高中数学必修5数列知识点总结及题型归纳

合集下载

高中数学必修五第二章《数列》知识点归纳

高中数学必修五第二章《数列》知识点归纳

、等差数列与等比数列、求数列通项公式的方法1、通项公式法: 等差数列、等比数列2、涉及前n 项和 S 求通项公式,利用 a n 与S n 的基本关系式来求。

即a n例1、在数列{ a n }中,S n 表示其前n 项和,且 S n n :求通项a .. 例2、在数列{ a n }中,S n 表示其前n 项和,且 S n 3、已知递推公式,求通项公式。

(1)叠加法:递推关系式形如a n 1 a n f n 型数列知识点总结S i a i ( n 1) S n S n i (n 2)2 3a n ,求通项a n例3、已知数列{ a n }中,a-i 1, a n 1 a n n ,求通项a n练习1、在数列 { a n }中,a 1 3 , a n 1 a n 2r 1,求通项a n (2)叠乘法: 递推关系式形如a n1fna n型例4、在数列{ a n }中,a 1n1, a n 1a n,求通项a nn1练习2、在数列 {a n}中,a 13, a n 1a n ?2n ,求通项a n(3)构造等比数列: 递推关系式形如a n 1 Aa nB (A ,B 均为常数,A M 1,B 丰0)例5、已知数列{ a n }满足印 4 , a n 3a n 1 2,求通项a n 练习3、已知数列{ a n }满足a 1 3 , a n 1 2a n3,求通项a n(4)倒数法例6、在数列{a n }中,已知a 11, a n 1四、求数列的前n 项和的方法1、利用常用求和公式求和:等差数列求和公式: S nn(a 1 a n ) “ n(nna 1 1)d 2 2(q 1)等比数列求和公式:S na 1(1 q n ) a 1 a .q(q 1)1 q1 q•[例1]求数列2二,2,,甲, 前n 项的和•2 2 2 2[例 2]求和:S n 1 3x 5x 2 7x 3 (2n 1)x n 13、倒序相加法:数列{ a n }的第m 项与倒数第m 项的和相等。

高中数学必修5等差数列知识点总结和题型归纳

高中数学必修5等差数列知识点总结和题型归纳

等差数列一.等差数列知识点:知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示知识点2、等差数列的判定方法:②定义法:对于数列,若(常数),则数列是等差数列③等差中项:对于数列,若,则数列是等差数列知识点3、等差数列的通项公式:④如果等差数列的首项是,公差是,则等差数列的通项为该公式整理后是关于n的一次函数知识点4、等差数列的前n项和:⑤⑥对于公式2整理后是关于n的没有常数项的二次函数知识点5、等差中项:⑥如果,,成等差数列,那么叫做与的等差中项即:或在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果是等差数列的第项,是等差数列的第项,且,公差为,则有⑧对于等差数列,若,则也就是:⑨若数列是等差数列,是其前n项的和,,那么,,成等差数列如下图所示:10、等差数列的前项和的性质:①若项数为,则,且,.②若项数为,则,且,(其中,).二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、。

等差数列{a n}的前三项依次为a-6,2a -5, -3a +2,则a 等于()A . -1B . 1C 。

—2 D. 22.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为( )A.49 B.50 C.51 D.523.等差数列1,-1,-3,…,-89的项数是()A.92 B.47 C.46 D.454、已知等差数列中,的值是()()A 15B 30C 31D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是()A.d>B.d<3 C。

≤d<3 D.<d≤36、。

在数列中,,且对任意大于1的正整数,点在直上,则=_____________。

高一必修五数学数列全章知识点(完整版)

高一必修五数学数列全章知识点(完整版)

高一数学数列知识总结知识网络二、知识梳理一、看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数).二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n②112-+⋅=n n na a a (2≥n ,011≠-+n n n a a a )三、在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足⎩⎨⎧≥≤+001m m a a 的项数m 使得m s 取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

四.数列通项的常用方法:(1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①⎩⎨⎧≥-==-)2()111n S S n S a n n n(;②{}n a 等差、等比数列{}n a 公式.(3)应用迭加(迭乘、迭代)法求数列的通项:①)(1n f a a n n +=+;②).(1n f a a n n =+(4)造等差、等比数列求通项:① q pa a n n +=+1;②nn n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.第一节通项公式常用方法题型1 利用公式法求通项例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

2.已知n S 为数列{}n a 的前n 项和,求下列数列{}n a 的通项公式:⑴ 1322-+=n n S n ; ⑵12+=nn S .总结:任何一个数列,它的前n 项和n S 与通项n a 都存在关系:⎩⎨⎧≥-==-)2()1(11n S S n S a n n n 若1a 适合n a ,则把它们统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项例2:⑴已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式;⑵已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ⋅=2,求数列{}n a 的通项公式.总结:⑴迭加法适用于求递推关系形如“)(1n f a a n n +=+”; 迭乘法适用于求递推关系形如“)(1n f a a n n ⋅=+“;⑵迭加法、迭乘法公式:① 11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=----- ② 1122332211a a aa a a a a a a a a n n n n n n n ⋅⋅⋅⋅⋅⋅=----- . 题型3 构造等比数列求通项例3已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式.总结:递推关系形如“q pa a n n +=+1” 适用于待定系数法或特征根法:①令)(1λλ-=-+n n a p a ;② 在q pa a n n +=+1中令pqx x a a n n -=⇒==+11,∴)(1x a p x a n n -=-+; ③由q pa a n n +=+1得q pa a n n +=-1,∴)(11-+-=-n n n n a a p a a .例4已知数列{}n a 中,nn n a a a 32,111+==+,求数列{}n a 的通项公式.总结:递推关系形如“nn n q pa a +=+1”通过适当变形可转化为: “q pa a n n +=+1”或“nn n n f a a )(1+=+求解.例5已知数列{}n a 中,n n n a a a a a 23,2,11221-===++,求数列{}n a 的通项公式.总结:递推关系形如“n n n a q a p a ⋅+⋅=++12”,通过适当变形转化为可求和的数列. 强化巩固练习1、已知n S 为数列{}n a 的前n 项和, )2,(23≥∈+=+n N n a S n n ,求数列{}n a 的通项公式.2、已知数列{}n a 中,)(0)1()2(,211++∈=+-+=N n a n a n a n n ,求数列{}n a 的通项公式. 小结:数列通项的常用方法:⑴利用观察法求数列的通项;⑵利用公式法求数列的通项;⑶应用迭加(迭乘、迭代)法求数列的通项:①)(1n f a a n n +=+;②).(1n f a a n n =+(4)构造等差、等比数列求通项:①q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.3、数列{}n a 中,)(,111n n n a a n a a -==+,则数列{}n a 的通项=n a 。

(全面,基础)人教版高中数学必修五《数列》基础知识要点总结

(全面,基础)人教版高中数学必修五《数列》基础知识要点总结
第二章 《数列》基础知识小结
一、数列一列数叫做数列。
2、数列的通项公式
如果数列的第n项与序号n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.
3、通项公式的作用
①求数列中任意一项;
②检验某数是否是该数列中的一项.
4、数列的分类
①根据数列项数的多少分——有穷数列、无穷数列
2、等差(比)中项
由三个数 组成的等差数列可以看成最简单的等差数列。这时 叫做 的等差中项.
3、判断等差(比)数列的方法
4、等差(比)数列的通项公式
5、性质1
6、性质2
7、性质3
8、性质4
9、等差(比)数列的单调性
10、等差(比)数列的前n项和公式
11、前n项和的性质1
12、前n项和的性质2
13、前n项和的性质3
②根据数列项的大小变化分——递增数列、递减数列、常数列、摆动数列
5、数列的递推公式
如果已知数列的第1项(或前几项),且任一项与它的前一项(或前n项)间的关系可以用一个公式来表示,这个公式就叫做这个数列的递推公式。
6、数列前n项和的定义
一般地,我们称 为数列的前项和,用 表示,即
二、等差数列与等比数列
三、典型题型小结
1、三(四)个数成等差(比)的设法
2、求数列最大(小)值的方法
3、求数列通项的常用方法
4、数列求和的常用方法
等差数列
等比数列
1、定义
一般地,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.
一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比。公比通常用字母q表示。

高中数学_数列知识点汇总

高中数学_数列知识点汇总

必修5 数列知识点小结【等差数列】1. 证明方法:①递推关系(定义):)(1*+∈=-N n d da a n n 为常数,②等差中项法:112+-+=n n n a a a )1(>n判断方法:③通项公式q pn d n a a n +=-+=)1(1(其中p,q 为常数) ④前n项和Bn An 2+=-+=+=d n n n a a a n S n n 2)1(2)(11(A,B 为常数)2. 等差中项:b A a ,,成等差数列,A 称为b a 与的等差中项(其中b a 与为任意实数, A 存在且唯一),2b a A b a A +=⇔的等差中项与为即3. 等差数列性质:(1) 任两项关系:nm a a mn a a d n m m n --=--=(其中n m ≠)(2) 任两项关系:d m n a a m n )(-+=(其中n m ≠)(3) 是递增数列;数列}a {,0d n >是递减数列;数列}a {,0d n <是常数列数列}a {,0d n =。

(4) 两和式项数相同,下标和相等,则两式相等,如:112+-+=n n n a a a (其中n>1, n n n a a a +=2) k n k n n a a a +-+=2(其中n-k>0, n n n a a a +=2)特别若q p n m a a a a q p n m +=++=+则,k q p s n m a a a a a a k q p s n m ++=++++=++则,(5) {}{}n n b a ,为项数相同的等差数列(或无穷数列),则:①:k m a +、k m a 2+、k m a 3+、k m a 4+…成等差数列(其中k m ,为常数) ②:{}k a n +、{}n n b q a p ∙+∙为等差数列,(其中q p k ,,为常数)(6) 前n 项和性质:①:成等差数列,,,232k k k k k S S S S S --②:⎭⎬⎫⎩⎨⎧n S n 是等差数列。

数学必修五数列知识点总结

数学必修五数列知识点总结

§数列的概念与简单表示法最新考纲考情考向分析1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.以考查S n与a n的关系为主,简单的递推关系也是考查的热点.本节内容在高考中以选择、填空的形式进行考查,难度属于低档.<1.数列的定义按照一定顺序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项.2.数列的分类分类原则类型满足条件…按项数分类有穷数列项数有限无穷数列项数无限按项与项间的大小关系分类递增数列>a n+1 > a n其中n∈N+递减数列a n+1 < a n常数列!a n+1=a n3.数列的表示法数列有三种表示法,它们分别是列表法、图像法和解析法.4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫作这个数列的通项公式. 知识拓展·1.若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,n ∈N +.2.在数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1.若a n 最小,则⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1.3.数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.题组一 思考辨析`1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( × ) (2)所有数列的第n 项都能使用公式表达.( × )(3)根据数列的前几项归纳出数列的通项公式可能不止一个.( √ ) (4)1,1,1,1,…,不能构成一个数列.( × )(5)任何一个数列不是递增数列,就是递减数列.( × )(6)如果数列{a n }的前n 项和为S n ,则对任意n ∈N +,都有a n +1=S n +1-S n .( √ ) 题组二 教材改编{2.在数列{a n }中,a 1=1,a n =1+-1na n -1(n ≥2),则a 5等于( )答案 D 解析 a 2=1+-12a 1=2,a 3=1+-13a 2=12,a 4=1+-14a 3=3,a 5=1+-15a 4=23.3.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n = .|答案 5n -4题组三 易错自纠4.已知a n =n 2+λn ,且对于任意的n ∈N +,数列{a n }是递增数列,则实数λ的取值范围是 . 答案 (-3,+∞)解析 因为{a n }是递增数列,所以对任意的n ∈N +,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3. 5.数列{a n }中,a n =-n 2+11n (n ∈N +),则此数列最大项的值是 .…答案 30解析 a n =-n 2+11n =-⎝⎛⎭⎪⎫n -1122+1214,∵n ∈N +,∴当n =5或n =6时,a n 取最大值30. 6.已知数列{a n }的前n 项和S n =n 2+1,则a n = .答案 ⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2,n ∈N +解析 当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2,n ∈N +.《题型一 由数列的前几项求数列的通项公式1.数列0,23,45,67,…的一个通项公式为( )A .a n =n -1n +2(n ∈N +)B .a n =n -12n +1(n ∈N +)C .a n =2n -12n -1(n ∈N +)D .a n =2n2n +1(n ∈N +)答案 C(解析 注意到分子0,2,4,6都是偶数,对照选项排除即可.2.数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n = .答案 (-1)n1nn +1解析 这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为a n =(-1)n1nn +1. 思维升华 由前几项归纳数列通项的常用方法及具体策略(1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.(2)具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑥对于符号交替出现的情况,可用(-1)k或(-1)k +1,k ∈N +处理. (3)如果是选择题,可采用代入验证的方法.·题型二 由a n 与S n 的关系求通项公式典例 (1)已知数列{a n }的前n 项和S n =3n 2-2n +1(n ∈N +),则其通项公式为 .答案 a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2,n ∈N +解析 当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2,n ∈N +.'(2)(2017·南昌模拟)若数列{a n }的前n 项和S n =23a n +13(n ∈N +),则{a n }的通项公式a n= . 答案 (-2)n -1解析 由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,整理得a n =-2a n -1,又当n =1时,S 1=a 1=23a 1+13,∴a 1=1,∴{a n }是首项为1,公比为-2的等比数列,故a n =(-2)n -1.思维升华 已知S n ,求a n 的步骤 (1)当n =1时,a 1=S 1. (2)当n ≥2时,a n =S n -S n -1.(3)对n =1时的情况进行检验,若适合n ≥2的通项则可以合并;若不适合则写成分段函数形式.跟踪训练 (1)(2017·河南八校一联)在数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n = .【答案 -2n -1解析 由题意得S n +1=2a n +1+1,S n =2a n +1, 两式相减得S n +1-S n =2a n +1-2a n , 即a n +1=2a n ,又S 1=2a 1+1=a 1,因此a 1=-1,所以数列{a n }是以a 1=-1为首项、2为公比的等比数列,所以a n =-2n -1.(2)已知数列{a n }的前n 项和S n =3n+1,则数列的通项公式a n = .答案 ⎩⎪⎨⎪⎧4,n =1,2·3n -1,n ≥2解析 当n =1时,a 1=S 1=3+1=4,;当n ≥2时,a n =S n -S n -1=3n+1-3n -1-1=2·3n -1.显然当n =1时,不满足上式.∴a n =⎩⎪⎨⎪⎧4,n =1,2·3n -1,n ≥2.题型三 由数列的递推关系求通项公式典例 根据下列条件,确定数列{a n }的通项公式.(1)a 1=2,a n +1=a n +ln ⎝⎛⎭⎪⎫1+1n ;(2)a 1=1,a n +1=2na n ; (3)a 1=1,a n +1=3a n +2.、解 (1)∵a n +1=a n +ln ⎝⎛⎭⎪⎫1+1n ,∴a n -a n -1=ln ⎝⎛⎭⎪⎫1+1n -1=ln nn -1(n ≥2), ∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =lnnn -1+ln n -1n -2+…+ln 32+ln 2+2 =2+ln ⎝⎛⎭⎪⎫n n -1·n -1n -2·…·32·2=2+ln n (n ≥2).又a 1=2适合上式,故a n =2+ln n (n ∈N +). (2)∵a n +1=2na n ,∴a n a n -1=2n -1(n ≥2), !∴a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1 =2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=(1)22n n -.又a 1=1适合上式,故a n =(1)22n n -(n ∈N +).(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), 又a 1=1,∴a 1+1=2,故数列{a n +1}是首项为2,公比为3的等比数列, ∴a n +1=2·3n -1,故a n =2·3n -1-1(n ∈N +).引申探究 在本例(2)中,若a n =n -1n·a n -1(n ≥2,且n ∈N +),其他条件不变,则a n = .{答案1n解析 ∵a n =n -1na n -1 (n ≥2), ∴a n -1=n -2n -1a n -2,…,a 2=12a 1. 以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时也满足此等式,∴a n =1n.思维升华 已知数列的递推关系求通项公式的典型方法 (1)当出现a n =a n -1+m 时,构造等差数列.<(2)当出现a n =xa n -1+y 时,构造等比数列. (3)当出现a n =a n -1+f (n )时,用累加法求解. (4)当出现a na n -1=f (n )时,用累乘法求解. 跟踪训练 (1)已知数列{a n }满足a 1=1,a 2=4,a n +2+2a n =3a n +1(n ∈N +),则数列{a n }的通项公式a n = . 答案 3×2n -1-2解析 由a n +2+2a n -3a n +1=0, 得a n +2-a n +1=2(a n +1-a n ),∴数列{a n +1-a n }是以a 2-a 1=3为首项,2为公比的等比数列,∴a n +1-a n =3×2n -1,;∴当n ≥2时,a n -a n -1=3×2n -2,…,a 3-a 2=3×2,a 2-a 1=3,将以上各式累加,得a n -a 1=3×2n -2+…+3×2+3=3(2n -1-1),∴a n =3×2n -1-2(当n =1时,也满足).(2)在数列{a n }中,a 1=3,a n +1=a n +1nn +1,则通项公式a n = . 答案 4-1n解析 原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+11-12,a 3=a 2+12-13,)a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n ,逐项相加得a n =a 1+1-1n,故a n =4-1n.题型四 数列的性质命题点1 数列的单调性 典例 已知a n =n -1n +1,那么数列{a n }是( ) A .递减数列B .递增数列^C .常数列D .不确定答案 B 解析 a n =1-2n +1,将a n 看作关于n 的函数,n ∈N +,易知{a n }是递增数列. 命题点2 数列的周期性 典例 数列{a n }满足a n +1=11-a n,a 8=2,则a 1= . 答案 12解析 ∵a n +1=11-a n,∴a n +1=11-a n =11-11-a n -1=1-a n -11-a n -1-1¥=1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2,n ≥3, ∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=12.命题点3 数列的最值 典例 数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项是( )A .310B .19.答案 C解析 令f (x )=x +90x(x >0),运用基本不等式得f (x )≥290,当且仅当x =310时等号成立. 因为a n =1n +90n ,所以1n +90n≤1290,由于n ∈N +,不难发现当n =9或n =10时,a n =119最大. 思维升华 (1)解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列. ②用作商比较法,根据a n +1a n(a n >0或a n <0)与1的大小关系进行判断. ③结合相应函数的图像直观判断.&(2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)数列的最值可以利用数列的单调性或求函数最值的思想求解.跟踪训练 (1)数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n,0≤a n≤12,2a n-1,12<a n<1, a 1=35,则数列的第2 018项为 . 答案 15解析 由已知可得,a 2=2×35-1=15,a 3=2×15=25, a 4=2×25=45,(a 5=2×45-1=35,∴{a n }为周期数列且T =4, ∴a 2 018=a 504×4+2=a 2=15.(2)(2017·安徽名校联考)已知数列{a n }的首项为2,且数列{a n }满足a n +1=a n -1a n +1,数列{a n }的前n 项的和为S n ,则S 2 016等于( ) A .504 B .588 C .-588 D .-504 答案 C解析 ∵a 1=2,a n +1=a n -1a n +1,∴a 2=13,a 3=-12,a 4=-3,a 5=2,…,∴数列{a n }的周期为4,且a 1+a 2+a 3+a 4=-76,∵2 016÷4=504,∴S 2 016=504×⎝ ⎛⎭⎪⎫-76=-588,故选C.]解决数列问题的函数思想典例 (1)数列{a n }的通项公式是a n =(n +1)·⎝ ⎛⎭⎪⎫1011n,则此数列的最大项是第 项.(2)若a n =n 2+kn +4且对于n ∈N +,都有a n +1>a n 成立,则实数k 的取值范围是 . 思想方法指导 (1)可以将数列看成定义域为正整数集上的函数;(2)数列的最值可以根据单调性进行分析.解析 (1)∵a n +1-a n =(n +2)⎝ ⎛⎭⎪⎫1011n +1-(n +1)⎝ ⎛⎭⎪⎫1011n=⎝ ⎛⎭⎪⎫1011n ×9-n 11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ;;当n >9时,a n +1-a n <0,即a n +1<a n ,∴该数列中有最大项,且最大项为第9,10项. (2)由a n +1>a n 知该数列是一个递增数列, 又∵通项公式a n =n 2+kn +4, ∴(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N +,∴k >-3. 答案 (1)9或10 (2)(-3,+∞)、1.(2017·湖南长沙一模)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( ) A .a n =(-1)n -1+1B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数C .a n =2sinn π2D .a n =cos(n -1)π+1 答案 C解析 对n =1,2,3,4进行验证,知a n =2sinn π2不合题意,故选C.》2.(2018·葫芦岛质检)数列23,-45,67,-89,…的第10项是( )A .-1617B .-1819C .-2021D .-2223答案 C解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式a n =(-1)n +1·2n 2n +1,故a 10=-2021. 3.(2017·黄冈质检)已知在正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .4C .2 2D .45 答案 B)解析 由题意得a 2n +1-a 2n =a 2n -a 2n -1=…=a 22-a 21=3,故{a 2n }是以3为公差的等差数列,即a 2n =3n -2.所以a 26=3×6-2=16.又a n >0,所以a 6=4.故选B. 4.若数列{a n }满足a 1=2,a 2=3,a n =a n -1a n -2(n ≥3且n ∈N +),则a 2 018等于( ) A .3 B .2答案 A解析 由已知a 3=a 2a 1=32,a 4=a 3a 2=12,a 5=a 4a 3=13,a 6=a 5a 4=23,a 7=a 6a 5=2,a 8=a 7a 6=3,[∴数列{a n }具有周期性,且T =6, ∴a 2 018=a 336×6+2=a 2=3.5.(2018·长春模拟)设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) C .4 D .0 答案 D解析 ∵a n =-3⎝ ⎛⎭⎪⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大为0.6.(2017·江西六校联考)已知数列{a n }满足a n =⎩⎪⎨⎪⎧5-a n -11,n ≤5,a n -4,n >5,且{a n }是递增数列,则实数a 的取值范围是( ) A .(1,5)》D .(2,5)答案 D 解析 ∵a n =⎩⎪⎨⎪⎧5-a n -11,n ≤5,an -4,n >5,且{a n }是递增数列,∴⎩⎪⎨⎪⎧5-a >0,a >1,55-a -11<a 2,解得2<a <5,故选D.7.若数列{a n }满足关系a n +1=1+1a n ,a 8=3421,则a 5= .答案 85解析 借助递推关系,由a 8递推依次得到a 7=2113,a 6=138,a 5=85.8.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N +),则a n = .;答案 ⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2解析 当n ≥2时,a n =S n -S n -1=2n +1, 当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.9.(2018·大庆模拟)已知数列{a n }的通项公式a n =(n +2)·⎝ ⎛⎭⎪⎫67n,则数列{a n }的项取最大值时,n = . 答案 4或5解析 假设第n 项为最大项,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1,即⎩⎪⎨⎪⎧n +2·⎝ ⎛⎭⎪⎫67n ≥n +1·⎝ ⎛⎭⎪⎫67n -1,n +2·⎝ ⎛⎭⎪⎫67n ≥n +3·⎝ ⎛⎭⎪⎫67n +1,—解得⎩⎪⎨⎪⎧n ≤5,n ≥4,即4≤n ≤5,又n ∈N +,所以n =4或n =5,故数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574.10.(2017·太原模拟)已知数列{a n }满足a 1=1,a n -a n +1=na n a n +1(n ∈N +),则a n = . 答案2n 2-n +2解析 由a n -a n +1=na n a n +1,得1a n +1-1a n=n ,则由累加法得1a n -1a 1=1+2+…+(n -1)=n 2-n2,又因为a 1=1,所以1a n=n 2-n2+1=n 2-n +22,所以a n =2n 2-n +2(n ∈N +).(11.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N +).(1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式. 解 (1)由S n =12a 2n +12a n (n ∈N +)可得a 1=12a 21+12a 1,解得a 1=1, S 2=a 1+a 2=12a 22+12a 2,解得a 2=2,同理,a 3=3,a 4=4.(2)S n =a n 2+12a 2n ,①/当n ≥2时,S n -1=a n -12+12a 2n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }为首项为1,公差为1的等差数列, 故a n =n .12.已知数列{a n }的各项均为正数,记数列{a n }的前n 项和为S n ,数列{a 2n }的前n 项和为T n ,且3T n =S 2n +2S n ,n ∈N +. (1)求a 1的值;《(2)求数列{a n }的通项公式. 解 (1)由3T 1=S 21+2S 1, 得3a 21=a 21+2a 1,即a 21-a 1=0. 因为a 1>0,所以a 1=1. (2)因为3T n =S 2n +2S n ,① 所以3T n +1=S 2n +1+2S n +1,② ②-①,得3a 2n +1=S 2n +1-S 2n +2a n +1. 因为a n +1>0,所以3a n +1=S n +1+S n +2,③;所以3a n +2=S n +2+S n +1+2,④④-③,得3a n +2-3a n +1=a n +2+a n +1, 即a n +2=2a n +1, 所以当n ≥2时,a n +1a n=2. 又由3T 2=S 22+2S 2,得3(1+a 22)=(1+a 2)2+2(1+a 2), 即a 22-2a 2=0.因为a 2>0,所以a 2=2,所以a 2a 1=2,@所以对n ∈N +,都有a n +1a n=2成立, 所以数列{a n }的通项公式为a n =2n -1,n ∈N +.13.(2017·江西师大附中、鹰潭一中联考)定义:在数列{a n }中,若满足a n +2a n +1-a n +1a n=d (n ∈N +,d 为常数),称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=3,则a 2 015a 2 013等于( ) A .4×2 0152-1 B .4×2 0142-1 C .4×2 0132-1 D .4×2 0132答案 C解析 由题知⎩⎨⎧⎭⎬⎫a n +1a n 是首项为1,公差为2的等差数列,则a n +1a n =2n -1,所以a n =a n a n -1×a n -1a n -2×…×a 2a 1×a 1=(2n -3)×(2n -5)× (1)、所以a 2 015a 2 013=2×2 015-32×2 015-5×…×12×2 013-32×2 013-5×…×1=4 027×4 025=(4 026+1)(4 026-1) =4 0262-1=4×2 0132-1. 14.若数列⎩⎨⎧⎭⎬⎫nn +4⎝ ⎛⎭⎪⎫23n 中的最大项是第k 项,则k = .答案 4解析 设数列为{a n },则a n +1-a n =(n +1)(n +5)·⎝ ⎛⎭⎪⎫23n +1-n (n +4)·⎝ ⎛⎭⎪⎫23n=⎝ ⎛⎭⎪⎫23n ⎣⎢⎡⎦⎥⎤23n 2+6n +5-n 2-4n =2n3n +1(10-n 2). 所以当n ≤3时,a n +1>a n ; 当n ≥4时,a n +1<a n .因此,a 1<a 2<a 3<a 4,a 4>a 5>a 6>…, 故a 4最大,所以k =4.15.在数列{a n }中,a 1=1,a 2=2,若a n +2=2a n +1-a n +2,则a n 等于( )n 2-25n +65B .n 3-5n 2+9n -4 C .n 2-2n +2 D .2n 2-5n +4答案 C解析 由题意得(a n +2-a n +1)-(a n +1-a n )=2,因此数列{a n +1-a n }是以1为首项,2为公差的等差数列,a n +1-a n =1+2(n -1)=2n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+3+…+(2n -3)=1+1+2n -3n -12=(n -1)2+1=n 2-2n +2,又a 1=1=12-2×1+2,因此a n =n 2-2n+2(n ∈N +),故选C.16.(2017·太原五中模拟)设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n = .答案 1n(n ∈N +)解析 因为数列{a n }是首项为1的正项数列, 所以a n ·a n +1≠0, 所以n +1a n +1a n -na na n +1+1=0.令a n +1a n=t (t >0),则(n +1)t 2+t -n =0, 分解因式,得[(n +1)t -n ](t +1)=0, 所以t =n n +1或t =-1(舍去),即a n +1a n =nn +1. 方法一 (累乘法) 因为a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a na n -1=12·23·34·45·…·n -1n , 所以a n =1n(n ∈N +).方法二 (迭代法) 因为a n +1=nn +1a n , 所以a n =n -1n a n -1=n -1n ·n -2n -1·a n -2 =n -1n ·n -2n -1·n -3n -2·a n -3 =…=n -1n .n -2n -1.n -3n -2 (1)2a 1, 所以a n =1n(n ∈N +). 方法三 (特殊数列法) 因为a n +1a n =n n +1,所以n +1a n +1na n=1. 所以数列{na n }是以a 1为首项,1为公比的等比数列. 所以na n =1×1n -1=1.所以a n =1n(n ∈N +).。

数列知识点总结及例题讲解

数列知识点总结及例题讲解

人教版数学必修五第二章数列重难点解析第二章课文目录2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和【重点】1、数列及其有关概念,通项公式及其应用。

2、根据数列的递推公式写出数列的前几项。

3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。

4、等差数列n项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。

5、等比数列的定义及通项公式,等比中项的理解与应用。

6、等比数列的前n项和公式推导,进一步熟练掌握等比数列的通项公式和前n项和公式【难点】1、根据数列的前n项观察、归纳数列的一个通项公式。

2、理解递推公式与通项公式的关系。

3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。

4、灵活应用等差数列前n项公式解决一些简单的有关问题。

5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。

6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。

一、数列的概念与简单表示法1.数列的定义:按一定次序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….3.数列的一般形式:aj,az,ag, …,an, …,或简记为{a},其中a。

是数列的第n项4.数列的通项公式:如果数列{a}的第n项a。

与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意: (1)并不是所有数列都能写出其通项公式,如上述数列④;(2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0, …它的通项公式可以是,也可以是; 1.(3)数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第召项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系:数列可以看成以正整数集N(或它的有限子集{1,2,3,…,n})为定义域的函数an= f(n),当自变量从小到大依次取值时对应的一列函数值。

高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐

高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐

数学数列部分知识点梳理一数列的概念1)数列的前n 项和与通项的公式①n n a a a S +++= 21; ⎩⎨⎧≥-==-)2()1(11n S S n S a n n n2)数列的分类:①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 一、等差数列 1)通项公式d n a a n )1(1-+=,1a 为首项,d 为公差。

前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 2)等差中项:b a A +=2。

3)等差数列的判定方法:⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.4)等差数列的性质:⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. (7)设是等差数列,则(是常数)是公差为的等差数列;(8)设,,,则有;(9)是等差数列的前项和,则;(10)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.二、等比数列 1)通项公式:11-=n n q a a ,1a 为首项,q 为公比 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。

例如:①:1 ,2 ,3 ,4, 5 ,…②:514131211,,,,…(3)数列的函数特征与图象表示: 4 5 6 7 8 9序号:1 2 3 4 5 6 项 :4 5 6 7 8 9(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。

例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,…(5)数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥例:已知数列}{n a 的前n 项和322+=n s n ,求数列}{n a 的通项公式二、等差数列题型一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。

例:等差数列12-=n a n ,=--1n n a a 题型二、等差数列的通项公式:1(1)n a a n d =+-;等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。

例:1.已知等差数列{}n a 中,12497116a a a a ,则,==+等于( ) A .15 B .30 C .31 D .642.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )670题型三、等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。

其中2a bA += a ,A ,b 成等差数列⇔2a bA +=即:212+++=n n n a a a (m n m n n a a a +-+=2)例:1.设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++= ( )A .120B .105C .90D .752.设数列{}n a 是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A .1 B.2 C.4 D.8题型四、等差数列的性质:(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项; (2)在等差数列{}n a 中,相隔等距离的项组成的数列是等差数列; (3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n ma a d n m-=-()m n ≠;(4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+; 题型五、等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+n da )(2n 2112-+=。

(),(2为常数B A BnAn S n +=⇒{}n a 是等差数列 )递推公式:2)(2)()1(1na a n a a S m n m n n --+=+=例:1.如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=(A )14 (B )21 (C )28 (D )35 2.设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( )A .13B .35C .49D . 63 3.设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++=4.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A.13项B.12项C.11项D.10项5.设等差数列{}n a 的前n 项和为n S ,若535a a =则95S S = 6.已知{}n a 数列是等差数列,1010=a ,其前10项的和7010=S ,则其公差d 等于( )3132--..B A C.31 D.327.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{nS n}的前n 项和,求T n 。

题型六.对与一个等差数列,n n n n n S S S S S 232,,--仍成等差数列。

例:1.等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )A.130B.170C.210D.2602.一个等差数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为 。

3.设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-== 4.(06全国II )设S n 是等差数列{a n }的前n 项和,若36S S =13,则612SS = A .310 B .13 C .18D .19题型七.判断或证明一个数列是等差数列的方法:①定义法: )常数)(*+∈=-N n d a a n n (1⇒{}n a 是等差数列②中项法: )221*++∈+=N n a a a n n n (⇒{}n a 是等差数列③通项公式法: ),(为常数b k bkn a n +=⇒{}n a 是等差数列④前n 项和公式法: ),(2为常数B A BnAn S n +=⇒{}n a 是等差数列例:1.已知一个数列}{n a 的前n 项和422+=n s n ,则数列}{n a 为( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断2.已知一个数列}{n a 的前n 项和22n s n =,则数列}{n a 为( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断3.数列{}n a 满足1a =8,022124=+-=++n n n a a a a ,且 (*∈N n )①求数列{}n a 的通项公式; 题型八.数列最值(1)10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;(2)n S 最值的求法:①若已知n S ,n S 的最值可求二次函数2n S an bn =+的最值;可用二次函数最值的求法(n N +∈);②或者求出{}n a 中的正、负分界项,即:若已知n a ,则n S 最值时n 的值(n N +∈)可如下确定100n n a a +≥⎧⎨≤⎩或10n n a a +≤⎧⎨≥⎩。

例:1.等差数列{}n a 中,12910S S a =>,,则前 项的和最大。

2.设等差数列{}n a 的前n 项和为n S ,已知 001213123<>=S S a ,,①求出公差d 的范围,②指出1221S S S ,,, 中哪一个值最大,并说明理由。

3.已知}{n a 是等差数列,其中131a =,公差8d =-。

(1)数列}{n a 从哪一项开始小于0?(2)求数列}{n a 前n 项和的最大值,并求出对应n 的值.题型九.利用11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩求通项.1.已知数列{}n a 的前n 项和,142+-=n n S n 则2.设数列}{n a 的前n 项和为S n =2n 2,求数列}{n a 的通项公式;3.已知数列{}n a 中,,31=a 前n 和1)1)(1(21-++=n n a n S ①求证:数列{}n a 是等差数列 ②求数列{}n a 的通项公式4.设数列{}n a 的前n 项和2n S n =,则8a 的值为( )(A ) 15 (B) 16 (C) 49 (D )64等比数列等比数列定义:…… 一、递推关系与通项公式mn m n n n n n q a a q a a a a --+⋅=⋅==推广:通项公式:递推关系:111q 1. 在等比数列{}n a 中,2,41==q a ,则=n a 2.在等比数列{}n a 中,22-=a ,545=a ,则8a =3.在各项都为正数的等比数列{}n a 中,首项13a =,前三项和为21,则345a a a ++=( )A 33B 72C 84D 189二、等比中项:若三个数c b a ,,成等比数列,则称b 为c a 与的等比中项,且为ac b ac b =±=2,注:是成等比数列的必要而不充分条件.例:1.2+2( )()1A ()1B - ()1C ± ()2D三、等比数列的基本性质,1.(1)q p n m a a a a q p n m ⋅=⋅+=+,则若),,,(*∈N q p n m 其中(2))(2*+--∈⋅==N n a a a a a qm n m n n mn mn , (3){}n a 为等比数列,则下标成等差数列的对应项成等比数列. (4){}n a 既是等差数列又是等比数列⇔{}n a 是各项不为零的常数列.例:1.在等比数列{}n a 中,1a 和10a 是方程22510x x ++=的两个根,则47a a ⋅=( )5()2A -()2B 1()2C - 1()2D 2.在等比数列{}n a 中,143613233+>==+n n a a a a a a ,, ①求n a②若n n n T a a a T 求,lg lg lg 21+++=3.等比数列{}n a 的各项为正数,且5647313231018,log log log a a a a a a a +=+++=则( )A .12B .10C .8D .2+3log 5四、等比数列的前n 项和, )1(11)1()1(111≠⎪⎩⎪⎨⎧--=--==q q qa a qq a q na S n nn例:1.已知等比数列}{n a 的首相51=a ,公比2=q ,则其前n 项和=n S2.设等比数列}{n a 的前n 项和为n S ,已,62=a 30631=+a a ,求n a 和n S3.设4710310()22222()n f n n N +=+++++∈,则()f n 等于( )A .2(81)7n- B .12(81)7n +- C .32(81)7n +- D .42(81)7n +-五. 等比数列的前n 项和的性质若数列{}n a 是等比数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数列. 例:1.一个等比数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为( )A .83B .108C .75D .632.已知数列{}n a 是等比数列,且===m m m S S S 323010,则,六.等比数列的判定法 (1)定义法:⇒=+(常数)q a a nn 1{}n a 为等比数列; (2)中项法:⇒≠⋅=++)0(221n n n n a a a a {}n a 为等比数列;(3)通项公式法:⇒⋅=为常数)q k q k a nn ,({}n a 为等比数列; (4)前n 项和法:⇒-=为常数)(q k q k S nn ,)1({}n a 为等比数列。

相关文档
最新文档