《复数》知识点总结

合集下载

《复数》知识点总结

《复数》知识点总结

《复数》知识点总结一、基本概念:1. 复数:由实数和虚数相加构成的数,形如a+bi,其中a为实部,b为虚部,i为虚数单位。

2.实数:实数即我们常说的数,包括有理数和无理数。

3.虚数:不能与实数相对应的数,虚部b≠0。

4.复数集:由所有复数构成的集合,记作C。

5.共轭复数:实部相等,虚部互为相反数的两个复数。

6. 复平面:以实轴为x轴,虚轴为y轴,将复数a+bi与平面上的点(z, y)一一对应。

7. 模长:用来衡量复数a+bi从原点到相应点的距离,记作,a+bi。

二、复数运算:1.加法:对应实部相加,虚部相加,记作(z1+z2)=(a1+a2)+(b1+b2)i。

2.减法:对应实部相减,虚部相减,记作(z1-z2)=(a1-a2)+(b1-b2)i。

3.乘法:先用分配律展开,再利用i的平方等于-1化简得到结果。

4.除法:乘以共轭复数的形式,再利用公式得到结果。

5.幂运算:将复数表示为模长和辐角的形式,利用欧拉公式进行计算。

6.开方:可以用模长和辐角的形式表示,通过极坐标展开公式进行计算。

三、复数的性质:1.加法交换律,减法和乘法也满足交换律。

2.加法结合律,减法和乘法也满足结合律。

3.乘法满足分配律。

4.加法有单位元0+0i,乘法有单位元1+0i。

5.对于任何复数z,存在唯一的共轭复数z*,满足z+z*=2Re(z)(其中Re(z)表示实部)。

6.对于任何复数z,有,z,^2=z*z。

四、复数的应用:1.向量:复数可以表示平面上的向量,可以用来描述物体在平面上的位移和方向。

2.电路分析:电阻、电感、电容等元件在交流电路中可以用复数表示,方便进行计算和分析。

3.信号处理:复数可以表示正弦波和余弦波等周期函数,方便进行频域分析。

复数是数学中一个非常重要的概念,在多个领域具有广泛的应用。

理解和掌握复数的基本概念、运算规则和性质,对于学习和应用相关领域的知识都是至关重要的。

复数的知识点总结

复数的知识点总结

复数的知识点总结一、复数概述复数是数学中的一个重要概念,它由实数和虚数部分组成。

虚数单位i定义为i² = -1,其中i是一个虚数。

复数可表示为a + bi的形式,其中a是实数部分,bi 是虚数部分。

二、复数运算1. 复数加法和减法复数的加法和减法按照实部和虚部分别进行运算,即将实部相加或相减,并将虚部相加或相减。

例如,给定复数z₁ = a₁ + b₁i和z₂ = a₂ + b₂i,它们的和可以表示为z₁ + z₂ = (a₁ + a₂) + (b₁ + b₂)i,差可以表示为z₁ - z₂ = (a₁ - a₂) + (b₁ - b₂)i。

2. 复数乘法复数乘法采用分配律和虚数单位的平方等于-1的性质进行计算。

例如,给定复数z₁ = a₁ + b₁i和z₂ = a₂ + b₂i,它们的乘积可以表示为z₁ * z₂ = (a₁ * a₂ - b₁ * b₂) + (a₁ * b₂ + a₂ * b₁)i。

3. 复数除法复数除法是将分子和分母同乘以分母的共轭,并利用虚数单位的平方等于-1的性质进行计算。

例如,给定复数z₁ = a₁ + b₁i和z₂ = a₂ + b₂i,它们的除法可以表示为z₁ / z₂ = ((a₁ * a₂ + b₁ * b₂) / (a₂² + b₂²)) + ((a₂ * b₁ - a₁ * b₂) / (a₂² + b₂²))i。

三、复数的共轭和模1. 复数的共轭复数的共轭是保持实部相同而虚部变号的操作。

复数a + bi的共轭可以表示为a - bi,其中a是实部,b是虚部。

2. 复数的模复数的模是复数到原点的距离,可以用勾股定理计算。

复数a + bi的模可以表示为√(a² + b²)。

四、复数的指数形式和三角形式1. 复数的指数形式复数可以用指数形式表示为re^(iθ),其中r是模,θ是辐角。

2. 复数的三角形式复数的三角形式是指使用三角函数表示复数。

复数知识点总结

复数知识点总结

复数知识点总结一、复数的定义形如\(a + bi\)(\(a,b\in R\),\(i\)为虚数单位)的数叫做复数,其中\(a\)叫做复数的实部,\(b\)叫做复数的虚部。

当\(b = 0\)时,复数\(a + bi\)为实数;当\(b \neq 0\)时,复数\(a +bi\)为虚数;当\(a = 0\)且\(b \neq 0\)时,复数\(a + bi\)为纯虚数。

二、虚数单位\(i\)虚数单位\(i\)满足\(i^2 =-1\)。

三、复数的代数形式复数的代数形式为\(z = a + bi\)(\(a,b\in R\))。

四、复数的几何意义1、复平面建立直角坐标系来表示复数的平面叫做复平面,\(x\)轴叫做实轴,\(y\)轴叫做虚轴。

实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。

2、复数的模复数\(z = a + bi\)的模\(|z| =\sqrt{a^2 + b^2}\)。

3、复数与向量复数\(z = a + bi\)对应复平面内的向量\(\overrightarrow{OZ} =(a,b)\)。

五、复数的四则运算1、加法\((a + bi) +(c + di) =(a + c) +(b + d)i\)2、减法\((a + bi) (c + di) =(a c) +(b d)i\)3、乘法\((a + bi)(c + di) = ac + adi + bci + bdi^2 =(ac bd) +(ad + bc)i\)4、除法\\begin{align}\frac{a + bi}{c + di}&=\frac{(a + bi)(c di)}{(c + di)(c di)}\\&=\frac{ac adi + bci bdi^2}{c^2 + d^2}\\&=\frac{(ac + bd) +(bc ad)i}{c^2 + d^2}\end{align}\六、共轭复数当两个复数的实部相等,虚部互为相反数时,这两个复数互为共轭复数。

复数的知识点总结

复数的知识点总结

复数的知识点总结一、基本概念复数是指由实数和虚数构成的数,形式为 a + bi,其中a 和b 都是实数,i 是虚数单位,满足 i² = -1。

实数是指具有有限位小数的数或无理数,而虚数是不能用实数表示的数。

二、复数的表示法复数有一般式、三角式和指数式三种表示法。

1. 一般式:a + bi其中 a 表示实部,b 表示虚部。

2. 三角式:r(cosθ + i sinθ)其中 r 表示复数的模,θ 表示复数的辐角或幅角。

3. 指数式:re^(iθ)其中 r 表示复数的模,e 是自然对数的底数,θ 表示复数的幅角。

三、基本运算1. 加法(a + bi) + (c + di) = (a + c) + (b + d)i即实部相加,虚部相加。

2. 减法(a + bi) - (c + di) = (a - c) + (b - d)i即实部相减,虚部相减。

3. 乘法(a + bi) × (c + di) = (ac - bd) + (ad + bc)i即实数部分按照常规乘法规则计算,虚数部分交叉相乘。

4. 除法(a + bi) ÷ (c + di) = (ac + bd)/(c² + d²) + (bc - ad)/(c² + d²)i即分子分母同除以 c + di,然后将分子分母分别展开并化简。

5. 共轭复数(a + bi) 的共轭复数为 (a - bi),共轭复数满足以下性质:a. 它们的实部相等。

b. 它们的虚部相等,但符号相反。

c. 一个复数与它的共轭复数的积等于这个复数的模的平方。

d. 两个复数的积的共轭等于它们的共轭的积。

四、复数的模和幅角1. 复数模|r|复数的模是指复数与原点之间的距离,可以用勾股定理求出。

|r| = √(a² + b²)2. 复数的幅角θ复数的幅角是指复数与正实轴正方向的夹角,可以用反正切函数求出。

高考复数知识点总结

高考复数知识点总结

高考复数知识点总结一、复数的概念1. 定义:在数学中,复数是由一个实数和一个虚数单位i构成的数,表示为a+bi,其中a 和b都是实数,而i是虚数单位,满足i²=-1。

2. 实部和虚部:复数a+bi中,a称为实部,bi称为虚部,其中a和b都是实数。

二、复数的表示形式1. 代数形式:a+bi2. 幅角形式:r(cosθ+isinθ),其中r为复数的模,θ为复数的幅角。

3. 指数形式:re^(iθ),其中e^(iθ)为指数函数。

三、复数的运算1. 加法与减法:实部相加,虚部相加2. 乘法:根据分配律和虚数单位i的性质计算3. 除法:乘以共轭复数,然后根据除法的定义计算4. 幂运算:通过指数形式进行计算四、复数的性质1. 共轭复数:a+bi的共轭复数是a-bi2. 模:复数a+bi的模是√(a²+b²)3. 幅角:复数a+bi的幅角是θ=tan^(-1)(b/a)五、复数的应用1. 代数方程式:一元二次方程的解2. 三角函数:通过复数的幅角形式可以求解三角函数的和差角公式3. 电路学:用复数解决交流电路中的问题六、复数的解析几何1. 复数的几何意义:复平面上的点2. 复数的模和幅角:向量的模和方向3. 复数的乘法和除法:向量的缩放和旋转七、复数的解1. 一元二次方程的解:通过求根公式得到解2. 复数的根:开方运算的应用总结:复数是数学中的一个重要概念,它由一个实部和一个虚部构成,可以通过代数形式、幅角形式和指数形式进行表示。

复数的运算包括加法、减法、乘法、除法和幂运算,通过这些运算可以得到复数的性质如共轭复数、模和幅角。

复数还具有广泛的应用,包括代数方程式、三角函数和电路学等方面。

此外,复数还可以通过解析几何的方式进行理解,它在平面上对应着一个点,并且具有向量的性质。

复数的解可以用于一元二次方程的求解以及复数的根的求解。

通过学习和掌握复数的知识,可以更好地理解数学中的各种概念和问题,并且对于后续的学习和应用具有重要的意义。

复数知识点总结数学

复数知识点总结数学

复数知识点总结数学一、复数的定义1. 复数的引入复数是在解决二次方程 $ax^2 + bx + c = 0$ 时引入的,因而对于该方程抽象出来的解 -b/2a 即不存在,于是引入了虚数单位 i(i^2 = -1)。

因此,考虑了实数范围外的概念:负数的平方根。

2. 复数的定义复数由实部和虚部组成,一般表示为 a+bi,其中a为实部,bi为虚部。

当a=0时,复数为纯虚数;当b=0时,复数为实数。

3. 复数的性质复数具有共轭、实部、虚部等性质。

共轭:复数 a+bi 的共轭为 a-bi;实部:复数 a+bi 的实部为 a;虚部:复数 a+bi 的虚部为 b。

4. 复数的绝对值和幅角复数 a+bi 的绝对值定义为|a+bi| = √(a²+b²);复数 a+bi 的幅角定义为 arg(a+bi) =arctan(b/a)。

二、复数的运算1. 复数的加法和减法复数的加法和减法都是按照实部和虚部进行赋值运算。

2. 复数的乘法复数的乘法是按照展开式进行计算的,需要注意 i² = -1。

3. 复数的除法复数的除法需要将分母有理化,然后乘以共轭复数得到结果。

4. 复数的乘方和开方复数的乘方需要注意按照展开式进行计算;复数的开方需要注意共轭复数和幂次根的计算。

三、复数的代数方程1. 一元二次方程一元二次方程的解一般为复数,根据判别式可以判断方程有几个实根、虚根或不等实根。

2. 一元高次方程一元高次方程的根可能为复数,可以根据综合定理推导出复数根的情况。

3. 复数系数方程对于复数系数方程,可以使用复数的性质进行求解,得到复数解。

四、复数平面1. 复数的几何表示在复数平面中,实部和虚部分别对应坐标轴上的 x 轴和 y 轴,复数 a+bi 对应于点 (a,b)。

2. 复数的运算复数的几何表示可以利用向量的方法进行解释,加法和乘法对应于向量的平移和旋转。

3. 复数的几何性质复数的绝对值对应于复数到原点的距离,复数的幅角对应于复数到 x 轴的角度。

复数的知识点公式总结

复数的知识点公式总结

复数的知识点公式总结一、复数的基本概念1. 复数的定义:形如a+bi的数称为复数,其中a是实部,b是虚部,i是虚数单位,满足i²=-1。

2. 复数的实部与虚部:复数z=a+bi中,a称为实部,b称为虚部,通常用Re(z)和Im(z)表示。

3. 纯虚数:实部为0的复数,称为纯虚数,如bi,则bi为纯虚数。

4. 共轭复数:设z=a+bi是一个复数,如果将z的虚部b改变符号,得到一个新的复数z’=a-bi,称z’是z的共轭复数。

二、复数的表示形式1. 代数形式:z=a+bi,即由实部a和虚部b构成的复数形式。

2. 幅角形式:z=r(cosθ+isinθ),其中r=|z|为复数的模,θ为复数的辐角。

3. 按模辐角表示:z=r·exp(iθ)。

4. 柯西-黎曼公式:当z=x+yi时,可表示为z=r(exp[i(θ+2kπ)]), k=0,±1,±2,...。

三、复数的运算规则1. 加法:(a+bi)+(c+di)=(a+c)+(b+d)i。

2. 减法:(a+bi)-(c+di)=(a+c)-(b+d)i。

3. 乘法:(a+bi)·(c+di)=(ac-bd)+(ad+bc)i。

4. 除法:(a+bi)/(c+di)=(ac+bd)/(c²+d²)+(bc-ad)i/(c²+d²)。

5. 复数的乘方:(a+bi)²=a²-b²+2abi。

6. 复数的幂运算:zⁿ=(r·exp(iθ))ⁿ=rⁿ·exp(iθn)。

7. 复数的共轭:z=a+bi的共轭为z*=a-bi。

8. 复数的倒数:z=a+bi的倒数为1/z=1/(a+bi)。

四、复数的性质1. 除法:任一非零复数z=a+bi,存在有唯一的复数1/z=1/(a+bi),满足z(1/z)=1。

2. 复数的模:|z|=√(a²+b²),其中|z|为z的模。

完整版)复数知识点总结

完整版)复数知识点总结

完整版)复数知识点总结复数一、复数的概念1.虚数单位i虚数单位i的平方等于1,即i²= 1.实数可以与它进行四则运算,进行四则运算时,原有的加、乘法运算仍然成立,即满足交换律与结合律。

i的乘方:i⁴ⁿ=1,i⁴ⁿ⁺¹=i,i⁴ⁿ⁺²=1,i⁴ⁿ⁺³=i,n∈N*,它们不超出bi的形式。

2.复数的定义形如a+bi(a,b∈R)的数叫做复数,a,b分别叫做复数的实部与虚部。

3.复数相等a+bi=c+di,即a=c且b=d,那么这两个复数相等。

4.共轭复数当z=a+bi时,z的共轭复数为z=a bi。

性质:z=z;z₁±z₂=z₁±z₂;z₁×z₂=z₁×z₂;(z₂≠0)二、复平面及复数的坐标表示1.复平面在直角坐标系里,点z的横坐标是a,纵坐标是b,复数z=a+bi可用点Z(a,b)来表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴为实轴,y轴出去原点的部分称为虚轴。

2.复数的坐标表示点Z(a,b)表示复数z=a+bi。

3.复数的向量表示向量OZ表示复数z。

4.复数的模在复平面内,复数z=a+bi对应点Z(a,b),点Z到原点的距离OZ叫做复数z的模,记作|z|。

由定义知,|z|=√(a²+b²)。

三、复数的运算1.加法a+bi)+(c+di)=(a+c)+(b+d)i。

几何意义:设z₁=a+bi对应向量OZ₁=(a,b),z₂=c+di对应向量OZ₂=(c,d),则z₁+z₂对应的向量为OZ₁+OZ₂=(a+c,b+d)。

因此复数的和可以在复平面上用平行四边形法则解释。

2.减法a+bi)(c+di)=(a c)+(b d)i。

几何意义:设z₁=a+bi对应向量OZ₁=(a,b),z₂=c+di对应向量OZ₂=(c,d),则z₁z₂对应的向量为OZ₁OZ₂=Z₂Z₁=(a c,b d)。

z₁z₂=(a c)+(b d)i=(a c)²+(b d)²表示Z₁、Z₂两点之间的距离,也等于向量Z₁Z₂的模。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《复数》知识点总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
《复数》知识点总结
1、复数的概念
形如(,)a bi a b R +∈的数叫做复数,其中i 叫做虚数单位,满足21i =-,a 叫做复数的实部,b 叫做复数的虚部.
(1)纯虚数:对于复数z a bi =+,当00a b =≠且时,叫做纯虚数.
(2)两个复数相等:,()a bi c di a b c d R ++∈、、、相等的充要条件是=a c b d =且.
(3)复平面:建立直角坐标系来表示复数的平面叫做复平面,横轴为实轴,竖轴除去原点为虚轴.
(4)复数的模:复数z a bi =+可以用复平面内的点Z(,)a b 表示,向量OZ 的模
叫做复数z a bi =+的模,表示为:||||z a bi =+
(5)共轭复数:两个复数的实部相等,虚部互为相反数时,这两个复数叫做共轭复数.
2、复数的四则运算
(1)加减运算:()()()()a bi c di a c b d i +±+=±++;
(2)乘法运算:()()()()a bi c di ac bd ad bc i +⋅+=-++;
(3)除法运算:2222
()()()()(0)ac bd bc ad a bi c di i c di c d c d +-+÷+=++≠++; (4)i 的幂运算:41n i =,41n i i +=,421n i +=-,43n i i +=-.()n Z ∈
(5)22||||z z z z ==
3、 规律方法总结
(1)对于复数(,)z a bi a b R =+∈必须强调,a b 均为实数,方可得出实部为a ,虚部为b
(2)复数(,)z a bi a b R =+∈是由它们的实部和虚部唯一确定的,两个复数相等的充要条件是把复数问题转化为实数问题的主要方法.对于一个复数
(,)z a bi a b R =+∈,既要从整体的角度去认识它,把复数看成一个整体,又要从实部、虚部的角度分解成两部分去认识
(3)对于两个复数,若不全是实数,则不能比较大小,在复数集里一般没有大小之分,但却有相等与不等之分.
(4)数系扩充后,数的概念由实数集扩充到复数集,实数集中的一些运算性质、概念、关系就不一定适用了,如绝对值的性质、绝对值的定义、偶次方非负等
1、基本概念计算类
例1.若,43,221i z i a z -=+=且2
1z z 为纯虚数,则实数a 的值为_________ 解:因为,21z z =25)46(83258463)43)(43()43)(2(432i a a ia i a i i i i a i i a ++-=-++=+-++=-+, 又21z z 为纯虚数,所以,3a -8=0,且6+4a ≠0。

3
8=∴a 2、复数方程问题
例2.证明:在复数范围内,方程i
i z i z +-=-+255)1(||2(i 为虚数单位)无解 证明:原方程化简为,31)1()1(||i z i z i z -=+--+设z =x +yi(x 、y R ∈),代入
上述方程得⎩⎨⎧=+=+-=--+3221.3122222
2y x y x i yi xi y x 整理得051282=+-x x ∴<-=∆.016 方程无实数解,所以原方程在复数范围内无解。

3、综合类
例3.设z 是虚数,z
z 1+=ω是实数,且-1<ω<2 (1) 求|z|的值及z 的实部的取值范围;
(2) 设z
z M +-=11,求证:M 为纯虚数; (3) 求2M -ω的最小值。

解:(1)设z =a +bi (a ,b 0,≠∈b R )
,)()(12222i b
a b b b a a a bi a bi a +-+++=++
+=ω 因为,ω是实数,0≠b 所以,122=+b a ,即|z|=1, 因为ω=2a ,-1<ω<2,12
1<<-a 所以,z 的实部的取值范围(-1,21) (2)z z M +-=11=1)1(21)1)(1()1)(1(112
222+-=++---=-+++-+--=++--a bi b a bi b a bi a bi a bi a bi a bi a bi a (这里利用了(1)中122=+b a )。

因为a ∈(-1,2
1),0≠b ,所以M 为纯虚数
(3)2
M -ω112)1(12)1(22222+--=+-+=++=a a a a a a a b a 3]1
1)1[(21212-+++=++
-=a a a a 因为,a ∈(-1,2
1),所以,a +1>0, 所以2M -ω≥2×2-3=1, 当a +1=11+a ,即a =0时上式取等号, 所以,2M -ω的最小值是1。

4、创新类
例4.对于任意两个复数R y y x x i y x z i y x z ∈+=+=2121222111,,,(,)定义运算“⊙”为
1z ⊙2z =2121y y x x +,设非零复数21,ωω在复平面内对应的点分别为21,P P ,点O 为坐标原点,若1ω⊙2ω=0,则在21OP P ∆中,21OP P ∠的大小为_________.
解法一:(解析法)设)0,(,21222111≠+=+=a a i b a i b a ωω,故得点),(111b a P ,),(222b a P ,且2121b b a a +=0,即12
211-=⋅a b a b 从而有2121OP OP k k ⋅=12
211-=⋅a b a b 故21OP OP ⊥,也即02190=∠OP P 解法二:(用复数的模)同法一的假设,知 21212121||||b a OP +==ω
22222222||||b a OP +==ω
22121221221|)()(|||||i b b a a P P -+-=-=ωω
=2121b a ++2222b a +-2(2121b b a a +)=2121b a ++2222b a +-2×0 =2121b a ++2222b a +=21||OP +22||OP
由勾股定理的逆定理知02190=∠OP P 解法三:(用向量数量积的知识)同法一的假设,知),(),,(222111b a OP b a ==,则有
0cos 222221212
12121=+⋅++=⋅∠b a b a b b a a OP 故02190=∠OP P。

相关文档
最新文档