实验三__SIMULINK仿真实验

合集下载

Simulink实验报告

Simulink实验报告

实验一:AM 信号的调制与解调实验目的:1.了解模拟通信系统的仿真原理。

2.AM 信号是如何进行调制与解调的。

实验原理:1.调制原理:AM 调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程,就是按原始电信号的变化规律去改变载波某些参量的过程。

+m(t)S AM (t)A 0cos ωc tAM 信号的时域和频域的表达式分别为:()()[]()()()()t t m t A t t m A t S C C C AM ωωωcos cos cos 00+=+=式(4-1) ()()()[]()()[]C C C C AM M M A S ωωωωωωδωωδπω-+++-++=210 式(4-2)在式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。

其频谱是DSBSC-AM 信号的频谱加上离散大载波的频谱。

2.解调原理:AM 信号的解调是把接收到的已调信号还原为调制信号。

AM 信号的解调方法有两种:相干解调和包络检波解调。

AM 相干解调原理框图如图。

相干解调(同步解调):利用相干载波(频率和相位都与原载波相同的恢复载波)进行的解调,相干解调的关键在于必须产生一个与调制器同频同相位的载波。

如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。

相干载波的提取:(1)导频法:在发送端加上一离散的载频分量,即导频,在接收端用窄带滤波器提取出来作为相干载波,导频的功率要求比调制信号的功率小;(2)不需导频的方法:平方环法、COSTAS环法。

LPF m0(t)S AM(t)cosωc tAM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。

包络检波器一般由半波或全波整流器和低通滤波器组成:(1)整流:只保留信号中幅度大于0的部分。

(2)低通滤波器:过滤出基带信号;(3)隔直流电容:过滤掉直流分量。

实验内容:1.AM相干解调框图。

MATLAB Simulink系统建模与仿真 实验报告

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真实验报告姓名:******专业:电气工程及其自动化班级:*******************学号:*******************实验一无穷大功率电源供电系统三相短路仿真1.1 无穷大功率电源供电系统仿真模型构建运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块:(1)无穷大功率电源模块(Three-phase source)(2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load)(3)三相串联RLC支路模块(Three-Phase Series RLC Branch)(4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings))(5)三相电压电流测量模块(Three-Phase V-I Measurement)(6)三相故障设置模块(Three-Phase Fault)(7)示波器模块(Scope)(8)电力系统图形用户界面(Powergui)按电路原理图连接线路得到仿真图如下:1.2 无穷大功率电源供电系统仿真参数设置1.2.1 电源模块设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:1.2.2 变压器模块变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图:1.2.3 输电线路模块根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图:1.2.4 三相电压电流测量模块此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:1.2.5 故障设置模块勾选故障相A、B、C,设置短路电阻0.00001Ω,设置0.02s—0.2s发生短路故障,参数设置如下图:1.2.6 示波器模块为了得到仿真结果准确数值,可将示波器模块的“Data History”栏设置为下图所示:1.3 无穷大功率电源供电系统仿真结果及分析得到以上的电力系统参数后,可以首先计算出在变压器低压母线发生三相短路故障时短路电流周期分量幅值和冲击电流的大小,短路电流周期分量的幅值为Im=10.63kA,时间常数Ta=0.0211s,则短路冲击电流为Iim=17.3kA。

三相桥式全控整流电路Simulink仿真实验

三相桥式全控整流电路Simulink仿真实验

三相桥式全控整流电路Simulink仿真实验背景三相桥式全控整流电路是一种常用的交流调直流电路,可以将交流电源转换为稳定的直流电源,常用于工业生产中的大型电动机驱动系统等。

因此,在电力电子课程中,对于三相桥式全控整流电路的掌握至关重要。

Simulink 是 MATLAB 的拓展模块,可用于系统级模拟和建模,并广泛应用于电力电子学、控制工程、通信和信号处理等领域。

在本文中,我们将介绍三相桥式全控整流电路 Simulink 仿真实验的建模和仿真过程。

实验目的1.了解三相桥式全控整流电路的基本原理和结构;2.掌握 Simulink 的建模方法和使用;3.了解整流电路控制方式,以及开环控制和反馈控制的优缺点;4.通过实验数据分析,验证反馈控制的优势。

实验原理三相桥式全控整流电路三相桥式全控整流电路的基本原理如下图所示:三相桥式全控整流电路原理图三相桥式全控整流电路由三个交流源和六个晶闸管构成,晶闸管分别为 V1、V2、V3、V4、V5 和 V6,其中,V1 和 V6 为两端可控硅,V2 和 V4 为反向可控硅,V3 和 V5 为二极管。

通过对不同晶闸管的控制,可以将交流电源转换为稳定的直流电源。

Simulink 建模在 Simulink 中建立三相桥式全控整流电路模型的过程如下:1.创建模型首先,打开 MATLAB 并创建一个新的模型。

2.添加模块建立三相桥式全控整流电路模型,需要使用到 Simulink 的 SimPowerSystems 模块,因此需要在 Simulink 库中添加此模块。

具体方法为:在主界面上找到“Simulink 库浏览器”,然后在“SimPowerSystems”中选择需要使用的模块,如下图所示。

Simulink 库浏览器添加模块3.建立模型接着,我们开始建立模型。

首先,从 Simulink 库中拖拽“三相 AC Voltage Source”模块,然后拖拽“Three-Phase Controlled Rectifier”模块,连接二者,并设置模块的参数及输入信号。

自动控制原理 实验三SIMULINK环境下典型环节阶跃响应仿真及分析

自动控制原理 实验三SIMULINK环境下典型环节阶跃响应仿真及分析

课程名称自动控制原理实验序号实验三实验项目SIMULINK环境下典型环节阶跃响应仿真及分析实验地点实验学时实验类型操作性指导教师实验员专业 _______ 班级学号姓名年月日教师评语一、实验目的及要求1、初步了解MATLAB中SIMULINK的使用方法;2、了解SIMULINK下实现典型环节阶跃响应方法;3、定性了解各参数变化对典型环节动态特性的影响。

二、实验原理与内容三、实验软硬件环境装有MATLA软件的电脑四、实验过程(实验步骤、记录、数据、分析)1、按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。

(1)比例环节G1(s)=1和G2(s)=2;比例环节G1(s)=1的实验结果:比例环节G2(s)=2的实验结果:结果分析:由以上阶跃响应波形图知,比例环节的输出量与输入量成正比,比例系数越大,输出量越大。

(2) 惯性环节G1(s)=1/(s+1)和G2(s)=1/(0.5s+1)惯性环节G1(s)=1/(s+1)的实验结果:惯性环节G1(s)=1/(0.5s+1)的实验结果:结果分析:由以上单位阶跃响应波形图知,惯性环节使输出波形在开始的时候以指数曲线上升,上升速度与时间常数有关,时间常数越小响应越快。

(3)积分环节G(s)=1/s(4)微分环节G(s)=s(5)比例+微分(PD)G1(s)=s+2和G2(s)=s+1G1(s)=s+2的实验结果:G2(s)=s+1的实验结果:结果分析:由以上单位阶跃响应波形图知,比例作用与微分作用一起构成导前环节,输出反映了输入信号的变化趋势,波形也与时间常数有关。

(6)比例+积分(PD)G1(s)=1+1/s和G2(s)=1+1/2sG1(s)=1+1/s的实验结果:G2(s)=1+1/2s的实验结果:结果分析:由以上单位阶跃响应波形图知,积分环节的输出量反映了输入量随时间的积累,时间常数越大,积累速度越快。

实验结果:结果分析:由以上单位阶跃波形知,当ξ=0时,系统的单位阶跃响应为不衰减;随着阻尼ξ的减小,其振荡特性表现的愈加强烈,当ξ的值在0.2-0.7之间时,过渡过程时间较短,振荡不太严重;当ξ=1时,响应慢。

simulink仿真实验报告

simulink仿真实验报告

simulink仿真实验报告Simulink仿真实验报告一、引言Simulink是一种基于模型的设计和仿真工具,广泛应用于各领域的工程设计和研究中。

本次实验将利用Simulink进行系统仿真实验,通过搭建模型、参数调整、仿真运行等过程,验证系统设计的正确性和有效性。

二、实验目的本实验旨在帮助学生掌握Simulink的基本使用方法,了解系统仿真的过程和注意事项。

通过本实验,学生将能够:1. 熟悉Simulink的界面和基本操作;2. 理解和掌握模型构建的基本原理和方法;3. 学会调整系统参数、运行仿真和分析仿真结果。

三、实验内容本实验分为以下几个步骤:1. 绘制系统模型:根据实验要求,利用Simulink绘制出所需的系统模型,包括输入、输出、控制器、传感器等。

2. 参数设置:针对所绘制的系统模型,根据实验要求设置系统的参数,例如增益、阻尼系数等。

3. 仿真运行:通过Simulink的仿真功能,对所构建的系统模型进行仿真运行。

4. 仿真结果分析:根据仿真结果,分析系统的动态性能、稳态性能等指标,并与理论值进行对比。

四、实验结果与分析根据实验要求,我们绘制了一个负反馈控制系统的模型,并设置了相应的参数。

通过Simulink的仿真功能,我们进行了仿真运行,并获得了仿真结果。

仿真结果显示,系统经过调整参数后,得到了较好的控制效果。

输出信号的稳态误差较小,并且在过渡过程中没有发生明显的振荡或超调现象。

通过与理论值进行对比,我们验证了系统的稳态稳定性和动态响应性能较为理想。

五、实验总结通过本次实验,我们掌握了使用Simulink进行系统仿真的基本方法和技巧。

了解了系统模型构建的基本原理,并学会了参数调整和仿真结果分析的方法。

这对于我们今后的工程设计和研究具有重要的意义。

六、参考文献1. 《Simulink使用手册》,XXX出版社,20XX年。

2. XXX,XXX,XXX等.《系统仿真与建模实践教程》. 北京:XXX出版社,20XX年。

simulink仿真实验报告

simulink仿真实验报告

simulink仿真实验报告一、实验目的本次实验的主要目的是通过使用Simulink软件来进行仿真实验,掌握Simulink仿真工具的基本使用方法,并且了解如何应用Simulink软件来进行系统建模和仿真分析。

二、实验内容1. Simulink软件的基本介绍2. Simulink仿真工具的使用方法3. Simulink模型建立与参数设置4. Simulink仿真结果分析三、实验步骤及方法1. Simulink软件的基本介绍Simulink是一种基于模块化编程思想的图形化编程工具,可以用于建立各种系统模型,并且进行系统仿真分析。

在Simulink中,用户可以通过拖动不同类型的模块来搭建自己所需要的系统模型,并且可以对这些模块进行参数设置和连接操作。

2. Simulink仿真工具的使用方法首先,在打开Simulink软件后,可以看到左侧有一系列不同类型的模块,包括数学运算、信号处理、控制系统等。

用户可以根据自己需要选择相应类型的模块,并将其拖入到工作区域中。

然后,用户需要对这些模块进行参数设置和连接操作,以构建出完整的系统模型。

最后,在完成了系统模型的构建后,用户可以进行仿真分析,并且观察系统的运行情况和输出结果。

3. Simulink模型建立与参数设置在本次实验中,我们主要是以一个简单的控制系统为例来进行仿真分析。

首先,我们需要将数学运算模块、控制器模块和被控对象模块拖入到工作区域中,并将它们进行连接。

然后,我们需要对这些模块进行参数设置,以确定各个模块的输入和输出关系。

最后,在完成了系统模型的构建后,我们可以进行仿真分析,并观察系统的运行情况和输出结果。

4. Simulink仿真结果分析在完成了Simulink仿真实验之后,我们可以得到一系列仿真结果数据,并且可以通过Simulink软件来对这些数据进行进一步的分析和处理。

例如,在本次实验中,我们可以使用Simulink软件来绘制出控制系统的输入信号、输出信号和误差曲线等图形,并且可以通过这些图形来判断系统是否满足预期要求。

Simulink建模与仿真

Simulink建模与仿真

《通信系统仿真》实验报告姓名杨利刚班级A0811 实验室203 组号28 学号28 实验日期实验名称实验三Simulink建模与仿真实验成绩教师签字一、实验目的1、了解simulink的相关知识2、掌握Matlab/simulink提供的基本模块库和常用的模块3、掌握simulink建模仿真的基本方法二、实验原理Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。

Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模。

它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率,并且提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。

Simulink基本库是系统建模中最常用的模块库,原则上一切模型都是可以由基本库中的模块来构建,为了方便专业用户使用,Simulink还提供了大量的专业模块库,如为通信系统和信号处理而提供的CDMA参考库、通信模块库和DSP模块库等,但是,建议初学者不宜过多使用这些专业库,而应当从所建摸的系统原理入手,利用基本模块来构建系统,以深入理解系统运行情况。

Simulink的常用库模块有12个:(1)连续时间线性系统库;(2)非连续系统库;(3)离散系统库;(4)查表操作模块;(5)数学函数库;(6)模型检查和建模辅助工具;(7)端口和子系统;(8)信号路由库;(9)信号属性转换库;(10)信号源库;(11)信宿和仿真显示仪器库;(12)用户自定义函数库。

Simulink的建模主要是子系统的建模,子系统建模完成后,再对其进行封装,即完成了一个基本模型的建立。

三、实验内容1、现有对RLC充放电电路进行仿真的模型。

请参照仿真模型,进行Simulink的建模仿真,相关参数按照例题中的参数设置。

Matlab SIMULINK仿真实验报告

Matlab SIMULINK仿真实验报告
l=4;
c=20;
mp=270;
mt=50;
I=mp*l^2;%计算吊重转动惯量
lmp=l*mp;
k1=1/(mt+mp);
k2=mp*l/(I+mp*l^2);
设置仿真时间为200s,启动Simulink仿真,则由小车位移示波器和吊重摆角示波器,可观察到系统在初始状态x(0)=0, ,(0)=0.01rad/s,作用下x、的变化过程曲线:
图5-2摄氏温度到华氏温度的转化的参考模型
3.利用Simulink仿真下列曲线,取 。

仿真参考模型如下图5-3,Sine Wave5模块参数设置如下图5-4,请仿真其结果。
图5-3 的仿真参考模型图图5-4 Sine Wave5模块参数设置图
4.如图5-5所示是分频器仿真框图,其组成仅有三台设备:脉冲发生器,分频器和示波器。分频器送出一个到达脉冲,第一路cnt(计数),它的数值表示在本分频周期记录到多少个脉冲;第二路是hit(到达),就是分频后的脉冲输出,仿真出结果来。
悬吊式起重机小车位移
悬吊式起重机吊重摆角
二、实验设备及条件
计算机一台(带有MATLAB6.5以上的软件环境)。
三、实验内容
1.建立下图5-1所示的Simulink仿真模型并进行仿真,改变Gain模块的增益,观察Scope显示波形的变化。
图5-1正弦波产生及观测模型
2.利用simulink仿真来实现摄氏温度到华氏温度的转化: ( 范围在-10℃~100℃),参考模型为图5-2。
西安邮电学院
《Matlab》
实验报告
(四)
2011-2012学年第1学期
专业:
自动化
班级:
自动0903
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 SIMULINK 仿真实验
一、实验目的
1.熟悉Simulink 的操作环境并掌握绘制系统模型的方法。

2.掌握Simulink 中子系统模块的建立与封装技术。

3.对简单系统所给出的数学模型能转化为系统仿真模型并进行仿真分析。

二、实验设备及条件
计算机一台(带有MATLAB7.0软件环境)。

三、实验内容
1.建立下图5-1所示的Simulink 仿真模型并进行仿真,改变Gain 模块的增益,观察Scope 显示波形的变化。

图3-1 正弦波产生及观测模型
2.利用Simulink 仿真下列曲线,取πω2=。

t t t t t t x ωωωωωω9sin 9
17sin 715sin 513sin 31sin )(++++=。

仿真参考模型如下图3-2,Sine Wave5模块参数设置如下图3-3,请仿真其结果。

x t 的仿真参考模型图图3-3 Sine Wave5模块参数设置图图3-2 ()
3.已知某控制系统的传递函数如题3-4图所示。

试利用SIMULINK建模仿真,并用示波器显示该系统的阶跃响应曲线。

(注:系统中e-0.4 s环节表示的是控制中的延时环节,可用SIMULINK的连续系统模块库中的“Transport Delay”模块表示)
图3-4
4、已知某控制系统的传递函数如题3-5图所示。

试利用SIMULINK建模,并实现以下功能:
(1) 将已建模型转化为一个名为“mysys”的子系统;
(2) 将已建子系统进行适当的封装;
(3) 封装完毕后双击子系统图标,在弹出的属性设置窗口中对变量进行赋值(Tm=0.5,Tp=1),并在模型中加入源模块和显示模块,观察系统的阶跃响应曲线。

图3-5
5、直流电路如图3-6所示,参数如下:R1=2,R2=4,R3=12,R4=4,R5=12,R6=4,R7=2,Us=10V 。

用示波器观察i3,U4,U7的值。

图3-6
set(0,'showhiddenhandles','on');
set(gcf,'menubar','figure') 10.8s s 1s Tm 2+++⋅Input
G1(s)
1s Tp 1+⋅G2(s)Output。

相关文档
最新文档