苏教版必修5高中数学第2章数列单元综合测试A

合集下载

苏教版高中数学必修五第2章数列本章练测

苏教版高中数学必修五第2章数列本章练测
当 ≥2时, - = = ,
故对于 ∈ ,当2≤ ≤9时, > ;当 =10时, = ;当 ≥11时, < .
18.解:(1)由题意得: = ,
所以
上式对 也成立.
所以 ,

所以 .
(2)设 .
当 时, ;
当 时, ,
故不存在正整数 使 .
19.解:(1)因为 ,
所以数列 是首项为 ,公比为 的等比数列,所以 .
13.;14.;
二、解答题
15.
16.
17.
18.Βιβλιοθήκη 19.20.第2章数列本章练测参考答案
一、填空题
1.-6解析:∵ 是等差数列,∴ .又由 成等比数列,
∴ ,解得 ,∴ .
2. 解析:设 和 分别为公差和公比,则-4=-1+3 且-4=(-1) 4,
∴ =-1, 2=2,∴ = = .
3. 解析:设三边长为 则 即
……
( )= ( -1)+( -1),
相加得 ( )=2+3+4+…+( -1)= ( +1)( -2).
二、解答题
15.解:设这三个数分别为 .由题意,得 解得 或
所以这三个数为4,8,16或16,8,4.
16.(1)解:设 的公差为 ,则 解得
∴ .
(2)证明:当 =1时, ,由 ,得 ;
当 ≥2时,∵ , ,,
(2)由 ,得 .
因为 ,所以 .所以 .
设数列 的前 项和为 ,则 ,①
.②
①-②,得 .
所以 .
所以 .
20.解:(1)由已知,当 ≥2时, .
∴ .∴ .∴ ..
∴数列 是以 为首项, 为公比的等比数列.
17.解:(1)由题意知2 3= 1+ 2,即2 1 2= 1+ 1 ,

苏教版高中数学五(必修)第二章《数列》单元测试试卷

苏教版高中数学五(必修)第二章《数列》单元测试试卷

苏教版高中数学五(必修)第二章《数列》单元测试试卷一、选择题:(本大题共10小题,每小题3分,共30分.在每小题列出的四个选项中,选出符合题目要求的一项,请将每题答案写在下面的表格中)1. A .11 B .12 C .13 D .142. 在数列{}n a 中,12a =,1221n n a a +=+,则101a 的值为A .49B .50C .51D .523. 已知数列11110,21110,31110,…,1110n ,…,使数列前n 项的乘积不超过510的最大正整数n 是A .9B .10C .11D .124. 在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为A .513B .512C .510D .82255. 等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则数列{}n a 的前9项的和S 9等于A .66B .99C .144D .297 6. 已知命题甲:“任意两个数a ,b 必有唯一的等差中项”,命题乙:“任意两个数a ,b必有两个等比中项”.则A .甲是真命题,乙是真命题B .甲是真命题,乙是假命题C .甲是假命题,乙是真命题D .甲是假命题,乙是假命题 7. 设S n 是等差数列{}n a 的前n 项和,若5359a a =,则95SS 的值为A .1B .-1C .2D .21 8. 在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为A .9B .12C .16D .179. 数列{a n }、{b n }的通项公式分别是a n =an+b (a ≠0,a 、b ∈R),b n =q n-1(q>1),则数列{a n }、{b n }中,使a n =b n 的n 值的个数是A 、2B 、1C 、0D 、可能为0,可能为1,可能为210. 在各项均不为零的等差数列{}n a 中,若2110(2)n n n a a a n +--+=≥,则214n S n --=A.2- B.0 C.1 D.2二、填空题:(本大题共6小题,每小题4分,共24分)11. 在等比数列{}n a 中, 若101,a a 是方程06232=--x x 的两根,则74a a ⋅=___________. 12. 等差数列110,116,122,128,…在[400,600]内的共有________项.13. 已知数列的12++=n n S n ,则12111098a a a a a ++++=_____________。

高中数学 第二章 数列单元测试题 A必修5 试题

高中数学 第二章 数列单元测试题 A必修5 试题

卜人入州八九几市潮王学校高二数学单元测试题〔数列〕一.选择题:本大题一一共10小题,每一小题5分,一共50分.1.数列 ,161,81,41,21--的一个通项公式可能是〔〕 A .n n 21)1(- B .n n 21)1(- C .n n 21)1(1--D .n n 21)1(1-- 2.在等差数列{}n a 中,22a =,3104,a a =则=()A .12B .14C .16D .183.假设等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=()〔A 〕14〔B 〕21〔C 〕28〔D 〕35 4.设数列{}n a 的前n 项和3S nn =,那么4a 的值是()〔A 〕15(B)37(C)27〔D 〕64{}n a 的公比2q =,前n 项和为n S ,那么42S a =〔〕 A .2B .4C .215D .217 6.设n S 为等比数列{}n a 的前n 项和,3432S a =-,2332S a =-,那么公比q =〔〕〔A 〕3〔B 〕4〔C 〕5 〔D 〕67.,231,231-=+=b a 那么b a ,的等差中项为〔〕A .3B .2CD.28.}{n a 是等比数列,22a =,514a =,那么12231n n a a a a a a ++++=〔〕 A .32(12)3n -- B .16(14)n --C .16(12)n--D .32(14)3n --}{na 的通项公式是(1)(32)n nan =--,那么1220a a a ++⋅⋅⋅+=()〔A 〕30 〔B 〕29 〔C 〕-30 〔D 〕-29 10.等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,那么当1n ≥时,2123221log log log n a a a -+++=〔〕A.(21)n n -B.2(1)n + C.2n D.2(1)n -二.填空题:本大题一一共4小题,每一小题5分,总分值是20分.{}n a 满足:35a =,121n n a a +=-(n ∈N*),那么1a =________.12.{}n a 为等比数列,472a a +=,568a a =-,那么110a a +=________.{}n a 的公差d 不为0,19a d =.假设k a 是1a 与2k a 的等比中项,那么k =______.14.数列{}n a 的首项12a =,122nn n a a a +=+,1,2,3,n =…,那么2012a =________. 三.解答题:本大题一一共6小题,总分值是80分. 15.〔12分〕一个等比数列{}n a 中,14232812a a a a +=+=,,求这个数列的通项公式.16.〔12分〕有四个数:前三个成等差数列,后三个成等比数列。

苏教版高中数学(必修5)单元测试-第二章

苏教版高中数学(必修5)单元测试-第二章
12.设{an}是公比为q的等比数列,Sn是它的前n项和,若{Sn}是等差数列,则q=_____.
13.已知数列{an}中,an= 则a9=(用数字作答),设数列{an}的前n项和为Sn,则S9=(用数字作答).
14.已知等比数列{an}的前10项和为32,前20项和为56,则它的前30项和为.
15.在等比数列{an}中,若a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=,该数列的前15项的和S15=.
7.在等差数列{an}中,3(a2+a6)+2(a5+a10+a15)=24,则此数列前13项之和为().
A.26B.13C.52D.156
8.等差数列{an}中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项和等于().
A.160B.180C.200D.220
9.在等比数列{an}中,a1=2,前n项和为Sn,若数列{an+1}也是等比数列,则Sn等于().
A. B.1+ C. D.2+
5.过圆x2+y2=10x内一点(5,3)有k条弦的长度组成等差数列,且最小弦长为数列的首项a1,最大弦长为数列的末项ak,若公差d∈ ,则k的取值不可能是().
A.4B.5C.6D.7
6.已知等差数列{an}中,a7+a9=16,a4=1,则a12的值是().
A.15B.30C.31D.64
16.等比数列{an}的公比q>0,已知a2=1,an+2+an+1=6an,则{an}的前4项和S4=.
三、解答题
17.设数列{an}是公差不为零的等差数列,Sn是数列{an}的前n项和,且 =9S2,S4=4S2,求数列{an}的通项公式.
18.设{an}是一个公差为d(d≠0)的等差数列,它的前10项和S10=110且a1,a2,a4成等比数列.

人教课标版高中数学必修5第二章《数列》章末综合测试A卷

人教课标版高中数学必修5第二章《数列》章末综合测试A卷

第二章《数列》章末综合测试A 卷一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列3,5,9,17,33,…的通项公式a n 等于( )A .2nB .2n +1C .2n -1D .2n +12.数列{a n }满足a 1=1,a n =a n -1a n -1+1(n ≥2),则a 5的值为( ) A.13B.14C.15D.163.各项均为正数的等比数列{a n }中,a 2=1-a 1,a 4=9-a 3,则a 4+a 5等于( )A .16B .27C .36D .-274.已知数列{a n }的前n 项和为S n ,满足S n =2a n -2(n ∈N +),则a n 等于( )A .2nB .2n +1C .2n +1D .2n +25.在等比数列{a n }中,若a 3a 5a 7a 9a 11=243,则a 29a 11的值为( ) A .1 B .2C .3D .96.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( )A .-110B .-90C .90D .1107.已知等差数列{a n },前n 项和用S n 表示,若2a 5+3a 7+2a 9=14,则S 13等于( )A .26B .28C .52D .138.一个只有有限项的等差数列,它的前5项和为34,最后5项和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .189.已知数列{a n }中,a 1=1,前n 项和为S n ,且点P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上,则1S 1+1S 2+1S 3+…+1S n等于( ) A.2n n +1B.2n (n +1)C.n (n +1)2D.n 2(n +1)10.已知数列{a n }满足1+log 3a n =log 3a n +1(n ∈N *)且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A.15 B .-15C .5D .-5二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中的横线上)11.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则数列{a n }的公比为________.12.已知{a n }是等差数列,a 4=-20,a 16=16,则|a 1|+|a 2|+…+|a 20|=________.13.数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.14.在数列{a n }和{b n }中,b n 是a n 和a n +1的等差中项,a 1=2且对任意n ∈N *都有3a n +1-a n =0,则数列{b n }的通项b n =________.15.已知各项均为正数的数列{a n }满足:a 1=a 3,a 2=1,a n +2=11+a n,则a 9+a 10=________.三、解答题(本大题共5小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分10分)已知数列{a n }为等差数列,且a 3=5,a 7=13.(1)求数列{a n }的通项公式;(2)若数列{b n }满足a n =log 4b n ,求数列{b n }的前n 项和T n .17.(本小题满分10分)等差数列{a n }中,前三项分别为x ,2x ,5x -4,前n 项和为S n ,且S k =2 550.18.(本小题满分10分)已知数列{log 2(a n -1)}(n ∈N *)为等差数列,且a 1=3,a 3=9.(1)求数列{a n }的通项公式;(2)证明:1a 2-a 1+1a 3-a 2+…+1a n +1-a n<1.19.(本小题满分10分)已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *),满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a n b n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .20.(本小题满分10分)甲、乙两超市同时开业,第一年的全年销售额为a 万元,由于经营方式不同,甲超市前n 年的总销售额为a 2(n 2-n +2)万元,乙超市第n 年的销售额比前一年销售额多a ⎝⎛⎭⎫23n -1万元.(1)求甲、乙两超市第n 年销售额的表达式;(2)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年?参考答案一、选择题1.解析:选B.由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n =2n +1,故选B.2.解析:选C.依题意a n >0且n ≥2时,1a n =1+1a n -1,即1a n -1a n -1=1, ∴数列{1a n}是以1为首项,1为公差的等差数列. ∴1a 5=1+(5-1)×1=5,∴a 5=15.故选C. 3.解析:选B.由a 2=1-a 1,a 4=9-a 3,得a 1+a 2=1,a 3+a 4=9,所以a 3+a 4a 1+a 2=9=q 2, 因为数列的各项都为正数,所以q =3,a 4+a 5a 3+a 4=q =3,所以a 4+a 5=27. 4.解析:选A.当n ≥2时,S n -1=2a n -1-2.∴a n =2a n -2a n -1,∴a n a n -1=2. 又a 1=2,∴a n =2n ,故选A.5.解析:选C.因为{a n }是等比数列,所以a 3a 11=a 5a 9=a 27,因此a 3a 5a 7a 9a 11=a 57=243,解得a 7=3,又因为a 29=a 7a 11,所以a 29a 11=a 7=3.故选C.6.解析:选D.由题意得(a 1-12)2=(a 1-4)(a 1-16),解得a 1=20.S 10=10a 1+10×92×(-2)=110.故选D. 7.解析:选A.∵a 5+a 9=2a 7,∴2a 5+3a 7+2a 9=7a 7=14,∴a 7=2,∴S 13=(a 1+a 13)×132=a 7×13=26.故选A. 8.解析:选D.据题意知a 1+a 2+a 3+a 4+a 5=34,a n -4+a n -3+a n -2+a n -1+a n =146,又∵a 1+a n =a 2+a n -1=a 3+a n -2=a 4+a n -3=a 5+a n -4,∴a 1+a n =36.又S n =12n (a 1+a n )=234,∴n =13,∴a 1+a 13=2a 7=36,∴a 7=18.故选D.9.解析:选A.依题意有a n -a n +1+1=0,即a n +1-a n =1,所以{a n }是等差数列,且a n =1+(n -1)=n ,于是S n =n (n +1)2, 所以1S n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, 所以1S 1+1S 2+1S 3+…+1S n=2⎝⎛⎭⎫1-12+12-13+…+1n -1n +1 =2n n +1.故选A. 10.解析:选D.由1+log 3a n =log 3a n +1(n ∈N *),得a n +1=3a n ,即数列{a n }是公比为3的等比数列.设等比数列{a n }的公比为q ,又a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)=log 13[q 3(a 2+a 4+a 6)]=log 13(33×9)=-5.二、填空题11.解析:由题意,知4S 2=S 1+3S 3.①当q =1时,4×2a 1=a 1+3×3a 1.即8a 1=10a 1,a 1=0不符合题意,∴q ≠1;②当q ≠1时,应有4×a 1(1-q 2)1-q =a 1(1-q )1-q +3×a 1(1-q 3)1-q,化简得3q 2=q ,得q =13或q =0(舍去). 答案:1312.解析:a 16-a 4=12d =36,∴d =3,a n =3n -32.∴当n ≤10时,a n <0,当n ≥11时,a n >0.|a 1|+|a 2|+…+|a 20|=-(a 1+a 2+…+a 10)+(a 11+a 12+…+a 20)=(a 20-a 10)+(a 19-a 9)+…+(a 11-a 1)=100d =300.答案:30013.解析:设等差数列的公差为d ,则a 3=a 1+2d ,a 5=a 1+4d ,∴(a 1+2d +3)2=(a 1+1)(a 1+4d +5),解得d =-1,∴q =a 3+3a 1+1=a 1-2+3a 1+1=1. 答案:114.解析:∵由3a n +1-a n =0,可得a n +1a n=13(n ∈N *), ∴数列{a n }是公比为13的等比数列.因此a n =2×⎝⎛⎭⎫13n -1.故b n =12(a n +a n +1) =12⎣⎡⎦⎤2×⎝⎛⎭⎫13n -1+2×⎝⎛⎭⎫13n =43⎝⎛⎭⎫13n -1=4×⎝⎛⎭⎫13n . 答案:4×⎝⎛⎭⎫13n15.解析:由a n +2=11+a n ,令n =1,得a 3=11+a 1,由a 1=a 3,解得a 3=5-12,由a n +2=11+a n,求得a 5=a 7=a 9=5-12.令n =2,得a 4=12;令n =4,得a 6=23,令n =6,得a 8=35,令n =8,得a 10=58,所以a 9+a 10=5-12+58=45+18. 答案:1+458三、解答题16.解:(1)设a n =a 1+(n -1)d ,则⎩⎪⎨⎪⎧a 1+2d =5,a 1+6d =13, 解得a 1=1,d =2.所以{a n }的通项公式为a n =1+(n -1)×2=2n -1.(2)依题意得b n =4a n =42n -1,因为b n +1b n =42n +142n -1=16, 所以{b n }是首项为b 1=41=4,公比为16的等比数列,所以{b n }的前n 项和T n =4×(1-16n )1-16=415(16n -1). 17.解:(1)由4x =x +5x -4,得x =2,∴a n =2n ,S n =n (n +1),∴k (k +1)=2 550,得k =50.(2)∵S n =n (n +1),∴1S n =1n (n +1)=1n -1n +1, ∴T =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =1-1n +1=n n +1. 18.解:(1)设等差数列{log 2(a n -1)}的公差为d .由a 1=3,a 3=9,得log 2(9-1)=log 2(3-1)+2d ,则d =1.所以log 2(a n -1)=1+(n -1)×1=n ,即a n =2n +1.(2)证明:因为1a n +1-a n =12n +1-2n =12n , 所以1a 2-a 1+1a 3-a 2+…+1a n +1-a n=121+122+123+…+12n =1-12n <1. 19.解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a n b n=2,即c n +1-c n =2. 所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1.(2)由b n =3n -1知a n =c n b n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ,相减得-2S n =1+2×(31+32+…+3n -1)-(2n -1)×3n =-2-(2n -2)3n ,所以S n =(n -1)3n +1.20.解:(1)设甲、乙两超市第n 年的销售额分别为a n ,b n .则有a 1=a ,当n ≥2时,a n =a 2(n 2-n +2)-a 2[(n -1)2-(n -1)+2] =(n -1)a ,∴a n =⎩⎪⎨⎪⎧a , n =1,(n -1)a , n ≥2. b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=⎣⎡⎦⎤3-2⎝⎛⎭⎫23n -1a (n ∈N *). (2)易知b n <3a ,所以乙超市将被甲超市收购,由b n <12a n ,得⎣⎡⎦⎤3-2⎝⎛⎭⎫23n -1a <12(n -1)a . ∴n +4⎝⎛⎭⎫23n -1>7,∴n ≥7,即第7年乙超市的年销售额不足甲超市的一半,乙超市将被甲超市收购.。

高中数学(苏教版,必修五) 第2章 数列 第2章 复习课 课时作业(含答案)

高中数学(苏教版,必修五) 第2章 数列 第2章  复习课 课时作业(含答案)

复习课 数列 课时目标 综合运用等差数列与等比数列的有关知识,解决数列综合问题和实际问题.一、填空题1.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a +b +c2.已知等比数列{a n }11233+a 4+a 5=________.3.已知一个等比数列首项为1,项数为偶数,其奇数项和为85,偶数项之和为170,则这个数列的项数为________.4.在公差不为零的等差数列{a n }中,a 1,a 3,a 7依次成等比数列,前7项和为35,则数列{a n }的通项为______________.5.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N +),则a 3a 5的值是________. 6.已知等比数列{a n }的各项均为正数,数列{b n }满足b n =ln a n ,b 3=18,b 6=12,则数列{b n }前n 项和的最大值等于________.7.三个数成等比数列,它们的和为14,积为64,则这三个数按从小到大的顺序依次为__________.8.一个等差数列的前12项和为354,前12项中偶数项与奇数项和之比为32∶27,则这个等差数列的公差是____________.9.如果b 是a ,c 的等差中项,y 是x 与z 的等比中项,且x ,y ,z 都是正数,则(b -c )log m x +(c -a )log m y +(a -b )log m z =______.10.等比数列{a n }中,S 3=3,S 6=9,则a 13+a 14+a 15=____________.二、解答题11.设{a n }是等差数列,b n =⎝⎛⎭⎫12a n ,已知:b 1+b 2+b 3=218,b 1b 2b 3=18,求等差数列的通项a n .12.已知等差数列{a n }的首项a 1=1,公差d >0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项.(1)求数列{a n }的通项公式;(2)设b n =1n (a n +3)(n ∈N *),S n =b 1+b 2+…+b n ,是否存在t ,使得对任意的n 均有S n >t 36总成立?若存在,求出最大的整数t ;若不存在,请说明理由.能力提升13.已知数列{a n }为等差数列,公差d ≠0,其中ak 1,ak 2,…,ak n 恰为等比数列,若k 1=1,k 2=5,k 3=17,求k 1+k 2+…+k n .14.设数列{a n }的首项a 1=1,前n 项和S n 满足关系式:3tS n -(2t +3)S n -1=3t (t >0,n =2,3,4,…).(1)求证:数列{a n }是等比数列;(2)设数列{a n }的公比为f (t ),作数列{b n },使b 1=1,b n =f ⎝⎛⎭⎫1b n -1 (n =2,3,4,…).求数列{b n }的通项b n ;(3)求和:b 1b 2-b 2b 3+b 3b 4-b 4b 5+…+b 2n -1b 2n -b 2n ·b 2n +1.1.等差数列和等比数列各有五个量a 1,n ,d ,a n ,S n 或a 1,n ,q ,a n ,S n .一般可以“知三求二”,通过列方程(组)求关键量a 1和d (或q ),问题可迎刃而解.2.数列的综合问题通常可以从以下三个角度去考虑:①建立基本量的方程(组)求解;②巧用等差数列或等比数列的性质求解;③构建递推关系求解.复习课 数 列答案作业设计1.1解析 由题意知,a =12,b =516,c =316,故a +b +c =1. 2.84解析 由题意可设公比为q ,则4a 2=4a 1+a 3,又a 1=3,∴q =2.∴a 3+a 4+a 5=a 1q 2(1+q +q 2)=3×4×(1+2+4)=84.3.8解析 设项数为2n ,公比为q .由已知S 奇=a 1+a 3+…+a 2n -1.①S 偶=a 2+a 4+…+a 2n .②②÷①得,q =17085=2, ∴S 2n =S 奇+S 偶=255=a 1(1-q 2n )1-q =1-22n1-2,∴2n =8. 4.a n =n +1解析 由题意a 23=a 1a 7,即(a 1+2d )2=a 1(a 1+6d ),得a 1d =2d 2.又d ≠0,∴a 1=2d ,S 7=7a 1+7×62d =35d =35. ∴d =1,a 1=2,a n =a 1+(n -1)d =n +1.5.34解析 由已知得a 2=1+(-1)2=2,∴a 3·a 2=a 2+(-1)3,∴a 3=12,∴12a 4=12+(-1)4,∴a 4=3, ∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34. 6.132解析 ∵{a n }是各项不为0的正项等比数列,∴{b n }是等差数列. 又∵b 3=18,b 6=12,∴b 1=22,d =-2,∴S n =22n +n (n -1)2×(-2)=-n 2+23n ,=-(n -232)2+2324∴当n =11或12时,S n 最大,∴(S n )max =-112+23×11=132.7.2,4,8解析 设这三个数为a q ,a ,aq .由a q·a ·aq =a 3=64,得a =4. 由a q +a +aq =4q +4+4q =14.解得q =12或q =2. ∴这三个数从小到大依次为2,4,8.8.5解析 S 偶=a 2+a 4+a 6+a 8+a 10+a 12;S 奇=a 1+a 3+a 5+a 7+a 9+a 11.则⎩⎪⎨⎪⎧S 奇+S 偶=354S 偶÷S 奇=32∶27,∴S 奇=162,S 偶=192, ∴S 偶-S 奇=6d =30,d =5.9.0解析 ∵a ,b ,c 成等差数列,设公差为d ,则(b -c )log m x +(c -a )log m y +(a -b )log m z =-d log m x +2d log m y -d log m z=d log m y 2xz=d log m 1=0. 10.48 解析 易知q ≠1,∴⎩⎪⎨⎪⎧ S 3=a 1(1-q 3)1-q =3S 6=a 1(1-q 6)1-q =9,∴S 6S 3=1+q 3=3,∴q 3=2. ∴a 13+a 14+a 15=(a 1+a 2+a 3)q 12=S 3·q 12=3×24=48.11.解 设等差数列{a n }的公差为d ,则b n +1b n =⎝⎛⎭⎫12a n +1⎝⎛⎭⎫12a n =⎝⎛⎭⎫12a n +1-a n =⎝⎛⎭⎫12d . ∴数列{b n }是等比数列,公比q =⎝⎛⎭⎫12d .∴b 1b 2b 3=b 32=18,∴b 2=12. ∴⎩⎨⎧ b 1+b 3=178b 1·b 3=14,解得⎩⎪⎨⎪⎧ b 1=18b 3=2或⎩⎪⎨⎪⎧ b 1=2b 3=18.当⎩⎪⎨⎪⎧ b 1=18b 3=2时,q 2=16,∴q =4(q =-4<0舍去) 此时,b n =b 1q n -1=⎝⎛⎭⎫18·4n -1=22n -5. 由b n =⎝⎛⎭⎫125-2n =⎝⎛⎭⎫12a n ,∴a n =5-2n .当⎩⎪⎨⎪⎧ b 1=2b 3=18时,q 2=116,∴q =14⎝⎛⎭⎫q =-14<0舍去 此时,b n =b 1q n -1=2·⎝⎛⎭⎫14n -1=⎝⎛⎭⎫122n -3=12na ⎛⎫ ⎪⎝⎭, ∴a n =2n -3.综上所述,a n =5-2n 或a n =2n -3.12.解 (1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2,整理得2a 1d =d 2.∵d >0,∴d =2 ∵a 1=1.∴a n =2n -1 (n ∈N *).(2)b n =1n (a n +3)=12n (n +1)=12⎝⎛⎭⎫1n -1n +1, ∴S n =b 1+b 2+…+b n =12⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =12⎝⎛⎭⎫1-1n +1=n 2(n +1).假设存在整数t 满足S n >t 36总成立, 又S n +1-S n =n +12(n +2)-n 2(n +1)=12(n +2)(n +1)>0, ∴数列{S n }是单调递增的.∴S 1=14为S n 的最小值,故t 36<14,即t <9.又∵t ∈Z ,∴适合条件的t 的最大值为8.13.解 由题意知a 25=a 1a 17,即(a 1+4d )2=a 1(a 1+16d ).∵d ≠0,由此解得2d =a 1.公比q =a 5a 1=a 1+4d a 1=3.∴ak n =a 1·3n -1. 又ak n =a 1+(k n -1)d =k n +12a 1, ∴a 1·3n -1=k n +12a 1. ∵a 1≠0,∴k n =2·3n -1-1,∴k 1+k 2+…+k n =2(1+3+…+3n -1)-n =3n -n -1.14.(1)证明 由a 1=S 1=1,S 2=1+a 2,得a 2=3+2t 3t ,a 2a 1=3+2t 3t. 又3tS n -(2t +3)S n -1=3t ,①3tS n -1-(2t +3)S n -2=3t .②①-②,得3ta n -(2t +3)a n -1=0.∴a n a n -1=2t +33t ,(n =2,3,…). ∴数列{a n }是一个首项为1,公比为2t +33t的等比数列.(2)解 由f (t )=2t +33t =23+1t ,得b n =f ⎝⎛⎭⎫1b n -1=23+b n -1. ∴数列{b n }是一个首项为1,公差为23的等差数列. ∴b n =1+23(n -1)=2n +13. (3)解 由b n =2n +13,可知{b 2n -1}和{b 2n }是首项分别为1和53,公差均为43的等差数列. 于是b 1b 2-b 2b 3+b 3b 4-b 4b 5+…+b 2n -1b 2n -b 2n b 2n +1 =b 2(b 1-b 3)+b 4(b 3-b 5)+b 6(b 5-b 7)+…+b 2n (b 2n -1-b 2n +1)=-43(b 2+b 4+…+b 2n )=-43·12n ⎝⎛⎭⎫53+4n +13 =-49(2n 2+3n ).。

高中数学苏教版必修五第二章数列单元测试试卷(二)

高中数学苏教版必修五第二章数列单元测试试卷(二)
A. B. C. D.
2.若数列 满足 (n ),则称 为“梦想数列”,已知数列 为“梦想数列”,且 ,则
A.18B.16C.32D.36
3.已知数列 中, =0, =1,且当n为奇数时, ;当n为偶数时, ,则此数列的前20项的和为
A. B. C. D.
4.已知数列 的首项 =2, ,则 =
A.7268B.5068C.6398D.4028
所以



若 ,即 ,即 ,
可得 ,所以 ,
综上,使得 的最大的 的值为9.
15.
(1)求出An,Bn,Cn的表达式;
(2)为获得尽量多的积分,如果你是一பைடு நூலகம்闯关者,试分析这几种积分方案该如何选择?小明通过试验后觉得自己至少能闯过12关,则他应该选择第几种积分方案?
14.(本小题满分11分)
已知数列 的前n项和为 ,满足 ( );数列 为等差数列.且 , .
(1)求数列 和 的通项公式;
已知 为数列 的前n项和, ,(n ), ,且.
(1)求数列 的通项公式;
(2)记 ,求数列 的前n项和 .
13.(本小题满分10分)
某学习软件以数学知识为题目设置了一项闯关游戏,共有15关,每过一关可以得到一定的积分,现有三种积分方案供闯关者选择.方案一:每闯过一关均可获得40积分;方案二:闯过第一关可获得5积分,后面每关的积分都比前一关多5;方案三:闯过第一关可获得0.5积分,后面每关的积分都是前一关积分的2倍.若某关闯关失败则停止游戏,最终积分为闯过的各关的积分之和,设三种方案闯过n(1≤n≤15且n )关后的积分之和分别为An,Bn,Cn,要求闯关者在开始前要选择积分方案.
(2)若 为数列 的前n项和,求满足不等式 的n的最大值.

数列(必修5第二章)水平测试A卷

数列(必修5第二章)水平测试A卷

数列(必修5第二章)水平测试A 卷时间:120分钟 满分:150分一、选择题(每小题5分,共50分)1.下列对数列的理解有四种:①数列可以看成一个定义在N *(或它的有限子集{1,2,…,n})上的函数; ②数列的项数是有限的;③数列若用图象表示,从图象上看都是一群孤立的点; ④数列的通项公式是唯一的. 其中说法正确的序号是( )A .①②③B .②③④C .①③D .①②③④2.已知{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d 等于( ) A .-2 B .-12 C.12D .23.设数列{a n }的前n 项和S n =n 2,则a 8的值为( )A .15B .16C .49D .644.在等差数列{a n }中,a 2+a 3=12,2a 6-a 5=15,则a 4等于( ) A .7 B .9 C .11 D .135.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .366.在等比数列{a n }中,若a 1+a 2=4,a 3+a 4=2,则a 9+a 10等于( ) A.12 B .2 C.14D .4 7.数列{a n },{b n }都是等差数列,a 1=5,b 1=7,且a 20+b 20=60,则{a n +b n }的前20项和为( )A .700B .710C .720D .7308.数列{a n }的通项公式a n =1n +n +1,若前n 项的和为10,则项数为( )A .11B .99C .120D .1219.等差数列{a n }的前n 项和记为S n ,若a 2+a 6+a 10为一个确定的常数,则下列各数也是常数的是( )A .S 6B .S 11C .S 12D .S 1310.△ABC 中,tanA 是以-4为第三项,-1为第七项的等差数列的公差,tanB 是以12为第三项,4为第六项的等比数列的公比,则tanC 等于( )A .-12 B.12 C .-112 D.112二、填空题(每小题4分,共28分)11.已知数列{a n }的通项公式a n =nn 2+9,则数列{a n }的最大项是______.12.若数列{a n }满足a n +a n +2=2a n +1,且S 9=27.则a 2+a 8=______.13.设等差数列{a n }的前n 项和为S n ,若S 3=a 6=12,则{a n }的通项公式为______.14.已知等比数列{a n }的公比为正数,且a 3a 9=4a 25,a 2=2,则{a n }的前5项和S 5等于________.15.在数列{a n }中a n =n(sinnπ2+cos nπ2),前n 项和为S n ,则S 100=__________. 16.若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+3n(n ∈N *),则a 12+a 23+…+a nn +1=__________.17.在数列{a n }中,a n =3n -7,数列{b n }满足b 1=13,b n -1=27b n (n ≥2),若a n +log k b n为常数,则满足条件的k 值为______.三、解答题(72分)18.(14分)已知数列{a n }的前n 项和为S n ,若S 1=1,S 2=2,且S n +1-3S n +2S n -1=0(n ∈N *且n ≥2),求该数列的通项公式.19.(14分)已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n .20.(14分)已知等比数列{a n }中,a 2=32,a 8=12,a n +1<a n .(1)求数列{a n }的通项公式;(2)设T n =log 2a 1+log 2a 2+…+log 2a n ,求T n 的最大值及相应的n 值.21.(15分)记等差数列{a n}的前n项和为S n,已知a2+a4=6,S4=10.(1)求数列{a n}的通项公式;(2)令b n=a n·2n(n∈N*),求数列{a n}的前n项和T n.22.(15分)设数列{a n}的前n项和为S n,且a1=1,S n=na n-2n(n-1).(1)求数列{a n}的通项公式;(2)设数列{1a n a n+1}的前n项和为T n,试求T n的取值范围.答案解析1、解析:数列的项数可以是无限的,通项公式的表示不唯一,故②④错误. 答案:C2、解析:a 7-2a 4=a 3+4d -2(a 3+d)=-a 3+2d =2d =-1,∴d =-12.答案:B3、解析:a 8=S 8-S 7=64-49=15. 答案:A4、解析:设公差为d ,则⎩⎪⎨⎪⎧ 2a 1+3d =12a 1+6d =15,∴⎩⎪⎨⎪⎧a 1=3d =2, ∴a 4=a 1+3d =9. 答案:B5、解析:∵a 3+a 4+a 5=12,∴3a 4=12,a 4=4.∴a 1+a 2+…+a 7=7(a 1+a 7)2=7a 4=28.答案:C6、解析:由题得a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8,a 9+a 10成等比数列,首项为4,公比为12, ∴a 9+a 10=4×(12)4=14.答案:C7、解析:{a n +b n }的前20项和S 20=(a 1+b 1)+(a 2+b 2)+…+(a 20+b 20)=(a 1+a 2+a 3+…+a 20)+(b 1+b 2+b 3+…+b 20)=20(a 1+a 20)2+20(b 1+b 20)2=10(a 1+a 20+b 1+b 20)=720. 答案:C 8、解析:∵a n =1n +n +1=n +1-n ,∴前n 项的和S n =(2-1)+(3-2)+(4-3)+…+(n +1-n)=n +1-1,当n +1-1=10时,n =120.答案:C9、解析:∵a 2+a 6+a 10=3a 6,∴a 6为定值.S 11=11(a 1+a 11)2=11a 6为定值.答案:B10、解析:由题意知:tanA =-1-(-4)7-3=34,tan 3B =412=8,∴tanB =2,∴tanC =-tan(A +B)=-tanA +tanB1-tanAtanB=-34+21-34×2=112.答案:D 11、解析:∵a n =n n 2+9,∴a n =1n +9n,∵n +9n ≥2n·9n =6,当且仅当n =9n,即n =3时取“=”号,∴n =3时,a n 的最大项是a 3=39+9=16.答案:1612、解析:由a n +a n +2=2a n +1得{a n }为等差数列. ∵S 9=27,∴9(a 1+a 9)2=27.∴a 1+a 9=6,∴a 2+a 8=6. 答案:613、解析:设公差为d ,则⎩⎪⎨⎪⎧ 3a 1+3d =12a 1+5d =12,∴⎩⎪⎨⎪⎧a 1=2d =2,∴a n =2n.答案:a n =2n14、解析:因为a 3a 9=4a 25,所以q 2=4,又q>0,所以q =2,又a 2=2,所以a 1=1,S 5=1-251-2=31. 答案:3115、解析:sin nπ2+cos nπ2=⎩⎪⎨⎪⎧1 n =4k 时1 n =4k +1时-1 n =4k +2时-1 n =4k +3时,∴S 100=(1-2-3+4)+(5-6-7+8)+…+(97-98-99+100)=0.答案:016、解析:令n =1得a 1=4,即a 1=16,当n ≥2时,a n =(n 2+3n)-[(n -1)2+3(n -1)]=2n +2,所以a n =4(n +1)2, 当n =1时,也适合,所以a n =4(n +1)2(n ∈N *). 则a n n +1=4(n +1),故a 12+a 23+…+a nn +1=2n 2+6n.答案:2n 2+6n17、解析:∵b n =b 1·(127)n -1=13·(13)3n -3=(13)3n -2,∴a n +log k b n =3n -7+log k (13)3n -2=3n -7+(3n -2)·log k 13=(3+3log k 13)n -7-2log k 13.若a n +log k b n 为常数,则3+3log k 13=0,则k =3.答案:318、解:由S 1=1得a 1=1,又由S 2=2可知a 2=1. ∵S n +1-3S n +2S n -1=0(n ∈N *且n ≥2),∴S n +1-S n -2S n +2S n -1=0(n ∈N * 且n ≥2), 即(S n +1-S n )-2(S n -S n -1)=0(n ∈N *且n ≥2),∴a n +1=2a n (n ∈N *且n ≥2),故数列{a n }从第2项起是以2为公比的等比数列.∴数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =12n -2,n>1,n ∈N *.19、解:设{a n }的公差为d ,则⎩⎪⎨⎪⎧(a 1+2d )(a 1+6d )=-16a 1+3d +a 1+5d =0, 即⎩⎪⎨⎪⎧a 21+8da 1+12d 2=-16a 1=-4d. 解得⎩⎪⎨⎪⎧ a 1=-8d =2,或⎩⎪⎨⎪⎧a 1=8d =-2.因此S n =-8n +n(n -1)=n(n -9),或S n =8n -n(n -1)=-n(n -9).20、解:(1)设公比为q ,则q 6=a 8a 2=164,a n +1<a n ,所以q =12.于是a 1=a 2q =64.所以,通项公式为a n =64·(12)n -1=27-n (n ∈N ).(2)设b n =log 2a n ,则b n =log 227-n =7-n.所以,数列{b n }是以首项为6,公差为-1的等差数列.T n =6n +n (n -1)2(-1)=-12n 2+132n =-12(n -132)2+1698.由n 是自然数,知n =6或n =7时,T n 最大,其最值为T 6=T 7=21.21、解:(1)设等差数列{a n }的公差为d ,由a 2+a 4=6,S 4=10,可得⎩⎪⎨⎪⎧2a 1+4d =64a 1+4×32d =10, 即⎩⎪⎨⎪⎧ a 1+2d =32a 1+3d =5,解得⎩⎪⎨⎪⎧a 1=1d =1, ∴a n =a 1+(n -1)d =1+(n -1)=n ,故所求等差数列{a n }的通项公式为a n =n. (2)依题意,b n =a n ·2n =n·2n , ∴T n =b 1+b n +…+b n=1×2+2×22+3×23+…+(n -1)·2n -1+n·2n ,又2T n =1×22+2×23+3×24+…+(n -1)·2n +n·2n +1, 两式相减得-T n =(2+22+23+…+2n -1+2n )-n·2n +1=2(1-2n )1-2-n·2n +1=(1-n)·2n +1-2,∴T n =(n -1)·2n +1+2.22、解:(1)由S n =na n -2n(n -1),得a n +1=S n +1-S n =(n +1)a n +1-na n -4n , ∴a n +1-a n =4.所以,数列{a n }是以1为首项,4为公差的等差数列. ∴a n =4n -3. (2)∵T n =1a 1a 2+1a 2a 3+…+1a n a n +1=11×5+15×9+19×13+…+1(4n -3)(4n +1)=14[1-15+15-19+19-113+…+14n -3-14n +1] =14(1-14n +1)<14. 又易知T n 单调递增,故T n ≥T 1=15.∴15≤T n <14,即T n 的取值范围是[15,14).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 数 列(A)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.{a n }是首项为1,公差为3的等差数列,如果a n =2 011,则序号n 等于________. 2.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12=________.3.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为________.4.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于________.5.已知在等差数列{a n }中,首项为23,公差是整数,从第七项开始为负项,则公差为______.6.等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4=________. 7.若{a n }是等比数列,其公比是q ,且-a 5,a 4,a 6成等差数列,则q =________. 8.设等比数列{a n }的前n 项和为S n ,若S 10∶S 5=1∶2,则S 15∶S 5=________. 910.“嫦娥奔月,举国欢庆”,据科学计算,运载“神六”的“长征二号”系列火箭,在点火第一秒钟通过的路程为2 km ,以后每秒钟通过的路程都增加2 km ,在达到离地面240 km 的高度时,火箭与飞船分离,则这一过程大约需要的时间是______秒.11.已知等差数列{a n }的公差d ≠0且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10=________.12.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 取到最大值的n 是________.13.已知数列1,12,21,13,22,31,14,23,32,41,…,则56是数列中的第________项.14.等比数列{a n }的公比为q ,其前n 项的积为T n ,并且满足条件a 1>1,a 99a 100-1>0,a 99-1a 100-1<0.给出下列结论:①0<q <1;②a 99·a 101-1<0;③T 100的值是T n 中最大的;④使T n >1成立的最大自然数n 等于198.其中正确的结论是______.(填写所有正确的序号) 二、解答题(本大题共6小题,共90分)15.(14分)已知{a n }为等差数列,且a 3=-6,a 6=0. (1)求{a n }的通项公式;(2)若等比数列{b n }满足b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前n 项和公式.16.(14分)已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n .17.(14分)已知数列{log 2(a n -1)} (n ∈N *)为等差数列,且a 1=3,a 3=9. (1)求数列{a n }的通项公式;(2)证明:1a 2-a 1+1a 3-a 2+…+1a n +1-a n<1.18.(16分)在数列{a n }中,a 1=1,a n +1=2a n +2n. (1)设b n =a n2n -1.证明:数列{b n }是等差数列;(2)求数列{a n }的前n 项和.19.(16分)已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=12S n (n =1,2,3,…).(1)求数列{a n }的通项公式;(2)当b n =log 32(3a n +1)时,求证:数列{1b n b n +1}的前n 项和T n =n1+n.20.(16分)已知数列{a n }的各项均为正数,对任意n ∈N *,它的前n 项和S n 满足S n =16(a n+1)(a n +2),并且a 2,a 4,a 9成等比数列. (1)求数列{a n }的通项公式;(2)设b n =(-1)n +1a n a n +1,T n 为数列{b n }的前n 项和,求T 2n .第2章 数 列(A)答案1.671解析 由2 011=1+3(n -1)解得n =671. 2.15解析 在等差数列{a n }中,a 7+a 9=a 4+a 12,∴a 12=16-1=15. 3.120解析 由a 5=a 2q 3得q =3.∴a 1=a 2q=3,S 4=a 11-q 41-q =31-341-3=120.4.180解析 ∵(a 1+a 2+a 3)+(a 18+a 19+a 20) =(a 1+a 20)+(a 2+a 19)+(a 3+a 18) =3(a 1+a 20)=-24+78=54,∴a 1+a 20=18.∴S 20=20a 1+a 202=180.5.-4解析 由⎩⎪⎨⎪⎧a 6=23+5d ≥0a 7=23+6d <0,解得-235≤d <-236,∵d ∈Z ,∴d =-4.6.8解析 ∵a 2+a 6=34,a 2·a 6=64,∴a 24=64,∵a 2>0,a 6>0,∴a 4=a 2q 2>0,∴a 4=8. 7.-1或2解析 依题意有2a 4=a 6-a 5,即2a 4=a 4q 2-a 4q ,而a 4≠0, ∴q 2-q -2=0,(q -2)(q +1)=0.∴q =-1或q =2. 8.3∶4解析 显然等比数列{a n }的公比q ≠1,则由S 10S 5=1-q 101-q 5=1+q 5=12⇒q 5=-12,故S 15S 5=1-q 151-q 5=1-q 531-q 5=1-⎝ ⎛⎭⎪⎫-1231-⎝ ⎛⎭⎪⎫-12=34. 9.n 2+n解析 由题中数表知:第n 行中的项分别为n,2n,3n ,…,组成一等差数列,所以第n行第n +1列的数是:n 2+n . 10.15解析 设每一秒钟通过的路程依次为a 1,a 2,a 3,…,a n ,则数列{a n }是首项a 1=2,公差d =2的等差数列,由求和公式得na 1+n n -1d2=240,即2n +n (n -1)=240,解得n=15. 11.1316解析 因为a 23=a 1·a 9,所以(a 1+2d )2=a 1·(a 1+8d ).所以a 1=d .所以a 1+a 3+a 9a 2+a 4+a 10=3a 1+10d 3a 1+13d =1316.12.20解析 ∵(a 2-a 1)+(a 4-a 3)+(a 6-a 5)=3d ,∴99-105=3d .∴d =-2. 又∵a 1+a 3+a 5=3a 1+6d =105,∴a 1=39.∴S n =na 1+n n -12d =-n 2+40n =-(n -20)2+400.∴当n =20时,S n 有最大值. 13.50解析 将数列分为第1组一个,第2组二个,…,第n 组n 个,即⎝ ⎛⎭⎪⎫11,⎝ ⎛⎭⎪⎫12,21,⎝ ⎛⎭⎪⎫13,22,31,…,⎝ ⎛⎭⎪⎫1n ,2n -1,…,n 1,则第n 组中每个数分子分母的和为n +1,则56为第10组中的第5个,其项数为(1+2+3+…+9)+5=50. 14.①②④解析 ①中,⎩⎪⎨⎪⎧a 99-1a 100-1<0a 99a 100>1a 1>1⇒⎩⎪⎨⎪⎧a 99>10<a 100<1⇒q =a 100a 99∈(0,1),∴①正确. ②中,⎩⎪⎨⎪⎧a 99a 101=a 21000<a 100<1⇒a 99·a 101<1,∴②正确. ③中,⎩⎪⎨⎪⎧T 100=T 99·a 1000<a 100<1⇒T 100<T 99,∴③错误.④中,T 198=a 1a 2…a 198=(a 1·a 198)(a 2·a 197)…(a 99·a 100)=(a 99·a 100)99>1,T 199=a 1a 2…a 198·a 199=(a 1a 199)…(a 99·a 101)·a 100=a 199100<1,∴④正确. 15.解 (1)设等差数列{a n }的公差为d . 因为a 3=-6,a 6=0, 所以⎩⎪⎨⎪⎧a 1+2d =-6,a 1+5d =0.解得a 1=-10,d =2.所以a n =-10+(n -1)×2=2n -12. (2)设等比数列{b n }的公比为q .因为b 2=a 1+a 2+a 3=-24,b 1=-8, 所以-8q =-24,q =3.所以数列{b n }的前n 项和公式为S n =b 11-q n 1-q=4(1-3n).16.解 设{a n }的公差为d ,则即⎩⎪⎨⎪⎧a 21+8da 1+12d 2=-16,a 1=-4d .解得⎩⎪⎨⎪⎧a 1=-8,d =2,或⎩⎪⎨⎪⎧a 1=8,d =-2.因此S n =-8n +n (n -1)=n (n -9),或S n =8n -n (n -1)=-n (n -9).17.(1)解 设等差数列{log 2(a n -1)}的公差为d . 由a 1=3,a 3=9,得log 2(9-1)=log 2(3-1)+2d ,则d =1. 所以log 2(a n -1)=1+(n -1)×1=n ,即a n =2n+1.(2)证明 因为1a n +1-a n =12n +1-2n =12n ,所以1a 2-a 1+1a 3-a 2+…+1a n +1-a n =121+122+123+…+12n =12-12n ×121-12=1-12n <1.18.(1)证明 由已知a n +1=2a n +2n,得b n +1=a n +12n =2a n +2n 2n=a n2n -1+1=b n +1. ∴b n +1-b n =1,又b 1=a 1=1.∴{b n }是首项为1,公差为1的等差数列.(2)解 由(1)知,b n =n ,a n2n -1=b n =n .∴a n =n ·2n -1.∴S n =1+2·21+3·22+…+n ·2n -1两边乘以2得:2S n =1·21+2·22+…+(n -1)·2n -1+n ·2n,两式相减得:-S n =1+21+22+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )2n-1,∴S n =(n -1)·2n+1.19.(1)解 由已知⎩⎪⎨⎪⎧a n +1=12S n,a n=12Sn -1(n ≥2),得a n +1=32a n (n ≥2).∴数列{a n }是以a 2为首项,以32为公比的等比数列.又a 2=12S 1=12a 1=12,∴a n =a 2×(32)n -2(n ≥2).∴a n =⎩⎪⎨⎪⎧1, n =1,12×32n -2, n ≥2.(2)证明 b n =log 32(3a n +1)=log 32[32×(32)n -1]=n .∴1b n b n +1=1n 1+n =1n -11+n. ∴T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=(11-12)+(12-13)+(13-14)+…+(1n -11+n) =1-11+n =n1+n.20.解 (1)∵对任意n ∈N *,有S n =16(a n +1)(a n +2),①∴当n =1时,有S 1=a 1=16(a 1+1)(a 1+2),解得a 1=1或2.当n ≥2时,有S n -1=16(a n -1+1)(a n -1+2).②①-②并整理得(a n +a n -1)(a n -a n -1-3)=0. 而数列{a n }的各项均为正数,∴a n -a n -1=3. 当a 1=1时,a n =1+3(n -1)=3n -2,此时a 24=a 2a 9成立;当a 1=2时,a n =2+3(n -1)=3n -1,此时a 24=a 2a 9不成立,舍去.∴a n =3n -2,n ∈N *. (2)T 2n =b 1+b 2+…+b 2n=a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1=a 2(a 1-a 3)+a 4(a 3-a 5)+…+a 2n (a 2n -1-a 2n +1) =-6a 2-6a 4-…-6a 2n =-6(a 2+a 4+…+a 2n )=-6×n 4+6n -22=-18n 2-6n .。

相关文档
最新文档