3,矩形MNPQ继续向右平移,当点N在l2上时,x−3=1,解得x=4,即点N(4,1),∴a的值为4+2=6,综上所述,当≤a≤或3≤a≤6时,矩形MNPQ与直线l1或l2有交点.【点睛】本题主要考查求一次函数解析式,两条直线相交、图形的平移等知识的综合应用,在解决第(3)小题时,只要求出各临界点时a的值,就可以得到a的取值范围.。

河南省郑州市2019-2020学年中考数学第一次调研试卷含解析

河南省郑州市2019-2020学年中考数学第一次调研试卷含解析

河南省郑州市2019-2020学年中考数学第一次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为()A .215B .8C .210D .2132.已知二次函数2y ax bx c =++的图象如图所示,则下列说法正确的是( )A .ac <0B .b <0C .24b ac -<0D .a b c ++<03.﹣22×3的结果是( ) A .﹣5B .﹣12C .﹣6D .124.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有5个棋子,图②中有10个棋子,图③中有16个棋子,…,则图⑥________中有个棋子( )A .31B .35C .40D .505.若一组数据1、a 、2、3、4的平均数与中位数相同,则a 不可能...是下列选项中的( ) A .0B .2.5C .3D .56.如图,在▱ABCD 中,AB=2,BC=1.以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于12PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是( )A .12B .1C .65D .327.将抛物线2y x =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )A .2(2)3y x =+-B .2(2)3y x =++C .2(2)3y x =-+D .2(2)3y x =--8.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( ) A .BE=DFB .AE=CFC .AF//CED .∠BAE=∠DCF9.某公园有A 、B 、C 、D 四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是( ) A .12B .14C .16D .1810.一、单选题如图,△ABC 中,AB =4,AC =3,BC =2,将△ABC 绕点A 顺时针旋转60°得到△AED ,则BE 的长为( )A .5B .4C .3D .211.将不等式组2(23)3532x x x x -≤-⎧⎨+⎩>的解集在数轴上表示,下列表示中正确的是( )A .B .C .D .12.下列运算不正确的是 A . B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt △ABC 中,∠C=90°,AB=5,BC=3,点P 、Q 分别在边BC 、AC 上,PQ ∥AB ,把△PCQ 绕点P 旋转得到△PDE (点C 、Q 分别与点D 、E 对应),点D 落在线段PQ 上,若AD 平分∠BAC ,则CP 的长为_________.14.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.15.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.16.如图,已知正八边形ABCDEFGH内部△ABE的面积为6cm1,则正八边形ABCDEFGH面积为_____cm1.17.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在小量角器上对应的度数为65°,那么在大量角器上对应的度数为_____度(只需写出0°~90°的角度).18.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2等_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.20.(6分)某市旅游景区有A,B,C,D,E等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:(1)2018年春节期间,该市A,B,C,D,E这五个景点共接待游客万人,扇形统计图中E景点所对应的圆心角的度数是,并补全条形统计图.(2)甲,乙两个旅行团在A,B,D三个景点中随机选择一个,这两个旅行团选中同一景点的概率是.21.(6分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为12.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;22.(8分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米,参考数据:sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,3≈1.73)23.(8分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m=%,这次共抽取名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?24.(10分)如图,在△ABC中,D、E分别是边AB、AC上的点,DE∥BC,点F在线段DE上,过点F作FG∥AB、FH∥AC分别交BC于点G、H,如果BG:GH:HC=2:4:1.求ADEFGHSS△△的值.25.(10分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.当10≤x<60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?26.(12分)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩n(分)评定等级频数90≤n≤100 A 280≤n<90 B70≤n<80 C 15n<70 D 6根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.27.(12分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】∵⊙O 的半径OD ⊥弦AB 于点C ,AB=8,∴AC=AB=1. 设⊙O 的半径为r ,则OC=r -2, 在Rt △AOC 中,∵AC=1,OC=r -2,∴OA 2=AC 2+OC 2,即r 2=12+(r ﹣2)2,解得r=2. ∴AE=2r=3. 连接BE ,∵AE 是⊙O 的直径,∴∠ABE=90°.在Rt △ABE 中,∵AE=3,AB=8,∴2222BE AE AB 1086=--=.在Rt △BCE 中,∵BE=6,BC=1,∴2222CE BE BC 64213=+=+=D . 2.B 【解析】 【分析】根据抛物线的开口方向确定a ,根据抛物线与y 轴的交点确定c ,根据对称轴确定b ,根据抛物线与x 轴的交点确定b 2-4ac ,根据x=1时,y >0,确定a+b+c 的符号. 【详解】解:∵抛物线开口向上, ∴a >0,∵抛物线交于y 轴的正半轴, ∴c >0,∴ac >0,A 错误; ∵-2ba>0,a >0, ∴b <0,∴B 正确;∵抛物线与x 轴有两个交点, ∴b 2-4ac >0,C 错误; 当x=1时,y >0,∴a+b+c>0,D错误;故选B.【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.3.B【解析】【分析】先算乘方,再算乘法即可.【详解】解:﹣22×3=﹣4×3=﹣1.故选:B.【点睛】本题主要考查了有理数的混合运算,熟练掌握法则是解答本题的关键.有理数的混合运算,先乘方,再乘除,后加减,有括号的先算括号内的.4.C【解析】【分析】根据题意得出第n个图形中棋子数为1+2+3+…+n+1+2n,据此可得.【详解】解:∵图1中棋子有5=1+2+1×2个,图2中棋子有10=1+2+3+2×2个,图3中棋子有16=1+2+3+4+3×2个,…∴图6中棋子有1+2+3+4+5+6+7+6×2=40个,故选C.【点睛】本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.5.C【解析】【详解】解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;综上,可得:a=0、2.5或5,∴a不可能是1.故选C.【点睛】本题考查中位数;算术平均数.6.B【解析】分析:只要证明BE=BC即可解决问题;详解:∵由题意可知CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=1,∵AB=2,∴AE=BE-AB=1,故选B.点睛:本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.7.A【解析】【分析】先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选A.8.B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.9.B【解析】【分析】画树状图列出所有等可能结果,从中确定出甲、乙两位游客恰好从同一个入口进入公园的结果数,再利用概率公式计算可得.【详解】画树状图如下:由树状图知共有16种等可能结果,其中甲、乙两位游客恰好从同一个入口进入公园的结果有4种,所以甲、乙两位游客恰好从同一个入口进入公园的概率为416=14,故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式求事件A或B的概率.10.B【解析】【分析】根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.【详解】解:∵△ABC绕点A顺时针旋转 60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=1,∴BE=1.故选B.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.11.B【解析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解:不等式可化为:11xx≤⎧⎨>-⎩,即11x-<≤.∴在数轴上可表示为.故选B.“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.12.B【解析】,B是错的,A、C、D运算是正确的,故选B二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.【详解】连接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ ∽△CBA ,∴CP :CQ=BC :AC=3:4,设PC=3x ,CQ=4x ,在Rt △CPQ 中,PQ=5x ,∵PD=PC=3x ,∴DQ=1x ,∵AQ=4-4x ,∴4-4x=1x ,解得x=23, ∴CP=3x=1;故答案为:1.【点睛】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.14.1.【解析】【分析】设小矩形的长为x ,宽为y ,则由图1可得5y=3x ;由图2可知2y-x=2.【详解】解:设小矩形的长为x ,宽为y ,则可列出方程组, 3522x y y x =⎧⎨-=⎩,解得106x y =⎧⎨=⎩, 则小矩形的面积为6×10=1. 【点睛】本题考查了二元一次方程组的应用.15.1.【解析】【分析】直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.【详解】如图所示:∵坡度i=1:0.75,∴AC :BC=1:0.75=4:3,∴设AC=4x ,则BC=3x ,∴,∵AB=20m ,∴5x=20,解得:x=4,故3x=1,故这个物体在水平方向上前进了1m .故答案为:1.【点睛】此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h 和水平宽l 的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是tan h i lα==. 16.14【解析】 【分析】 取AE 中点I ,连接IB ,则正八边形ABCDEFGH 是由8个与△IDE 全等的三角形构成.【详解】解:取AE 中点I ,连接IB .则正八边形ABCDEFGH 是由8个与△IAB 全等的三角形构成.∵I 是AE 的中点,∴ == =3,则圆内接正八边形ABCDEFGH 的面积为:8×3=14cm 1. 故答案为14.【点睛】本题考查正多边形的性质,解答此题的关键是作出辅助线构造出三角形.17.1.【解析】【详解】设大量角器的左端点是A ,小量角器的圆心是B ,连接AP ,BP ,则∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB 所对的圆心角是1°,因而P 在大量角器上对应的度数为1°.故答案为1.18.2π【解析】 试题解析:2222121111ππππ228228AC BC S AC S BC ⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭,, 所以()22212111πππ162π888S S AC BC AB +=+==⨯=. 故答案为2π.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)DD′=1,A′F= 43;(2)154;(1)754. 【解析】【分析】(1)①如图①中,∵矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A'B'C'D',只要证明△CDD′是等边三角形即可解决问题;②如图①中,连接CF ,在Rt △CD′F 中,求出FD′即可解决问题;(2)由△A′DF ∽△A′D′C ,可推出DF 的长,同理可得△CDE ∽△CB′A′,可求出DE 的长,即可解决问题;(1)如图③中,作FG ⊥CB′于G ,由S △ACF =12•AC•CF=12•AF•CD ,把问题转化为求AF•CD ,只要证明∠ACF=90°,证明△CAD ∽△FAC ,即可解决问题;【详解】解:(1)①如图①中,∵矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,∴DD′=CD=1.②如图①中,连接CF .∵CD=CD′,CF=CF ,∠CDF=∠CD′F=90°,∴△CDF ≌△CD′F ,∴∠DCF=∠D′CF=12∠DCD′=10°. 在Rt △CD′F 中,∵tan ∠D′CF=''D F CD ,∴D′F=3,∴A′F=A′D′﹣D′F=4﹣3. (2)如图②中,在Rt △A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF ∽△A′D′C ,∴''''A D DF A D CD =,∴243DF =, ∴DF=32. 同理可得△CDE ∽△CB′A′,∴'''CD ED CB A B =,∴343ED =, ∴ED=94,∴EF=ED+DF=154. (1)如图③中,作FG ⊥CB′于G .∵四边形A′B′CD′是矩形,∴GF=CD′=CD=1. ∵S △CEF=12•EF•DC=12•CE•FG , ∴CE=EF ,∵AE=EF ,∴AE=EF=CE ,∴∠ACF=90°. ∵∠ADC=∠ACF ,∠CAD=∠FAC ,∴△CAD ∽△FAC ,∴AC AD AF AC =, ∴AC2=AD•AF ,∴AF=254. ∵S △ACF=12•AC•CF=12•AF•CD , ∴AC•CF=AF•CD=754.20.(1)50,43.2°,补图见解析;(2)13. 【解析】【分析】 (1)由A 景点的人数以及百分比进行计算即可得到该市周边景点共接待游客数;再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B 景点接待游客数补全条形统计图;(2)根据甲、乙两个旅行团在A 、B 、D 三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【详解】解:(1)该市景点共接待游客数为:15÷30%=50(万人),E 景点所对应的圆心角的度数是:636043.250o o ⨯=B景点人数为:50×24%=12(万人),补全条形统计图如下:故答案是:50,43.2o.(2)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率=31 93 =.21.(1)1;(2)1 6【解析】【分析】(1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为12和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:(1)设口袋中黄球的个数为x个,根据题意得:21 212x= ++解得:x=1经检验:x=1是原分式方程的解∴口袋中黄球的个数为1个(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况∴两次摸出都是红球的概率为:21 126=.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.22.工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.【解析】解:在Rt△BAE中,∠BAE=680,BE=162米,∴(米).在Rt△DEC中,∠DGE=600,DE=176.6米,∴DECE102.08tan DGE3==≈∠(米).∴AC CE AE102.0864.8037.2837.3=-≈-=≈(米).∴工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.在Rt△BAE和Rt△DEC中,应用正切函数分别求出AE和CE的长即可求得AC的长.23.(1)、26%;50;(2)、公交车;(3)、300名.【解析】试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.试题解析:(1)、1﹣14%﹣20%﹣40%=26%;20÷40%=50;骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:(2)、由图可知,采用乘公交车上学的人数最多(3)、该校骑自行车上学的人数约为:1500×20%=300(名).答:该校骑自行车上学的学生有300名.考点:统计图24.25 16【解析】【分析】先根据平行线的性质证明△ADE∽△FGH,再由线段DF=BG、FE=HC及BG︰GH︰HC=2︰4︰1,可求得ADE FGHS S ∆∆的值. 【详解】解:∵DE ∥BC ,∴∠ADE=∠B,∵FG ∥AB ,∴∠FGH=∠B,∴∠ADE=∠FGH,同理:∠AED=∠FHG ,∴△ADE ∽△FGH, ∴2ADE FGH S DE S GH ∆∆⎛⎫= ⎪⎝⎭, ∵DE ∥BC ,FG ∥AB ,∴DF=BG ,同理:FE=HC,∵BG ︰GH ︰HC=2︰4︰1,∴设BG=2k ,GH=4k ,HC=1k,∴DF=2k ,FE=1k ,∴DE=5k, ∴2525416ADE FGH S k S k ∆∆⎛⎫== ⎪⎝⎭. 【点睛】本题考查了平行线的性质和三角形相似的判定和相似比.25.(1)y =150﹣x ; (2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】【分析】(1)若购买x 双(10<x <1),每件的单价=140﹣(购买数量﹣10),依此可得y 关于x 的函数关系式;(2)①设第一批购买x 双,则第二批购买(100﹣x )双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则1≤100﹣x <75;当40<x <1时,则40<100﹣x <1. ②把两次的花费与第一次购买的双数用函数表示出来.【详解】解:(1)购买x 双(10<x <1)时,y =140﹣(x ﹣10)=150﹣x .故y 关于x 的函数关系式是y =150﹣x ;(2)①设第一批购买x双,则第二批购买(100﹣x)双.当25<x≤40时,则1≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,解得x1=30,x2=40;当40<x<1时,则40<100﹣x<1,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<1,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,∴x=26时,w有最小值,最小值为9144元;当40<x<1时,w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,∴x=41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.(1)25;(2)8°48′;(3).【解析】试题分析:(1)由C等级频数为15除以C等级所占的百分比60%,即可求得m的值;(2)首先求得B 等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.试题解析:(1)∵C等级频数为15,占60%,∴m=15÷60%=25;(2)∵B等级频数为:25﹣2﹣15﹣6=2,∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,∴其中至少有一家是A等级的概率为:=.考点:频数(率)分布表;扇形统计图;列表法与树状图法.27.(1)证明见解析;(2)9﹣3π【解析】试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD 得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD 为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.试题解析:(1)如图连接OD.∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,∴CF⊥OD,∴CF是⊙O的切线.(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,∵EB=6,∴OB=OD═OA=3,在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,∴AC=OA•tan60°=3,∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.。

河南省郑州市2019-2020学年中考数学模拟试题(3)含解析

河南省郑州市2019-2020学年中考数学模拟试题(3)含解析

河南省郑州市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.化简:(a+343aa--)(1﹣12a-)的结果等于()A.a﹣2 B.a+2 C.23aa--D.32aa--2.2017年“智慧天津”建设成效显著,互联网出口带宽达到17200吉比特每秒.将17200用科学记数法表示应为()A.172×102B.17.2×103C.1.72×104D.0.172×1053.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°4.﹣18的相反数是()A.8 B.﹣8 C.18D.﹣185.已知a,b为两个连续的整数,且a<11<b,则a+b的值为()A.7 B.8 C.9 D.106.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°730( )A.3和4之间B.4和5之间C.5和6之间D.6和7之间8.下列计算正确的是()A.a+a=2a B.b3•b3=2b3C.a3÷a=a3D.(a5)2=a7 9.tan45º的值为()A.12B.1 C2D210.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=1;④当y=﹣2时,x 的值只能取1;⑤当﹣1<x <5时,y <1.其中,正确的有( )A .2个B .3个C .4个D .5个11.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).A .众数是6吨B .平均数是5吨C .中位数是5吨D .方差是12.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,且AC=CD ,∠ACD=120°,CD 是⊙O 的切线:若⊙O 的半径为2,则图中阴影部分的面积为_____.14.因式分解:a 2﹣a =_____.15.因式分解:x 2y-4y 3=________.16.新定义[a ,b]为一次函数(其中a≠0,且a ,b 为实数)的“关联数”,若“关联数”[3,m+2]所对应的一次函数是正比例函数,则关于x的方程的解为.17.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为_____.18.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间.甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲、乙行驶过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.则当乙车到达A地时,甲车已在C地休息了_____小时.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的作法是这样的:如图:(1)利用刻度尺在∠AOB的两边OA,OB上分别取OM=ON;(2)利用两个三角板,分别过点M,N画OM,ON的垂线,交点为P;(3)画射线OP.则射线OP为∠AOB的平分线.请写出小林的画法的依据______.20.(6分)某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费.(1)设该学校需要印刷艺术节的宣传资料x份,支付甲印刷厂的费用为y元,写出y关于x的函数关系式,并写出它的定义域;(2)如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠?21.(6分)如图,AC 是O e 的直径,点B 是O e 内一点,且BA BC =,连结BO 并延长线交O e 于点D ,过点C 作O e 的切线CE ,且BC 平分DBE ∠.()1求证:BE CE =;()2若O e 的直径长8,4sin BCE 5∠=,求BE 的长.22.(8分)如图,已知二次函数y=ax 2+2x+c 的图象经过点C (0,3),与x 轴分别交于点A ,点B (3,0).点P 是直线BC 上方的抛物线上一动点.求二次函数y=ax 2+2x+c 的表达式;连接PO ,PC ,并把△POC 沿y 轴翻折,得到四边形POP′C .若四边形POP′C 为菱形,请求出此时点P 的坐标;当点P 运动到什么位置时,四边形ACPB 的面积最大?求出此时P 点的坐标和四边形ACPB 的最大面积.23.(8分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x 米.若苗圃园的面积为72平方米,求x ;若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由; 24.(10分)如图,已知点A ,C 在EF 上,AD ∥BC ,DE ∥BF ,AE =CF.(1)求证:四边形ABCD 是平行四边形;(2)直接写出图中所有相等的线段(AE =CF 除外).25.(10分)全民健身运动已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分, 运动形式 A B C D E 人数 12 30 m 54 9请你根据以上信息,回答下列问题:()1接受问卷调查的共有 人,图表中的m = ,n = . ()2统计图中,A 类所对应的扇形的圆心角的度数是 度.()3揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有1500人,请你估计一下该社区参加环岛路“暴走团”的人数.26.(12分)解不等式组:,并把解集在数轴上表示出来.27.(12分)若两个不重合的二次函数图象关于y 轴对称,则称这两个二次函数为“关于y 轴对称的二次函数”.(1)请写出两个“关于y 轴对称的二次函数”;(2)已知两个二次函数21y ax bx c =++和22y mx nx p =++是“关于y 轴对称的二次函数”,求函数12y y +的顶点坐标(用含,,a b c 的式子表示).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】【详解】解:原式=(3)342132a a a aa a-+---⋅--=24332a aa a--⋅--=(2)(2)332a a aa a+--⋅--=2a+.故选B.考点:分式的混合运算.2.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将17200用科学记数法表示为1.72×1.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B【解析】【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=12(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.4.C 【解析】互为相反数的两个数是指只有符号不同的两个数,所以18-的相反数是18,故选C.5.A【解析】∵9<11<16,<<,即34<<,∵a,b为两个连续的整数,且a b<<,∴a=3,b=4,∴a+b=7,故选A.6.B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.7.C【解析】【分析】<<5<<6,即可解出.【详解】<<∴5<<6,故选C.【点睛】此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.8.A【解析】【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.【详解】A.a+a=2a ,故本选项正确;B.336 b b b ⋅=,故本选项错误;C.32a a a ÷= ,故本选项错误;D.525210()a a a ⨯==,故本选项错误.故选:A.【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.9.B【解析】【分析】【详解】解:根据特殊角的三角函数值可得tan45º=1, 故选B .【点睛】本题考查特殊角的三角函数值.10.A【解析】【分析】根据二次函数的性质和图象可以判断题目中各个小题是否成立.【详解】由函数图象可得,a>1,b<1,即a、b异号,故①错误,x=-1和x=5时,函数值相等,故②错误,∵-1522ba-+==2,得4a+b=1,故③正确,由图象可得,当y=-2时,x=1或x=4,故④错误,由图象可得,当-1<x<5时,y<1,故⑤正确,故选A.【点睛】考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.11.C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数12.D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2 3π-【解析】试题分析:连接OC ,求出∠D 和∠COD ,求出边DC 长,分别求出三角形OCD 的面积和扇形COB 的面积,即可求出答案.连接OC ,∵AC=CD ,∠ACD=120°,∴∠CAD=∠D=30°,∵DC 切⊙O 于C ,∴OC ⊥CD ,∴∠OCD=90°,∴∠COD=60°,在Rt △OCD 中,∠OCD=90°,∠D=30°,OC=2,∴CD=23,∴阴影部分的面积是S △OCD ﹣S 扇形COB =12×2×23﹣2602360π⨯=23﹣23π,故答案为23﹣23π.考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积.14.a (a ﹣1)【解析】【分析】直接提取公因式a ,进而分解因式得出答案【详解】a 2﹣a =a (a ﹣1).故答案为a (a ﹣1).【点睛】此题考查公因式,难度不大15.y (x++2y )(x-2y )【解析】【分析】首先提公因式y ,再利用平方差进行分解即可.【详解】原式()224(2)(2)y x y y x y x y =-=-+.故答案是:y (x+2y )(x-2y ).【点睛】考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.16..【解析】试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数,得到y=3x+m+2为正比例函数,即m+2=0,解得:m=-2,则分式方程为,去分母得:2-(x-1)=2(x-1),去括号得:2-x+1=2x-2,解得:x=,经检验x=是分式方程的解考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义.17.四丈五尺【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴x15=1.50.5,解得x=45(尺).故答案为:四丈五尺.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.18.2.1.【解析】【分析】根据题意和函数图象中的数据可以求得乙车的速度和到达A地时所用的时间,从而可以解答本题.【详解】由题意可得,甲车到达C地用时4个小时,乙车的速度为:200÷(3.1﹣1)=80km/h,乙车到达A地用时为:(200+240)÷80+1=6.1(小时),当乙车到达A地时,甲车已在C地休息了:6.1﹣4=2.1(小时),故答案为:2.1.【点睛】本题考查了一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线【解析】【分析】利用“HL”判断Rt △OPM ≌Rt △OPN ,从而得到∠POM=∠PON .【详解】有画法得OM =ON ,∠OMP =∠ONP =90°,则可判定Rt △OPM ≌Rt △OPN ,所以∠POM =∠PON ,即射线OP 为∠AOB 的平分线.故答案为斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线.【点睛】本题考查了作图−基本作图,解题关键在于熟练掌握基本作图作一条线段等于已知线段.20.(1)0.271000y x x +甲=(>);(2)选择乙印刷厂比较优惠.【解析】【分析】(1)根据题意直接写出两厂印刷厂的收费y 甲(元)关于印刷数量x (份)之间的函数关系式; (2)分别将两厂的印刷费用等于2000元,分别解得两厂印刷的份数即可.【详解】(1)根据题意可知:甲印刷厂的收费y 甲=0.3x×0.9+100=0.27x+100,y 关于x 的函数关系式是y 甲=0.27x+100(x >0);(2)由题意可得:该学校需要印刷艺术节的宣传资料600份,在甲印刷厂需要花费:0.27×600+100=262(元),在乙印刷厂需要花费:100+200×0.3+0.3×0.8×(600﹣200)=256(元).∵256<262,∴如果该学校需要印刷艺术节的宣传资料600份,那么应该选择乙印刷厂比较优惠.【点睛】本题考查了一次函数的实际应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,属于中档题.21.(1)证明见解析;(2)25BE 6=. 【解析】【分析】()1先利用等腰三角形的性质得到BD AC ⊥,利用切线的性质得CE AC ⊥,则CE ∥BD ,然后证明13∠=∠得到BE=CE ;()2作EF BC ⊥于F ,如图,在Rt △OBC 中利用正弦定义得到BC=5,所以1522BF BC ==,然后在Rt △BEF 中通过解直角三角形可求出BE 的长.【详解】()1证明:BA BC =Q ,AO CO =,BD AC ∴⊥,CE Q 是O e 的切线,CE AC ∴⊥,CE //BD ∴,12∠∠∴=. BC Q 平分DBE ∠,23∠∠∴=,13∠∠∴=,BE CE ∴=;()2解:作EF BC ⊥于F ,如图,O Q e 的直径长8,CO 4∴=.4OC sin 3sin 25BC∠∠∴===, BC 5∴=,BE CE Q =,15BF BC 22∴==, 在Rt BEF V 中,EF 4sin 3sin 1BE 5∠∠=== 设EF 4x =,则BE 5x =,BF 3x ∴=,即53x 2=,解得5x 6=, 25BE 5x 6∴==.故答案为(1)证明见解析;(2)256BE = . 【点睛】 本题考查切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了解直角三角形. 22.(1)y=﹣x 2+2x+3(2)(2+10,32)(3)当点P 的坐标为(32,154)时,四边形ACPB 的最大面积值为758 【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P 点的纵坐标,根据自变量与函数值的对应关系,可得P 点坐标;(3)根据平行于y 轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【详解】(1)将点B 和点C 的坐标代入函数解析式,得9603,a c c ++=⎧⎨=⎩解得13,a b =-⎧⎨=⎩二次函数的解析式为y=﹣x 2+2x+3;(2)若四边形POP′C 为菱形,则点P 在线段CO 的垂直平分线上,如图1,连接PP′,则PE ⊥CO ,垂足为E ,∵C (0,3),∴30,2E ,⎛⎫ ⎪⎝⎭∴点P 的纵坐标32, 当32y =时,即23232x x -++=, 解得12210210.x x +-==,(不合题意,舍), ∴点P 的坐标为2103,22;⎛⎫+ ⎪ ⎪⎝⎭(3)如图2,P 在抛物线上,设P (m ,﹣m 2+2m+3),设直线BC 的解析式为y=kx+b ,将点B 和点C 的坐标代入函数解析式,得3303,k b +=⎧⎨=⎩ 解得13.k b =-⎧⎨=⎩直线BC 的解析为y=﹣x+3,设点Q 的坐标为(m ,﹣m+3),PQ=﹣m 2+2m+3﹣(﹣m+3)=﹣m 2+3m .当y=0时,﹣x 2+2x+3=0,解得x 1=﹣1,x 2=3,OA=1,()314AB =--=,S 四边形ABPC =S △ABC +S △PCQ +S △PBQ111,222AB OC PQ OF PQ FB =⋅+⋅+⋅ ()2114333,22m m =⨯⨯+-+⨯23375228m ⎛⎫=--+ ⎪⎝⎭, 当m=32时,四边形ABPC 的面积最大. 当m=32时,215234m m -++=,即P 点的坐标为315,24⎛⎫ ⎪⎝⎭. 当点P 的坐标为315,24⎛⎫⎪⎝⎭时,四边形ACPB 的最大面积值为758. 【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P 点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.23.(1)2(2)当x=4时,y 最小=88平方米【解析】(1)根据题意得方程解即可;(2)设苗圃园的面积为y ,根据题意得到二次函数的解析式y=x (31-2x )=-2x 2+31x ,根据二次函数的性质求解即可.解: (1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程x(31-2x)=72,即x 2-15x +36=1.解得x 1=3(舍去),x 2=2.(2)依题意,得8≤31-2x≤3.解得6≤x≤4. 面积S =x(31-2x)=-2(x -152)2+2252(6≤x≤4). ①当x =152时,S 有最大值,S 最大=2252; ②当x =4时,S 有最小值,S 最小=4×(31-22)=88“点睛”此题考查了二次函数、一元二次不等式的实际应用问题,解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.24.(1)见解析;(2)AD =BC ,EC =AF ,ED =BF ,AB =DC.【解析】整体分析:(1)用ASA 证明△ADE ≌△CBF ,得到AD=BC ,根据一组对边平行且相等的四边形是平行四边形证明;(2)根据△ADE ≌△CBF ,和平行四边形ABCD 的性质及线段的和差关系找相等的线段.解:(1)证明:∵AD ∥BC ,DE ∥BF ,∴∠E =∠F ,∠DAC =∠BCA ,∴∠DAE =∠BCF.在△ADE和△CBF中,E FAE CFDAE BCF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE≌△CBF,∴AD=BC,∴四边形ABCD是平行四边形.(2)AD=BC,EC=AF,ED=BF,AB=DC.理由如下:∵△ADE≌△CBF,∴AD=BC,ED=BF.∵AE=CF,∴EC=AF.∵四边形ABCD是平行四边形,∴AB=DC.25.(1)150、45、36;(2)28.8°;(3)450人【解析】【分析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)利用总人数乘以样本中C人数所占比例可得.【详解】解:(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)=45,54%100%36%150n=⨯=∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为12 36028.8150︒︒⨯=故答案为:28.8°;(3)451500450150⨯=(人)答:估计该社区参加碧沙岗“暴走团”的大约有450人【点睛】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.26.无解.【解析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.试题解析:由①得x≥4,由②得x<1,∴原不等式组无解,考点:解一元一次不等式;在数轴上表示不等式的解集.27.(1)任意写出两个符合题意的答案,如:2243,43y x x y x x =-+=++;(2)21222y y ax c +=+,顶点坐标为()0,2c【解析】【分析】(1)根据关于y 轴对称的二次函数的特点,只要两个函数的顶点坐标根据y 轴对称即可;(2)根据函数的特点得出a=m ,-2b a -2n m =0,224444ac b mp n a m--= ,进一步得出m=a ,n=-b ,p=c ,从而得到y 1+y 2=2ax 2+2c ,根据关系式即可得到顶点坐标.【详解】解:(1)答案不唯一,如2243,43y x x y x x =-+=++;(2)∵y 1=ax 2+bx+c 和y 2=mx 2+nx+p 是“关于y 轴对称的二次函数”, 即a=m ,-2b a -2n m =0,224444ac b mp n a m--=, 整理得m=a ,n=-b ,p=c ,则y 1+y 2=ax 2+bx+c+ax 2-bx+c=2ax 2+2c ,∴函数y 1+y 2的顶点坐标为(0,2c ).【点睛】本题考查了二次函数的图象与几何变换,得出变换的规律是解题的关键.。

河南省郑州市2019-2020学年中考数学第三次调研试卷含解析

河南省郑州市2019-2020学年中考数学第三次调研试卷含解析

河南省郑州市2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲 乙 丙 丁 平均数(cm ) 185 180 185 180 方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( ) A .甲B .乙C .丙D .丁2. “保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是( ) 月用水量(吨) 4 5 6 9 户数(户) 3421A .中位数是5吨B .众数是5吨C .极差是3吨D .平均数是5.3吨3.如图,Rt AOB V 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .4.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为( )A .90°B .120°C .270°D .360°5.在六张卡片上分别写有13,π,1.5,5,02六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A.16B.13C.12D.566.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x7.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-38.若a是一元二次方程x2﹣x﹣1=0的一个根,则求代数式a3﹣2a+1的值时需用到的数学方法是()A.待定系数法B.配方C.降次D.消元9.下图是由八个相同的小正方体组合而成的几何体,其左视图是()A.B.C.D.10.下列说法正确的是()A.一个游戏的中奖概率是则做10次这样的游戏一定会中奖B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是8D.若甲组数据的方差S=" 0.01" ,乙组数据的方差s=0 .1 ,则乙组数据比甲组数据稳定11.下列运算中,正确的是()A.(a3)2=a5B.(﹣x)2÷x=﹣xC.a3(﹣a)2=﹣a5D.(﹣2x2)3=﹣8x612.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1D.k≥12且k≠1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= ▲度.14.不等式组1020x x +≥⎧⎨->⎩的整数解是_____.15.计算:()()5353+-=_________ .16.如图,在平面直角坐标系中,直线y =﹣3x+3与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形,点D 恰好在双曲线上ky x=,则k 值为_____.17.如图,在△ABC 中,∠A =60°,若剪去∠A 得到四边形BCDE ,则∠1+∠2=______.18.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_____厘米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)我市为创建全国文明城市,志愿者对某路段的非机动车逆行情况进行了10天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)这组数据的中位数是,众数是;(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过“小手拉大手”活动后,非机动车逆向行驶次数明显减少,经过这一路段的再次调查发现,平均每天的非机动车逆向行驶次数比第一次调查时减少了4次,活动后,这一路段平均每天还出现多少次非机动车逆向行驶情况?20.(6分)在平面直角坐标系xOy中,点C是二次函数y=mx2+4mx+4m+1的图象的顶点,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.(1)请你求出点A、B、C的坐标;(2)若二次函数y=mx2+4mx+4m+1与线段AB恰有一个公共点,求m的取值范围.21.(6分)已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.求证:△ABF≌△CDE;如图,若∠1=65°,求∠B的大小.22.(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.23.(8分)如图,Rt△ABC中,∠C=90°,∠A=30°,BC=1.(1)实践操作:尺规作图,不写作法,保留作图痕迹.①作∠ABC的角平分线交AC于点D.②作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF.(2)推理计算:四边形BFDE的面积为.24.(10分)计算:8+(﹣13)﹣1+|1﹣2|﹣4sin45°.25.(10分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为,图①中m的值为;求统计的这组跳水运动员年龄数据的平均数、众数和中位数.26.(12分)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.27.(12分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵x甲=x丙>x乙=x丁,∴从甲和丙中选择一人参加比赛,∵2S甲=2S乙<2S丙<2S丁,∴选择甲参赛,故选A.【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定. 2.C【解析】【分析】根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案.【详解】解:A、中位数=(5+5)÷2=5(吨),正确,故选项错误;B、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;C、极差为9﹣4=5(吨),错误,故选项正确;D、平均数=(4×3+5×4+6×2+9×1)÷10=5.3,正确,故选项错误.故选:C.【点睛】此题主要考查了平均数、中位数、众数和极差的概念.要掌握这些基本概念才能熟练解题.3.D【解析】【分析】Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t 之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=12×OD×CD=12t2(0≤t≤3),即S=12t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;故选D.【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.4.B【解析】【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,∠BAC=180°-60°-∠1=120°-∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°-∠2)+(120°-∠1)=180°,∴∠1+∠2=120°.故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.5.B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有 ,共2个,∴卡片上的数为无理数的概率是21=63.故选B.【点睛】本题考查了无理数的定义及概率的计算.6.C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.7.B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键. 8.C【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】由题意可知:a2-a-1=0,∴a2-a=1,或a2-1=a∴a3-2a+1=a3-a-a+1=a(a2-1)-(a-1)=a2-a+1=1+1=2故选:C.【点睛】本题考查了一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义.9.B【解析】【分析】【详解】解:找到从左面看所得到的图形,从左面可看到从左往右三列小正方形的个数为:2,3,1.故选B.10.C【解析】【分析】众数,中位数,方差等概念分析即可.【详解】A、中奖是偶然现象,买再多也不一定中奖,故是错误的;B、全国中学生人口多,只需抽样调查就行了,故是错误的;C、这组数据的众数和中位数都是8,故是正确的;D、方差越小越稳定,甲组数据更稳定,故是错误.故选C.【点睛】考核知识点:众数,中位数,方差.11.D【解析】【分析】根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可.【详解】∵(a3)2=a6,∴选项A不符合题意;∵(-x)2÷x=x,∴选项B不符合题意;∵a3(-a)2=a5,∴选项C不符合题意;∵(-2x2)3=-8x6,∴选项D符合题意.故选D.【点睛】此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握.12.C【解析】【详解】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>12且k≠1.故选C【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】【分析】由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到∠OAP为直角,再由∠OAP-∠PAB即可求出∠BAC的度数【详解】∵PA,PB是⊙O是切线,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=00018046=672-. 又∵PA 是⊙O 是切线,AO 为半径,∴OA ⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP ﹣∠PAB=90°﹣67°=1°. 故答案为:1【点睛】此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键.14.﹣1、0、1【解析】【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案.【详解】1020x x +≥⎧⎨->⎩, Q 解不等式10x +≥得:1x ≥-,解不等式20x ->得:2x <,∴不等式组的解集为12x -≤<,∴不等式组的整数解为-1,0,1.故答案为:-1,0,1.【点睛】本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解.15.2【解析】【分析】利用平方差公式求解,即可求得答案.【详解】=2-)2=5-3=2. 故答案为2.【点睛】此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.16.1【解析】作DH ⊥x 轴于H ,如图,当y=0时,-3x+3=0,解得x=1,则A (1,0),当x=0时,y=-3x+3=3,则B (0,3),∵四边形ABCD 为正方形,∴AB=AD ,∠BAD=90°,∴∠BAO+∠DAH=90°,而∠BAO+∠ABO=90°,∴∠ABO=∠DAH ,在△ABO 和△DAH 中AOB DHA ABO DAH AB DA ∠∠⎧⎪∠∠⎨⎪⎩===∴△ABO ≌△DAH ,∴AH=OB=3,DH=OA=1,∴D 点坐标为(1,1),∵顶点D 恰好落在双曲线y=k x上, ∴a=1×1=1.故答案是:1.17.240.【解析】【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.18.1或5.【解析】【分析】小正方形的高不变,根据面积即可求出小正方形平移的距离.【详解】解:当两个正方形重叠部分的面积为2平方厘米时,重叠部分宽为2÷2=1,①如图,小正方形平移距离为1厘米;②如图,小正方形平移距离为4+1=5厘米.故答案为1或5,【点睛】此题考查了平移的性质,要明确,平移前后图形的形状和面积不变.画出图形即可直观解答.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1) 7、7和8;(2)见解析;(3)第一次调查时,平均每天的非机动车逆向行驶的次数3次【解析】【分析】(1)将数据按照从下到大的顺序重新排列,再根据中位数和众数的定义解答可得;(2)根据折线图确定逆向行驶7次的天数,从而补全直方图;(3)利用加权平均数公式求得违章的平均次数,从而求解.【详解】解:(1)∵被抽查的数据重新排列为:5、5、6、7、7、7、8、8、8、9,∴中位数为7+72=7,众数是7和8,故答案为:7、7和8;(2)补全图形如下:(3)∵第一次调查时,平均每天的非机动车逆向行驶的次数为52+73+83+910⨯⨯⨯=7(次),∴第一次调查时,平均每天的非机动车逆向行驶的次数3次.【点睛】本题考查的是条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.(1)A(-4,0)和B(0,4);(2)34m<<或14m-≤<【解析】【分析】(1)抛物线解析式配方后,确定出顶点C坐标,对于一次函数解析式,分别令x与y为0求出对应y与x的值,确定出A与B坐标;(2)分m>0与m<0两种情况求出m的范围即可.【详解】解:(1)y=mx2+4mx+4m+1=m(x+2)2+1,∴抛物线顶点坐标为C(-2,1),对于y=x+4,令x=0,得到y=4;y=0,得到x=-4,直线y=x+4与x轴、y轴交点坐标分别为A(-4,0)和B(0,4);(2)把x=-4代入抛物线解析式得:y=4m+1,①当m>0时,y=4m+1>0,说明抛物线的对称轴左侧总与线段AB有交点,∴只需要抛物线右侧与线段AB无交点即可,如图1所示,只需要当x=0时,抛物线的函数值y=4m+1<4,即34 m<,则当34m<<时,抛物线与线段AB只有一个交点;②当m<0时,如图2所示,只需y=4m+1≥0即可,解得:10 4m-≤<,综上,当34m<<或14m-≤<时,抛物线与线段AB只有一个交点.【点睛】此题考查了抛物线与x轴的交点,二次函数的性质,以及二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解本题的关键.21.(1)证明见解析;(2)50°.【解析】试题分析:(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.试题解析:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.考点:(1)平行四边形的性质;(2)全等三角形的判定与性质.22.(1)12;(2)规则是公平的;【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=34;(2)不公平,理由如下:∵P(小王)=34,P(小李)=14,34≠14,∴规则不公平.点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.23.(1)详见解析;(2)83.【解析】【分析】(1)利用基本作图(作一个角等于已知角和作已知线段的垂直平分线)作出BD和EF;(2)先证明四边形BEDF为菱形,再利用含30度的直角三角形三边的关系求出BF和CD,然后利用菱形的面积公式求解.【详解】(1)如图,DE、DF为所作;(2)∵∠C=90°,∠A=30°,∴∠ABC=10°,AB=2BC=2.∵BD为∠ABC的角平分线,∴∠DBC=∠EBD=30°.∵EF垂直平分BD,∴FB=FD,EB=ED,∴∠FDB=∠DBC=30°,∠EDB=∠EBD=30°,∴DE∥BF,BE∥DF,∴四边形BEDF为平行四边形,而FB=FD,∴四边形BEDF为菱形.∵∠DFC=∠FBD+∠FDB=30°+30°=10°,∴∠FDC=90°-10°=30°.在Rt△BDC中,∵BC=1,∠DBC=30°,∴DC=23Rt△FCD中,∵∠FDC=30°,∴FC=2,∴FD=2FC=4,∴BF=FD=4,∴四边形BFDE 的面积=4×33故答案为:3【点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).244-【解析】【分析】根据绝对值的概念、特殊三角函数值、负整数指数幂、二次根式的化简计算即可得出结论.【详解】(﹣13)﹣1+|1|﹣1sin15°﹣﹣1﹣1×2﹣﹣1﹣=﹣1.【点睛】此题主要考查了实数的运算,负指数,绝对值,特殊角的三角函数,熟练掌握运算法则是解本题的关键.25.(1)40人;1;(2)平均数是15;众数16;中位数15.【解析】【分析】(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m 的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1.(2)观察条形统计图, ∵1341410151116121731540x ⨯+⨯+⨯+⨯+⨯==, ∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有15+15=152, ∴这组数据的中位数为15.【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.26.(1)AD2=AC•CD.(2)36°.【解析】试题分析:(1)通过计算得到=,再计算AC·CD,比较即可得到结论;(2)由,得到,即,从而得到△ABC∽△BDC,故有,从而得到BD=BC=AD,故∠A=∠ABD,∠ABC=∠C=∠BDC.设∠A=∠ABD=x,则∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形内角和等于180°,解得:x=36°,从而得到结论.试题解析:(1)∵AD=BC=,∴==.∵AC=1,∴CD==,∴;(2)∵,∴,即,又∵∠C=∠C,∴△ABC∽△BDC,∴,又∵AB=AC,∴BD=BC=AD,∴∠A=∠ABD,∠ABC=∠C=∠BDC.设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.考点:相似三角形的判定与性质.27.(1)45;(2)710.【解析】【分析】(1)直接利用概率公式计算;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解.【详解】解:(1)从这五名翻译中随机挑选一名会翻译英语的概率=45;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示画树状图为:共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,所以该纽能够翻译上述两种语言的概率=147 2010.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020郑州市中考数学试卷及答案一、选择题1.已知反比例函数 y =的图象如图所示,则二次函数 y =a x 2-2x和一次函数 y=bx+a 在同一平面直角坐标系中的图象可能是()A .B .C .D .2.下列四个实数中,比1-小的数是()A.2-B.0 C.1 D.23.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm4.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为()A.①②B.②③C.①②③D.①③5.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个6.不等式组213312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A .B .C .D .7.如果关于x 的分式方程11222ax x x -+=--有整数解,且关于x 的不等式组0322(1)x a x x -⎧>⎪⎨⎪+<-⎩的解集为x >4,那么符合条件的所有整数a 的值之和是( ) A .7 B .8 C .4 D .58.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D .529.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x 套,则x 应满足的方程为( ) A .96096054848x -=+ B .96096054848x +=+ C .960960548x-= D .96096054848x -=+ 10.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )A .B .C .D .11.an30°的值为( )A .B .C .D .12.若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或0二、填空题13.一列数123,,,a a a ……n a ,其中1231211111,,,,111n n a a a a a a a -=-===---,则1232014a a a a ++++=__________.14.如图:已知AB=10,点C 、D 在线段AB 上且AC=DB=2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.15.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.16.分解因式:2x 3﹣6x 2+4x =__________.17.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.18.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)19.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.20.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.三、解答题21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了名市民,扇形统计图中,C组对应的扇形圆心角是 °;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.22.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.23.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s)频数(人数)A90<s≤1004B80<s≤90xC70<s≤8016D s≤706根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n=,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.24.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt△ABC三个顶点都在格点上,请解答下列问题:(1)写出A,C两点的坐标;(2)画出△ABC关于原点O的中心对称图形△A1B1C1;(3)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并直接写出点C旋转至C2经过的路径长.25.如图1,在直角坐标系中,一次函数的图象l与y轴交于点A(0 , 2),与一次函数y =x﹣3的图象l交于点E(m ,﹣5).(1)m=__________;(2)直线l与x轴交于点B,直线l与y轴交于点C,求四边形OBEC的面积;(3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ在x 轴上平移,若矩形MNPQ与直线l或l有交点,直接写出a的取值范围_____________________________【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.2.A解析:A【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.3.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.4.D解析:D【解析】如图,连接BE,根据圆周角定理,可得∠C=∠AEB,∵∠AEB=∠D+∠DBE,∴∠AEB>∠D,∴∠C>∠D,根据锐角三角形函数的增减性,可得,sin∠C>sin∠D,故①正确;cos∠C<cos∠D,故②错误;tan∠C>tan∠D,故③正确;故选D.5.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C .考点:轴对称图形.6.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 7.C解析:C【解析】【分析】解关于x 的不等式组0322(1)x a x x -⎧>⎪⎨⎪+<-⎩,结合解集为x >4,确定a 的范围,再由分式方程11222ax x x-+=--有整数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求出所有符合条件的值之和即可.【详解】 由分式方程11222ax x x-+=--可得1﹣ax+2(x ﹣2)=﹣1解得x=22a -,∵关于x的分式方程11222axx x-+=--有整数解,且a为整数∴a=0、3、4关于x的不等式组322(1)x ax x-⎧>⎪⎨⎪+<-⎩整理得4x ax>⎧⎨>⎩∵不等式组322(1)x ax x-⎧>⎪⎨⎪+<-⎩的解集为x>4∴a≤4于是符合条件的所有整数a的值之和为:0+3+4=7故选C.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,然后在解集中求特殊解,了解求特殊解的方法是解决本题的关键.8.C解析:C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得PG=2,从而得出答案.详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FH AHP FHG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH ≌△FGH (ASA ),∴AP=GF=1,GH=PH=12PG , ∴PD=AD ﹣AP=1,∵CG=2、CD=1,∴DG=1, 则GH=12PG=122, 故选:C . 点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.9.D解析:D【解析】 解:原来所用的时间为:96048,实际所用的时间为:96048x +,所列方程为:96096054848x -=+.故选D . 点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x 套,结果提前5天加工完成,可列出方程求解.10.D解析:D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a >0, ∵对称轴为直线02b x a =->, ∴b <0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交,反比例函数a b cy x++=图象在第二、四象限, 只有D 选项图象符合. 故选:D. 【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.11.D解析:D 【解析】 【分析】直接利用特殊角的三角函数值求解即可. 【详解】 tan30°=,故选:D .【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.12.A解析:A 【解析】 【分析】把x =﹣1代入方程计算即可求出k 的值. 【详解】解:把x =﹣1代入方程得:1+2k +k 2=0, 解得:k =﹣1, 故选:A . 【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.二、填空题13.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++2 解析:20112【解析】 【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题. 【详解】 解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.14.3【解析】【分析】分别延长AEBF 交于点H 易证四边形EPFH 为平行四边形得出G 为PH 中点则G 的运行轨迹为三角形HCD 的中位线MN 再求出CD 的长运用中位线的性质求出MN 的长度即可【详解】如图分别延长A解析:3 【解析】 【分析】分别延长AE 、BF 交于点H ,易证四边形EPFH 为平行四边形,得出G 为PH 中点,则G 的运行轨迹为三角形HCD 的中位线MN .再求出CD 的长,运用中位线的性质求出MN 的长度即可. 【详解】如图,分别延长AE 、BF 交于点H . ∵∠A=∠FPB=60°, ∴AH ∥PF , ∵∠B=∠EPA=60°, ∴BH ∥PE ,∴四边形EPFH 为平行四边形, ∴EF 与HP 互相平分. ∵G 为EF 的中点,∴G 也正好为PH 中点,即在P 的运动过程中,G 始终为PH 的中点,所以G 的运行轨迹为三角形HCD 的中位线MN . ∵CD=10-2-2=6,∴MN=3,即G 的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.15.【解析】根据弧长公式可得:=故答案为解析:2π3【解析】根据弧长公式可得:602180π⨯⨯=23π,故答案为23π.16.2x(x﹣1)(x﹣2)【解析】分析:首先提取公因式2x再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2)故答案为2x(x﹣1)(x﹣2)点解析:2x(x﹣1)(x﹣2).【解析】分析:首先提取公因式2x,再利用十字相乘法分解因式得出答案.详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为2x(x﹣1)(x﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.17.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.18.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.19.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x =4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5∴矩形MNPQ的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.20.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下: -2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.三、解答题21.(1)2000,108;(2)作图见解析;(3).【解析】试题分析:(1)根据B 组的人数以及百分比,即可得到被调查的人数,进而得出C 组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可; (2)根据C 组的人数,补全条形统计图;(3)根据甲、乙两人上班时从A 、B 、C 、D 四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率. 试题解析:(1)被调查的人数为:800÷40%=2000(人),C 组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C 组对应的扇形圆心角度数为:×360°=108°,故答案为:2000,108; (2)条形统计图如下:(3)画树状图得:∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:=.考点:列表法与树状图法;扇形统计图;条形统计图. 22.(1)证明见解析;(22 【解析】 【分析】(1)在△CAD 中,由中位线定理得到MN ∥AD ,且MN=12AD ,在Rt △ABC 中,因为M 是AC 的中点,故BM=12AC ,即可得到结论; (2)由∠BAD=60°且AC 平分∠BAD ,得到∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,得到∠BMC =60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到222BN BM MN =+,再由MN=BM=1,得到BN 的长. 【详解】(1)在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN ∥AD ,且MN=12AD ,在Rt △ABC 中,∵M 是AC 的中点,∴BM=12AC ,又∵AC=AD ,∴MN=BM ; (2)∵∠BAD=60°且AC 平分∠BAD ,∴∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN ∥AD ,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴222BN BM MN =+,而由(1)知,MN=BM=12AC=12×2=1,∴. 考点:三角形的中位线定理,勾股定理.23.(1)14;(2)10、40、144;(3)恰好选取的是a 1和b 1的概率为16. 【解析】【分析】(1)根据D 组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x 的值;(2)用A 、C 人数分别除以总人数求得A 、C 的百分比即可得m 、n 的值,再用360°乘以C 等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a 1和b 1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人, ∴x=40﹣(4+16+6)=14, 故答案为14;(2)∵m%=440×100%=10%,n%=1640×10%=40%, ∴m=10、n=40,C 等级对应的扇形的圆心角为360°×40%=144°, 故答案为10、40、144;(3)列表如下:a 1和b 1的有2种结果,∴恰好选取的是a1和b1的概率为21 126=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.24.(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)见解析;(3)102π.【解析】【分析】(1)利用第二象限点的坐标特征写出A,C两点的坐标;(2)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(3)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,然后描点得到△A2B2C2,再利用弧长公式计算点C旋转至C2经过的路径长.【详解】解:(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)如图,△A1B1C1为所作;(3)如图,△A2B2C2为所作,OC=2213+=10,点C旋转至C2经过的路径长=9010180π⋅⋅=102π.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了弧长公式.25.(1)-2;(2);(3)≤a≤或3≤a≤6.【解析】【分析】(1)根据点E在一次函数图象上,可求出m的值;(2)利用待定系数法即可求出直线l1的函数解析式,得出点B、C的坐标,利用S四边形OBEC=S△OBE+S△OCE即可得解;(3)分别求出矩形MNPQ在平移过程中,当点Q在l1上、点N在l1上、点Q在l2上、点N在l2上时a的值,即可得解.【详解】解:(1)∵点E(m,−5)在一次函数y=x−3图象上,∴m−3=−5,∴m=−2;(2)设直线l1的表达式为y=kx+b(k≠0),∵直线l1过点A(0,2)和E(−2,−5),∴,解得,∴直线l1的表达式为y=x+2,当y=x+2=0时,x=∴B点坐标为(,0),C点坐标为(0,−3),∴S四边形OBEC=S△OBE+S△OCE=××5+×2×3=;(3)当矩形MNPQ的顶点Q在l1上时,a的值为;矩形MNPQ向右平移,当点N在l1上时,x+2=1,解得x=,即点N(,1),∴a的值为+2=;矩形MNPQ继续向右平移,当点Q在l2上时,a的值为3,矩形MNPQ继续向右平移,当点N在l2上时,x−3=1,解得x=4,即点N(4,1),∴a的值为4+2=6,综上所述,当≤a≤或3≤a≤6时,矩形MNPQ与直线l1或l2有交点.【点睛】本题主要考查求一次函数解析式,两条直线相交、图形的平移等知识的综合应用,在解决第(3)小题时,只要求出各临界点时a的值,就可以得到a的取值范围.。

相关文档
最新文档