高光谱遥感综述

合集下载

油气勘探中高光谱遥感技术应用综述

油气勘探中高光谱遥感技术应用综述

过对不同波段的信息进行线 性或非线性的组合来构造植被 指数 , 以达 到最 大化 植 被发 射信 息 、 最 小化 外部 因素 影 响 。 植被 指 数 为从 遥 感影 像 中获 取 大范 围植被 覆 盖信 息 常用 的 经济 、有效的方法 ,通常选用植被反射光谱中的红光波段 和近红外波段来构建植被指数 ,其 中,红光波段反映的是
天然气勘探技术研发及应用工作 。
随着高 光谱遥感技术 的发展 ,高光谱遥感 作为油气勘查 中的一项新技术 ,其快速 、经济 、精确的特点受 到众多油气勘探企 业的重视 。
通过简述了高光谱遥 感技 术在油气勘探领域主要 的两个研 究内容及其研究方法 :构造信 息提取和各种烃类微渗漏信息 的提取 ,并分国外 、匡 内系统概述了高光谱 遥感技术在油气勘探领域 的研究进程和成功实例 ;指 出了我 国发展高光谱遥感油气勘查技术 的必要性及 其未来的发展) 与
主要研究 内容
构造信息提 取
众 所周 知 ,大多 数 油 气藏 的 分 布都 与 区域地 质 构 造信 息 有 着 密不 可 分 的关 系 ,因此 ,构 造 信 息 的提 取对 油 气 勘 探 具 有 重 大意 义 。而 高 光谱 遥 感 数据 由于 其信 息 密 度大 、 连 续 性 好等 特 点 能较 为 真实 的 记 录地 质 构造 的 地表 几 何形

rj
j^ ¨ —L ‘
J x I 、口 小, I
口 、
u 0 ‘_ u 0u o ‘ 厶。 几 V
’ ,
白晓寅
白晓寅
孟旺才
陈义 国


张 洪美
陕西延长石油 ( 集团) 有 限责任 公司研究院
白晓寅 ( 1 9 8 2年 一) 男 ,工程 师 ,2 0 0 8年 毕业于 中国石油大学 ( 华东 ) 地球探测与信息 专业 ,获硕士学位 ,现 从事石涟

高光谱遥感

高光谱遥感
遥感分类
多光谱遥感:国际遥感界的共识是光谱分辨率在λ /10数量级范围 的称为多光谱(Multispectral),这样的遥感器在可见光和近红外 光谱区只有几个波段,如美国 LandsatMSS,TM,法国的SPOT等。 高光谱遥感:光谱分辨率在λ /100的遥感信息称之为高光谱遥感 (HyPerspectral)。它是在电磁波谱的可见光,近红外,中红外和 热红外波段范围内,获取许多非常窄的光谱连续的影像数据的技术。 其成像光谱仪可以收集到上百个非常窄的光谱波段信息。高光谱遥 感是当前遥感技术的前沿领域,它利用很多很窄的电磁波波段从感 兴趣的物体获得有关数据,它包含了丰富的空间、辐射和光谱三重 信息。高光谱遥感使本来在宽波段遥感中不可探测的物质,在高光 谱遥感中能被探测。 超高光谱遥感:而随着遥感光谱分辨率的进一步提高,在达到 λ /1000时,遥感即进入超高光谱(ultraspeetral)阶段。
土壤属性高光谱反演
土壤盐分
在土壤反射光谱中的特征光谱,从而对土壤营养状况和
土壤侵蚀状况做进一步检测与评价。有图可知,总氮在 0.55-0.60μm之间和0.80-0.85μm之间有较明显的反射峰 ,在1.4μm周围有较显著的吸收谷。
土壤水分
当土壤的含水率增加时,土壤的反射率下降,在水的吸
Hyperion/EO-1
Hyperion 传感器搭载于 EO-1 卫星平台,EO-1(Earth
Observing-1)是美国NASA 面向 21 世纪为接替 LandSat-7 而 研制的新型地球观测卫星,于 2000 年 11月发射升空,其卫 星轨道参数与 LandSat-7 卫星的轨道参数接近,之所以设计 相同轨道,目的是为了使 EO-1 和 LandSat-7 两颗星的图像 每天至少有 1~4 景重叠,以便进行比对。 传统的陆地资源卫星只提供为数不多的七个多光谱波段,远 远不能满足各种实际应用的需要,因此美国地质调查局 (USGS)与美国宇航局(NASA)合作发射了 EO-1 卫星, 并在该卫星上搭载了三种传感器分别是 ALI (the Advanced Land Imager), Hyperion, LEISA (the Linear Etalon Imaging Spectrometer Array)Atmospheric Corrector

高光谱遥感技术综述

高光谱遥感技术综述

第07卷 第08期 中 国 水 运 Vol.7 No.08 2007年 08月 China Water Transport August 2007收稿日期:2007-5-4作者简介:袁迎辉 女(1983—) 东华理工大学矿产普查与勘探专业在读硕士研究生 (344000) 高光谱遥感技术综述袁迎辉 林子瑜摘 要:高光谱分辨率遥感是20世纪80年代兴起的新型对地观测技术,与传统遥感相比,高光谱遥感具有更为广泛的应用前景。

文中概述了高光谱遥感的特点、发展过程、发展程度及目前几种典型的成像光谱仪数据特点。

关键词:高光谱遥感 数据处理技术 成像光谱仪中图分类号:TP72 文献标识码:A 文章编号:1006-7973(2007)08-0155-03遥感是20世纪60年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。

经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技术为主的时代。

本文系统地阐述了高光谱遥感技术在分析技术及应用方面的发展概况,并简要介绍了高光谱遥感技术主要航空/卫星数据的参数及特点。

一、高光谱遥感的概念及特点所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据[3];与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。

高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。

它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。

同其它传统遥感相比,高光谱遥感具有以下特点: ⑴ 波段多。

成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。

⑵ 光谱分辨率高。

(完整word版)高光谱目标检测文献综述

(完整word版)高光谱目标检测文献综述

基于核方法的高光谱图像目标检测技术研究----文献选读综述报告1前言20 世纪80 年代遥感领域最重要的发展之一就是高光谱遥感的兴起。

从20 世纪90 年代开始,高光谱遥感已成为国际遥感技术研究的热门课题和光电遥感的最主要手段。

高光谱遥感图像目标检测在民用和军事上都具有重要的理论价值和应用前景,是当前目标识别及遥感信息处理研究领域中的一个热点研究问题。

2 研究目的及意义高光谱遥感图像是在电磁波谱的紫外、可见光、近红外和中红外区域,利用成像光谱仪获取的许多非常窄且光谱连续的图像数据(如图1.1所示)。

成像光谱仪为每个像元提供数十至数百个窄波段(通常波段宽度小于10 nm)的光谱信息,能产生一条完整而连续的光谱曲线。

图1.1 成像光谱仪探测地物目标示意图[1]高光谱遥感技术主要利用各种地物(例如某种土壤、岩石和作物)对不同的光谱波长具有各不相同的吸收率和反射率的原理,根据每种物质所拥有的独特光谱反射曲线来进行检测和分类。

利用高光谱遥感技术,能够很好地提取目标的辐射特性参量,使地表目标的定量分析与提取成为可能。

然而,高光谱遥感成像机理复杂、影像数据量大,这导致影像的大气纠正、几何纠正、光谱定标、反射率转换等预处理困难。

由于成像光谱仪获取的地物光谱特征曲线近乎连续,波段间相关性很高,数据冗余信息很多。

在使用传统目标检测方法对高光谱影像中感兴趣目标进行检测时,波段多且相关性高,会导致训练样本相对不足,致使分类模型参数的估计不可靠,检测分类存在维数灾难现象。

因此,高光谱影像给地物分类识别带来了巨大机遇,同时给传统的目标检测方法也带来了挑战。

为了充分发挥高光谱遥感技术的优势,必须在影像检测分类基本算法的基础之上,结合高光谱影像分类的特点,研究新的适用于高光谱影像的理论、模型和算法〕。

在国内外,许多研究机构在理论和应用上进行了探索,取得了不少成果。

自从上世纪90年代中期核方法在支持向量机分类中得到成功应用以后,人们开始尝试利用核函数将经典的线性特征提取与分类识别方法推广到一般情况,在理论和应用中都有许多成果,引起了继经典统计线性分析、神经网络与决策树非线性分析后第三次模式分析方法的变革,成为机器学习、应用统计、模式识别、数据挖掘等许多学科的研究热点,在人脸识别、语音识别、字符识别、机器故障分类等领域得到成功应用[2]。

高光谱遥感分类与信息提取综述

高光谱遥感分类与信息提取综述

NQM ( vs h r Qu lt o S r ie Na ip e e aiy f e v c M a a e ) 软 件 来 监 控 和 调 配 性 能 使 用 ,保 ngr
用 最 新 的版 本 来 达 到 较 优 的性 能 。 其 次 可 以考虑 硬盘 方面 。按照 磁盘 RAI D的特 性 , 不 同 类 型 的 RAI D类 型 会 有不 用 的 性 能 表 现 ,如 RAI D0就 比 RAI D5性 能要好 ,只是 总 体 可 用 容 量 少 了 。 同 是 RAI D5也 有 性 能 差 异 ,按照 每 个 厂 商 的 不 同 , 一 般 到十 几 , 个硬盘的情况下性能达到最佳。 几 乎 所 有 的 盘 阵 都 会 配 置 大 量 的 缓 存 ,缓 存 的读 写 分配 也会 影 响 性 能 。针 对 不 同 的 应 用 特 性 我 们 需 要 分 配 不 同 多 少 的 缓存 。 有 些 极 端 的性 能 要 求 的 ,还 可 以使 用 企 业级 的 闪盘 ( ahDik)来支 持 。企业 Fls s 级 闪 盘 有非 常 优 异 的 性能 特 点 ,比 如读 写
[ 图分 类 号 ] 7 中 TP 【 献标识码] 文 A
【 文章编号10 7 9 1 (0 0 3 1 4 3 1 0 - 4 6 2 1 )0 -0 -0 3
1高光谱遥 感概述
高光谱遥 感 ( p r p cr l Hy e s e ta Re t mo e S n ig 简称 HRS)起步于 8 e sn 0年 代 ,发 展 于9 0年 代 , 至 今 已 解 决 了 一 系 列 重 大 的 技 术 问 题 。 它 是 光 谱 分 辨 率 在 l -2 的 光 谱 0 遥 感 ,其 光谱 分 辨率 高 达纳 米 ( m)数 量 n 级 ,具 有波段数 众多 ,连续性 强的 特点 ,其 传 感 器 在 可 见 光 到 红 外 光 的 波 长 范 围 内 ( 4 u m~2 5 m)范 围内以很 窄的波段 0. . 宽 度( ~3 n 3 0 m) 获 得 几百个 波 段的 光谱 信 息 ,相 当 于 产生 了一 条 完 整而 连 续 的 光谱 曲线 ,光谱分辨 率将达 到 5 m~1 n n 0 mt。高 光 谱 遥 感数 据 的 表 现 可 以 从 以下 三 个 方 面

高光谱遥感综述

高光谱遥感综述

高光谱遥感及其发展与应用综述摘要:高光谱遥感是20世纪80年代兴起的新型对地观测技术。

文中归纳了高光谱遥感技术波段多、波段宽度窄,光谱分辨率高,数据量大、信息冗余,“图谱合一”等特点,具有近似连续的地物光谱信息、地表覆盖的识别能力极大提高、地形要素分类识别方法灵活多样、地形要素的定量或半定量分类识别成为可能等优势,简单介绍了高光谱遥感在国外及国内的发展情况。

在此基础上,概述了高光谱遥感在地质矿产、植被生态、大气科学、海洋、农业等领域的应用。

关键词:高光谱遥感;发展;应用1高光谱遥感高光谱分辨率遥感是指利用很多很窄的电磁波波段从感兴趣的物体获取有关数据。

它的基础是测谱学。

测谱学早在20世纪初就被用于识别分子和原子及其结构,20世纪80年代才开始建立成像光谱学。

它是在电磁波谱的紫外、可见光、近红外和中红外区域,获取许多非常窄且光谱连续的图像数据的技术。

成像光谱仪为每个象元提供数十至数百个窄波段光谱信息,能产生一条完整而连续的光谱曲线。

1.1高光谱遥感的特点(1)波段多,波段宽度窄。

成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。

与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。

(2)光谱响应范围广,光谱分辨率高。

成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。

成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm左右。

精细的光谱分辨率反映了地物光谱的细微特征。

(3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。

在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。

高光谱遥感技术综述

高光谱遥感技术综述

四、高光谱遥感成像技术的发展趋势
伴随着成像光谱技术的逐渐成熟,高光谱影像分析研究的 不断深入,应用领域日益广泛,高光谱遥感技术发展呈现以下 趋势: 1、成像光谱仪的光谱探测能力将继续提高 2、成像光谱仪获取影像的空间分辨率逐步提高 3、正在由航空遥感为主转为航空和航天遥感相结合阶段,逐 步从遥感定性分析阶段发展到定量分析阶段
谢谢!
三、高光谱遥感成像技术发展现状
高光号 检测、计算机技术、信息处理技术于一体的综合性技术。技术成 果主要表现在成像光谱仪研制、高光谱影像分析两方面。 1、国外发展现状 国外的发展大致可以分为机载成像光谱仪和星载成像光谱仪。 随着美国的三代机载成像光谱仪的问世,现在更多的倾向于在航 空领域的发展。美国的JPL研制的中分辨率成像光谱仪搭载TERRA卫星的发射,成为第一颗在轨运行的星载成像光谱仪。2000 年发射的高光谱成像仪地面分辨率为30m,2002年美国海军测绘 观测卫星携带的成像光谱仪具有自适应性信号识别能力,能够满 足军民两用,2007年美国又向空军交付的基地的高光谱成像传感 器通过TacSat-3卫星送入太空。
2、国内发展现状 20世纪80年代,我国开始着手研制自己的高光谱成像系统。 相继成功研制出推扫式成像光谱仪(PHI)系列,实用型模块 化成像光谱仪(OMIS)系列等。中科院上海技术物理研究所研 制的中分辨率成像光谱仪于2002年搭载神舟三号发射升空,成 功获取航天高光谱影像,从可见光到近红外30个波段,空间分 辨率在500m。2007年10月发射的嫦娥一号携带干涉成像光谱仪 升空,用于月球的探测。2007-2010年,我国组建了环境和灾 害监测预报小卫星星座,携带超光谱成像仪,采用0.450.95um波段,平均光谱分辨率在5nm,地面分辨率在100m。

高光谱遥感

高光谱遥感

(一)高光谱遥感基本概念1、高光谱遥感特点波段特点:波段多、波段宽度窄、不断连续数据量特点:数据量大、数据冗余增加2、波谱空间与光谱空间光谱特征空间:以波段为维度的空间,波段增加会导致光谱空间维度增加。

波普特征空间:不同波段影像所构成的测度空间。

3、高光谱数据图谱合一的特点高光谱数据同时反映地物的空间特征(图)和光谱特征(谱)。

(二)成像光谱仪1、成像光谱仪的空间成像方式和光谱成像方式的含义空间成像方式:从影像二维空间形成角度考察成像光谱仪的工作方式。

光谱成像方式:从光谱维数据形成的角度考察成像光谱仪的工作方式。

2、成像光谱仪的瞬时视场角(IFOV)仪器视场角(FOV)瞬时视场角:以毫弧度为计量单位,所对应的地面大小被称为地面分辨单元。

仪器视场角:仪器扫描镜在空中扫过的角度,与系统平台高度决定了地面扫描幅宽。

摆扫型:单个像元凝视时间短,进一步提升光谱分辨率和信噪比较困难。

推扫型:凝视时间长,分辨率高,仪器体积小(无光机),视场角小(30°)定标量大不稳定。

3、成像光谱仪的三种定标方式共性:出于同一目的,特定情况下都是不可缺少的。

差异:处于不同阶段,考虑因素不同,入瞳辐射值获取方式不同(实验室定标:有实验室测得,原始定标,准确度高,后续定标基础)(机上星上定标:综合性定标,对前一项进行的修正,机上星上测得考虑搬运安装操作影响)(场地定标:入轨后实际运行情况,大面积均匀地表做参照,考虑大气传输,多通道大范围)场地定标的常用方法:反射基法(气溶胶参数)、辐照度基法(过程)、辐亮度基法(人力)机上定标一般使用内定标法,星上定标受制于体积一般进行辐射定标(人造辐射源/太阳)光谱定标:确定成像光谱仪增益系数和偏置量之前,必须通过光谱定标,获得成像光谱仪每个波段的中心波长和带宽。

辐射定标:确定成像光谱仪在该波长小输入辐射能与输出响应关系(增益系数和偏置量)4、空间分辨率和光谱分辨率光谱分辨率:指探测器波长方向上的记录宽度,又称波段宽度(50%)空间分辨率:由仪器瞬时视场角决定,地面分辨单元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高光谱遥感及其发展与应用综述
摘要:高光谱遥感是20世纪80年代兴起的新型对地观测技术。

文中归纳了高光谱遥感技术波段多、波段宽度窄,光谱分辨率高,数据量大、信息冗余,“图谱合一”等特点,具有近似连续的地物光谱信息、地表覆盖的识别能力极大提高、地形要素分类识别方法灵活多样、地形要素的定量或半定量分类识别成为可能等优势,简单介绍了高光谱遥感在国外及国内的发展情况。

在此基础上,概述了高光谱遥感在地质矿产、植被生态、大气科学、海洋、农业等领域的应用。

关键词:高光谱遥感;发展;应用
1高光谱遥感
高光谱分辨率遥感是指利用很多很窄的电磁波波段从感兴趣的物体获取有关数据。

它的基础是测谱学。

测谱学早在20世纪初就被用于识别分子和原子及其结构,20世纪80年代才开始建立成像光谱学。

它是在电磁波谱的紫外、可见光、近红外和中红外区域,获取许多非常窄且光谱连续的图像数据的技术。

成像光谱仪为每个象元提供数十至数百个窄波段光谱信息,能产生一条完整而连续的光谱曲线。

1.1高光谱遥感的特点
(1)波段多,波段宽度窄。

成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。

与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。

(2)光谱响应范围广,光谱分辨率高。

成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。

成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm左右。

精细的光谱分辨率反映了地物光谱的细微特征。

(3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。

在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。

(4)数据量大,信息冗余多。

高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。

(5)数据描述模型多,分析更加灵活。

高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。

1.2高光谱的优势
高光谱遥感的光谱分辨率的提高,使地物目标的属性信息探测能力有所增强。

因此,较之全色和多光谱遥感,高光谱遥感有以下显著优势:
(1)蕴含着近似连续的地物光谱信息。

高光谱影像经过光谱反射率重建,能获取地物近似连续的光谱反射率曲线,与地面实测值相匹配,将实验室地物光谱分析模型应用到遥感过程中。

(2)地表覆盖的识别能力极大提高。

高光谱数据能够探测具有诊断性光谱吸收特征的物质,能够准确区分地表植被覆盖类型、道路的铺面材料等。

(3)地形要素分类识别方法灵活多样。

影像分类既可以采用各种模式识别方法,如贝叶斯判别、决策树、神经网络、支持向量机等,又可以采用基于地物光谱数据库的光谱匹配方法。

分类识别特征,可以采用光谱诊断特征,也可以进行特征选择与提取。

(4)地形要素的定量或半定量分类识别成为可能。

在高光谱影像中,能估计出多种地物的状态参量,提高遥感高定量分析的精度和可靠性。

2高光谱遥感的发展
2.1高光谱遥感在国内的发展
我国紧密跟踪国际高光谱遥感技术的发展,并结合国内不断增长的应用需求,于20世纪80年代中后期着手发展自己的高光谱成像系统。

主要的成像光谱仪有中科院上海技术物理研究所研制的推扫式成像光谱仪(PHI)系列、实用型模块化成像光谱仪(OMIS)系列、中科院长春光机所研制的高分辨率成像光谱仪(C2HR IS)和西安光机所研制的稳态大视场偏振干涉成像光谱仪(SLP IIS) 。

中科院上海技术物理研究所研制的中分辨率成像光谱仪(CMOD IS)于2002年随“神舟”三号发射升空,并成功获取航天高光谱影像,其获取影像从可见光到近红外共30波段,中红外到远红外的4波段,空间分辨率为500m。

2007年10月年发射的“嫦娥1号”卫星已携带中科院西安光机所研制的干涉成像光谱仪升空,用于获取月球表面二维多光谱序列图像及可分辨地元光谱图,通过与其他仪器配合使用对月球表面有用元素及物质类型的含量与分布进行分析,获得的数据用于编制各元素的月面分布图。

从2007年到2010年,我国将组建环境与灾害监测预报小卫星星座,将携带超光谱成像仪,采用0.45~0.95μm波段,平均光谱分辨率为5nm,地面分辨率为100m。

我国在积极研制具有自主知识产权的成像光谱仪的同时,在地物光谱数据技术、高光谱影像分析技术等方面的研究中也取得了部分的成果。

20世纪90年代初期,中科院安徽光机所、遥感所等单位对大量的典型地物进行了波谱采集,建立了我国第一个综合性“地物波谱特性数据库”。

1998年,中国国土资源航空物探与遥感中心建立了“典型岩石矿物波谱数据库”,其中包含了我国主要的典型岩石和矿物500余种。

2000年,中国科学院遥感所基于GIS和网络技术研制了典型地物波谱数据库及其管理系统,记录了10000多条地物波谱,并能动态生成相应的波谱曲线和遥感器模拟波段,实现了波谱数据库与“3S”技术的链接。

2.2高光谱遥感在国外的发展
自80年代以来,美国已经研制了三代高光谱成像光谱仪。

1983年,第一幅由航空成像光谱仪(AIS-1)获取的高光谱分辨率图像的正式出现标志着第一代高光谱分辨率传感器面世。

第一代成像光谱仪(AIS),由美国国家航空和航天管理局(NASA)所属的喷气推进实验室设计,共有两种,AIS-1(1982年~1985年,128波段)和AIS-2(1985年~1987年,128波段),其光谱覆盖范围为1.2~2.4μm。

1987年,由NASA喷气推进实验室研制成功的航空可见光/红外光成像光谱仪(AVIRIS)成为第二代高光谱成像仪的代表。

与此同时,加拿大、澳大利亚、日本等国家竞相投入力量研究成像光谱仪。

在AVIRIS之后,美国地球物理环境研究
公司(GER)又研制了1台64通道的高光谱分辨率扫描仪(GERIS),主要用于环境监测和地质研究。

其中63个通道为高光谱分辨率扫描仪,第64通道是用来存储航空陀螺信息。

第三代高光谱成像光谱仪为克里斯特里尔傅立叶变换高光谱成像仪(FTHSI),其重量仅为35kg,采用256通道,光谱范围为400~1050nm,光谱分辨率为2~10nm,视场角为150°。

而于1999年和2000年发射升空的中分辨率成像光谱仪(MODIS和Hyperion)都已经成为主要的应用数据来源。

2.3高光谱遥感的发展前景
美国的行星地球计划(MTPE)和地球观测系统(EOS)计划是全球性的,一直会延续到2014年以后。

这些计划的最终目的是评价各种地球系统过程,包括水文过程、生物地球化学过程、大气过程及固体地球过程。

成像光谱仪(星载)将成为这些计划实施中的关键仪器。

但是这种星载成像光谱仪仍会面临重大难题,如卫星飞行的高度和速度能引起从空间测量高质量光谱的困难,为精确的测量光谱、辐射值及空间位置的定标需要新的处理方法和能力。

因此,AVIRIS系统和其它航空成像光谱仪将会继续为科研与应用提供高质量的高光谱数据,并用来验证第一代星载成像光谱仪的工作性能。

对于现有的航空成像光谱仪技术系统亦需要完善。

例如,在传感器方面需要改善其获取数据的的性能,提高图像数据的信噪比,增强机上实时数据的处理能力;在数据分析处理方面,强调大气订正、信息提取技术,要求发展新算法和完善已有的算法,并向构成标准化应用处理算法软件包(工具)方向努力,特别是发展和完善那些针对高光谱海量数据和丰富光谱信息特点设计的算法和软件,以提高高光谱数据处理效率以及分析、研究和应用水平。

3高光谱遥感的应用领域
3.1高光谱遥感在地质调查中的应用
区域地质制图和矿产勘探是高光谱技术主要的领域之一,也是高光谱遥感应用中最成功的一个领域。

80年代以来,高光谱遥感被广泛地应用于地质、矿产资源及相关环境的调查中。

最近15 年来的研究表明,高光谱遥感可为地质应用的发展做出重大贡献,尤其是在矿物识别与填图、岩性填图、矿产资源勘探、矿业环境监测、矿山生态恢复和评价等方面。

高光谱遥感能成功地应用于地质领域的主要原因是高光谱遥感有许多不同于宽波段遥感的性质,各种矿物和岩石在电磁波谱上显示的诊断性光谱特征可以帮助人们识别不同矿物成分,高光谱数据能反映出这类诊断性光谱特征。

随着高光谱遥感地质应用的不断扩展和日益深入,高光谱遥感技术和方法也在不断改进。

近年来在基于高光谱数据的矿物精细识别、高光谱影像地质环境信息反演、基于高光谱遥感的行星地质探测等方面取得了突出的进展。

高光谱遥感在地质成因环境探测、蚀变矿物与矿化带的探测、成矿预测、岩性的识别与分类、油气资源及灾害探测、高光谱植被重金属污染探测等方面也有应用。

3.2高光谱遥感在植被研究中的应用
高光谱遥感能够提供图像每个像元高的光谱分辨率,使一些在常规宽波段遥感中不能探测到的物质,在高光谱遥感中能被探测。

高光谱遥感数据能够精确估。

相关文档
最新文档