高光谱遥感的应用

合集下载

国外高光谱农业应用现状

国外高光谱农业应用现状

国外高光谱农业应用已经在许多国家得到广泛应用,并取得了显著的成效。

以下是一些国外高光谱农业应用的现状:
1.作物健康监测:通过高光谱遥感技术,可以对作物的生长状态、营养状况和病虫害情况
进行实时监测。

这有助于农民及时发现植物的健康问题并采取相应的措施,从而提高作物产量和质量。

2.土壤水分管理:高光谱遥感技术可以用来评估土壤的水分状况,帮助农民合理使用灌溉
资源,避免过度灌溉或缺水造成的问题。

通过监测土壤水分,可以达到节水、增产和减少环境风险的目标。

3.植被覆盖分析:高光谱遥感技术可以精确测量和分析植被覆盖率。

这对于农田管理和土
地利用规划非常重要,有助于确定植被的分布和变化,优化农作物种植结构,改善土地利用效益。

4.施肥管理:高光谱遥感技术可以帮助农民进行精确的施肥管理。

通过分析作物叶片的氮
含量和叶绿素浓度,确定植物的营养需求,并根据需要进行合理的施肥,提高肥料利用率,减少环境污染。

5.病虫害监测:高光谱遥感技术可以检测并监测农田中的病虫害情况。

通过分析作物的反
射光谱,可以及早发现植物受到的胁迫和病虫害的侵袭,从而采取相应的防治措施,减少农药使用。

6.农田资源管理:高光谱遥感技术可以评估农田的土壤质量、植被覆盖和地形特征,优化
农田的规划和管理,提高土地利用效率和农业生产的可持续性。

以上只是国外高光谱农业应用的一些例子,实际上还有许多其他领域也在积极探索这项技术的应用,如果园管理、森林资源监测等。

随着技术的不断发展和成熟,高光谱遥感在农业领域的应用前景将更加广阔。

高光谱遥感技术在环境监测中的应用与案例分析

高光谱遥感技术在环境监测中的应用与案例分析

高光谱遥感技术在环境监测中的应用与案例分析一、引言高光谱遥感技术是一种通过采集物体表面反射和辐射的连续光谱信息来获取物质光学特征的技术。

由于其高灵敏度和高分辨率的特点,高光谱遥感技术在环境监测领域广泛应用。

本文将介绍高光谱遥感技术的原理,并通过案例分析探讨其在环境监测中的应用。

二、高光谱遥感技术原理高光谱遥感技术基于物体反射光谱的原理,通过获取物质的光谱特征来进行识别和分析。

传统的遥感技术只能采集三个波段的光谱信息,而高光谱遥感技术则能够采集上百个波段的连续光谱信息。

这种连续光谱信息包含了物体的细微差异,可以更准确地判断物质的组成、含量和状态。

高光谱遥感技术的获取方式多样,包括航空航天遥感技术、卫星遥感技术和无人机遥感技术等。

不同的获取方式适用于不同的场景和需求,可以根据实际情况选择最合适的方式。

三、高光谱遥感技术在环境监测中的应用案例1. 水质监测高光谱遥感技术能够对水体中的溶解性有机物、氨氮、总磷等进行准确测量,通过光谱信息分析可以检测水体中污染物的种类和浓度,为水质监测提供了有力的手段。

例如,在某湖泊水质监测项目中,高光谱遥感技术被应用于测定水中蓝藻的浓度,通过对蓝藻光谱信息的分析,可以实时掌握湖泊蓝藻的分布情况,及时采取治理措施。

2. 土壤环境监测土壤的质量对于农业生产和生态保护至关重要,而高光谱遥感技术可以在更大范围内对土壤环境进行监测和评价。

通过解析土壤的光谱反射特征,可以获得土壤养分含量、重金属污染程度以及土壤湿度等信息。

在一次农业生产中,高光谱遥感技术被应用于实时监测农田土壤的湿度,帮助农民及时调整灌溉措施,提高农作物的生产效率。

3. 空气质量监测空气质量是城市环境监测的重要指标之一,高光谱遥感技术可以通过监测大气中的气体成分和颗粒物浓度来评估空气质量。

例如,某城市在空气质量监测中应用高光谱遥感技术,通过对大气悬浮颗粒物的光谱信息进行分析,能够实时监测并预测空气中颗粒物的释放源和传输路径,为城市环保管理提供科学依据。

高光谱遥感技术在农业测绘中的应用

高光谱遥感技术在农业测绘中的应用

高光谱遥感技术在农业测绘中的应用随着科学技术的不断进步,高光谱遥感技术在农业测绘中的应用也越来越广泛。

高光谱遥感技术是指利用可见光、近红外到短波红外等多个波段的光谱信息,通过遥感技术获取地物的光谱特征,并对其进行分析和解译。

由于农业生产中许多问题与光谱特征有关,因此高光谱遥感技术可以帮助农业测绘人员更好地了解农田情况、提高农作物产量,以及监测农业环境的变化。

以下将从土壤检测、水分监测和作物健康评估三个方面探讨高光谱遥感技术在农业测绘中的应用。

首先,高光谱遥感技术在土壤检测中发挥着重要的作用。

土壤是农业生产的基础,了解土壤的性质对于选择合适的耕作措施和施肥措施十分重要。

传统的土壤检测方法通常需要采集土壤样本并送至实验室进行分析,耗时且成本较高。

而高光谱遥感技术通过对地表反射光谱的观测,可以实时获取土壤光谱信息,从而快速测定土壤的化学成分和质地等参数。

借助高光谱遥感技术,农业测绘人员可以更准确地评估土壤的养分状况和酸碱度,为土壤肥力调控提供科学依据。

其次,高光谱遥感技术在水分监测中也有广泛应用。

水分是农田灌溉的关键因素,合理的灌溉控制可以提高作物产量,降低用水量。

传统的水分监测方法通常通过地面观测或人工测量,但这些方法耗时且局限性较大。

高光谱遥感技术通过测量农田表面的反射光谱,可以在大范围、高时空分辨率下获取土壤湿度信息。

借助高光谱遥感技术,农业测绘人员可以对农田的水分状况进行实时监测,及时调整灌溉措施,实现精准灌溉,提高水资源利用效率。

最后,高光谱遥感技术在作物健康评估中也发挥着重要作用。

作物的生长过程受到多种因素的影响,如气候条件、土壤水分、养分供应等。

通过高光谱遥感技术,可以获取作物在不同光谱波段下的光谱特征,从而评估作物的养分状况、病虫害情况以及抗旱能力等。

借助高光谱遥感技术,农业测绘人员可以及时监测作物的生长状态,提供精准的管理建议,有助于提高作物产量和质量。

综上所述,高光谱遥感技术在农业测绘中有着广泛的应用前景。

高光谱遥感技术在作物生长监测中的应用

高光谱遥感技术在作物生长监测中的应用

高光谱遥感技术在作物生长监测中的应用遥感技术是指通过卫星或飞机等高空观测平台获取地球表面信息的技术。

高光谱遥感技术是其中一种,它可以对物体的反射光谱进行高精度测量和分析,将物体对光的反射光谱分成不同的波段,获取不同波段下物体反射的能力。

这使得高光谱遥感技术成为了作物生长监测的有力工具。

一、高光谱遥感技术在作物生长监测中的基本原理高光谱遥感技术是通过测量远距离目标反射回来的电磁波谱,从而获取地球表面物质的信息。

其基本原理是利用一定波长范围内处于发射状态的伽马矩阵对物体反射光谱进行精细测量和分析。

通过这种方式,可以获得大量的光谱数据,分析出作物主要生长期的生长状态,如叶绿素含量、叶面积指数、植被覆盖率、植被生物量等指标,为研究作物生长提供了可靠的数据依据。

二、高光谱遥感技术在农业生产中的应用非常广泛,尤其在作物生长监测中更是得到了广泛应用。

监测作物的生长状态,是农业生产中的重要环节。

高光谱遥感技术具有非常好的应用前景,可以为我们提供很多有价值的数据指标。

以下是高光谱遥感技术在作物生长监测中的一些应用。

1、植被指数分析植被指数(vi)是利用遥感技术来测量植物的生长状况,其包含了植物叶绿素含量、植被覆盖率、植物生物量等多种参数。

植被指数可以直接反映植物的生长状态,能够在很大程度上反映农作物的生长状态。

通过对植被指数进行分析,农民们可以更加有效地进行农田管理。

2、作物类型分类高光谱遥感技术可以识别出不同形态和特征的植被类型,包括水稻、小麦、玉米、大豆等,能够分别进行精准的作物分类和区别,从而为作物科学监测和长期管理提供了依据。

对于农民而言,它能够减少不必要的浪费和时间成本,提高生产率。

3、水分追踪作物在整个生长周期中,需要不断地吸收水分以维持正常的生长状态。

高光谱遥感技术通过监测地表植物覆盖状态和土壤水分含量,可以在作物生态系统h中追踪水的分布和运动状态。

这种方法可以有效地减少水的浪费,提高水的使用效率,为作物的健康生长提供保障。

高光谱遥感的原理与应用

高光谱遥感的原理与应用

高光谱遥感的原理与应用1. 高光谱遥感技术简介•高光谱遥感是一种用于获取地面物体光谱信息的遥感技术。

•与传统遥感技术相比,高光谱遥感具有更高的波段分辨率和更丰富的光谱信息。

•高光谱遥感技术的原理是通过采集地面物体在可见光和近红外波段的光谱反射信息,来获取物体的光谱特征。

2. 高光谱遥感的原理•高光谱遥感利用高光谱仪器来收集地面物体在一系列窄波段上的光谱反射数据。

•高光谱仪器通常由特定波段的传感器阵列组成,每个传感器负责收集一个波段的光谱数据。

•地面物体的光谱特征可以通过分析被收集到的光谱数据来确定。

3. 高光谱遥感的应用领域•农业:利用高光谱遥感技术可以监测作物的生长状态、优化农田管理以及检测病虫害等问题。

•矿产资源勘探:高光谱遥感可以检测矿产资源的类型和分布,有助于矿产资源勘探和开发。

•环境监测:高光谱遥感可以监测水体质量、土壤污染程度等环境参数,有助于环境保护和资源管理。

•森林火灾监测:通过高光谱遥感技术可以实时监测森林火灾的扩散情况,有助于及时采取灭火措施。

•城市规划:高光谱遥感可以提供城市土地利用信息,有助于城市规划和土地管理。

4. 高光谱遥感技术的优势•高光谱遥感技术具有较高的波段分辨率,可以获取更详细的光谱信息。

•高光谱遥感技术可以提供更准确的地物分类和识别能力。

•高光谱遥感技术可以探测隐蔽的物体特征,对物体的构成和结构提供更深入的了解。

•高光谱遥感技术具有较高的空间分辨率,可以提供更精细的地物信息。

5. 高光谱遥感技术的挑战和发展方向•数据处理:高光谱遥感技术生成的数据量巨大,对数据处理的算法和技术提出了新的挑战。

•传感器技术:高光谱遥感仪器的性能和稳定性需要不断提升,以满足复杂环境下的需求。

•数据标定和校正:高光谱遥感数据需要进行标定和校正,来消除传感器和大气等因素对数据的影响。

•数据分析和解释:高光谱遥感技术生成的数据需要进行分析和解释,以提取有用的地物信息。

6. 结论高光谱遥感技术是一种重要的遥感技术,具有广泛的应用前景。

高光谱遥感技术在土壤养分监测中的应用

高光谱遥感技术在土壤养分监测中的应用

高光谱遥感技术在土壤养分监测中的应用随着科技的不断进步,高光谱遥感技术在许多领域中展现出了广阔的应用前景。

其中,其在土壤养分监测中的应用不仅为农业生产提供了重要的数据支持,同时也为环境保护和可持续发展做出了积极贡献。

一、高光谱遥感技术概述高光谱遥感技术是一种利用地球观测卫星对地球表面进行连续、多通道和连续的光谱测量的技术。

相较于传统遥感技术,高光谱遥感技术具有更高的空间和光谱分辨率,能够捕捉到更多的光谱信息,从而提供更为准确的土壤养分监测数据。

二、高光谱遥感技术在土壤养分监测中的优势1. 高精度的光谱信息高光谱遥感技术能够提供丰富的光谱信息,能够对土壤中各种物质进行准确识别和定量分析。

通过测量土壤表面的反射光谱,可以推断土壤中的氮、磷、钾等养分的含量,进一步提高土壤管理的精细化程度。

2. 大范围的监测能力传统的土壤养分监测工作通常需要采集大量的土壤样本,并进行实验室分析,过程繁琐且耗时。

而高光谱遥感技术可以实现对广大区域土壤的同时监测,大大提高了监测的效率和覆盖范围。

3. 长时间序列的监测高光谱遥感技术可以实现对土壤养分的长时间序列监测,通过连续观测土壤的光谱变化,可以追踪土壤中养分的动态变化,并及时采取相应的管理措施。

这对于农业生产的可持续发展非常重要。

三、高光谱遥感技术在土壤养分监测中的应用案例1. 土壤类型分类高光谱遥感技术能够通过分析土壤表面的光谱信息来判断土壤类型,从而为土壤肥力评价和农田规划提供基础数据。

例如,通过分析土壤的光谱特征,可以划分出不同的土壤类型,进而根据不同的土壤类型制定相应的土壤养分管理方案。

2. 养分含量测定高光谱遥感技术可以直接或间接反演土壤中的养分含量。

通过建立土壤光谱与养分含量之间的关系模型,可以通过遥感数据反演土壤中的氮、磷、钾等养分含量。

这种无需采样的方法不仅提高了监测效率,还降低了采样带来的干扰。

3. 养分时空变化监测高光谱遥感技术还可以实现土壤养分的时空动态监测。

高光谱成像在遥感中的应用

高光谱成像在遥感中的应用

高光谱成像在遥感中的应用1. 引言遥感技术是通过对地球表面的光谱、热力、电磁辐射等信息进行测量和分析,从而获取地表信息的一种手段。

高光谱成像是遥感技术中的一项重要技术,它能够获取被观测物体在数百个连续的光谱波段上的信息。

本文将探讨高光谱成像在遥感中的应用及其优势。

2. 高光谱成像的原理高光谱成像利用一个连续的光谱范围,将被观测物体的反射、辐射或发射光谱信息以光谱图像的形式记录下来。

相比于传统的彩色图像,高光谱图像包含了更丰富的光谱信息,能够提供更多种类的地表特征。

高光谱成像技术主要依赖于高光谱成像仪器,其通过分光光栅将光分成不同的波段,然后通过具有高灵敏度和高空间分辨率的光学传感器捕捉每个波段的图像。

3. 高光谱成像在地质勘探中的应用地质勘探是指通过对地质构造、矿产资源等进行调查和研究的一种手段。

传统的地质勘探通常依赖于地质样品的采集和实地勘探,而高光谱成像技术能够通过对地表光谱数据的分析,准确识别出不同的地质类型。

例如,高光谱成像可以用于矿产资源的预测和探测,通过识别不同波长下矿物质的光谱特征,可以定量地评估矿床分布和矿床类型。

此外,高光谱成像还可以用于确定地下水资源的分布情况,为地下水的开发利用提供信息支持。

4. 高光谱成像在农业中的应用农业是一个多因素综合作用的复杂系统,对农作物的监测和管理需要全面的信息支持。

高光谱成像技术可以通过对农田的高光谱图像进行分析,提供精准的作物信息。

例如,高光谱成像可以用于农作物的远程监测和应力识别。

通过分析不同波段下植被的光谱反射率,可以测量植被的生理指标,如叶绿素含量、叶面积指数等,进而判断作物生长状态和营养状况。

此外,高光谱成像还可以用于病虫害的预警和监测,通过识别不同病虫害对植物的光谱特征影响,及时发现问题并采取措施。

5. 高光谱成像在环境监测中的应用环境监测是指对环境污染、资源利用和环境质量等进行监测和评价的活动。

高光谱成像技术具有高灵敏度和高空间分辨率的特点,可以对大范围的地区进行高精度的环境监测。

高光谱遥感技术在环境监测中的应用

高光谱遥感技术在环境监测中的应用

高光谱遥感技术在环境监测中的应用高光谱遥感技术是一种通过获取地面物体的光谱信息,并通过光谱分析来推断物体的性质和组成的遥感技术。

它具有高精度、高分辨率、大范围、实时性强等优势,在环境监测中得到了广泛的应用。

本文将深入探讨高光谱遥感技术在环境监测中的应用。

首先,高光谱遥感技术可以用于水质监测。

水质是生态环境的重要组成部分,对人类和生态系统都具有重要影响。

通过高光谱遥感仪器获取水体反射谱线,可以分析出水体的透明度、浊度、富营养化程度、水色等关键指标。

通过对水体光谱的分析,可以实现对水体中悬浮物、藻类和溶解有机物等的监测,为水质改善和保护提供科学依据。

其次,高光谱遥感技术也可以应用于土壤监测。

土壤是农田和森林生态系统的重要组成部分,对农作物生长和生态恢复至关重要。

高光谱遥感技术可以获取土壤的反射光谱,并通过光谱分析来评估土壤的质地、含水量、养分含量等关键参数。

根据这些参数的测量结果,可以精确地制定土壤肥力调整和施肥方案,提高农作物的产量和质量,实现可持续农业发展。

同时,高光谱遥感技术在植被监测中也具有重要应用。

植被覆盖是环境监测和生态恢复的重要指标之一。

通过高光谱遥感技术获取植被反射谱线,可以分析出植被的生理状态、叶绿素含量、植被类型等关键信息。

这些信息可用于评估植被的健康状况、植被覆盖度以及生物量,为植被保护、生态恢复和生态系统管理提供科学依据。

另外,高光谱遥感技术还可以应用于大气污染监测。

大气污染对人们的健康和生态系统都具有严重危害,因此对大气污染的监测和预警非常重要。

通过高光谱遥感技术,可以获取大气中的颗粒物和气体的反射、散射光谱,通过光学模型分析得出大气中的颗粒物浓度、气体浓度等关键参数。

这些数据可以用于评估大气质量、掌握污染源分布和变化情况,为大气污染治理和应急响应提供指导。

最后,高光谱遥感技术在城市环境监测中也具有重要应用。

城市化进程快速推进,城市环境问题日益突出。

高光谱遥感技术可以获取城市地表的光谱信息并进行分析,识别并定量监测城市地表的构成元素、城市扩张规模、建筑物高度等关键参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.数据量大,信息冗余多。高光谱数据的波段 众多,其数据量巨大,而且由于相邻波段的相 关性高,信息冗余度增加。
5.数据描述模型多,分析更加灵活。高光谱 影像通常有三种描述模型:图像模型、光谱 模型与特征模型。
高光谱遥感应用在哪些方面:
一、高光谱遥感在地质调查中的应用 二、高光谱遥感在植被研究中的应用 三、高光谱遥感在其他领域中的应用
高光谱具有的特点:
1.坡段多,波段宽度窄 2.光谱响应范围广,光谱分辨率高 3.可提供空间域信息和光谱域信息 4.数据量大,信息冗余多 5.数据描述模型多,分析更加灵活
1.坡段多,波段宽度窄。成像光谱仪在可见光 和近红外光谱区内有数十甚至数百个波段。与 传统的遥感相比,高光谱分辨率的成像光谱仪 为每一个成像像元提供很窄的(一般为 <10nm)成像波段,波段数与多光谱遥感相比 大大增多,在可见光和近红外波段可达几十到 几百个,且在某个光谱区间事连续分布的,这 不只是简单的数量的增加,而是有关地物光谱 空间信息量的增加。
3.混合光谱分解技术
用以确定在同一像元内不同地物光谱成分所 占的比例或非已知成分。因为不同地物光谱成 分的混合会改变波段的深度,波段的位置,宽 度,面积和吸收的程度等。这种技术采用矩形 方程,神经元网络方法以及光谱吸收指数技术 等,求出在给定像元内各成分光谱的比例。
4.光谱分类技术
• 主要的方法包括传统的最大似然方法、人 工神经网络方法、支持向量机方法和光谱 角制图方法(Spectral Angel Map-per, SAM)。
2.光谱响应范围广,光谱分辨率高。成像光谱仪 响应的电磁波长从可见光延伸到近红外,甚至 到中红外。成像光谱仪采用的间隔小,光谱分 辨率达到纳米级,一般为10nm左右。精细的光 谱分辨率反映了地物光谱的细微特征。
3.可提供空间域信息和光谱域信息,即“谱 像合一”,并且由成像光谱仪得到的光谱曲 线可以与地面实测的同类地物光谱曲线相类 比。在成像高光谱遥感中,以波长为横轴, 灰度值为纵轴建立坐标系,可以使高光谱图 像中的每一个像元在各通道的灰度值都能产 生一条完整、连续的光谱曲线,即所谓的 “谱像合一”。
Байду номын сангаас
5.光谱维特征提取方法
可以按照一定的准则直接从原始空间中选 出一个子空间;或者在原特征空间之间找到 某种映射关系。这一方法是以主成分分析为 基础的改进方法。
6、模型方法
是模型矿物和岩石反射光谱的各种模型方法 。 因为高光谱测量数据可以提供连续的光谱抽样 信息,这种细微的光谱模型特征是模型计算一 改传统的统计模型方法建立起确定性模型方法。 因而,模型方法可以提供更有效和更可靠的分 析结果。
一、高光谱遥感在地质调查中的应用
• • • • • 高光谱地质应用的历史 国内外高光谱地质应用技术与方法 国内外高光谱地质应用主要进展 高光谱地质应用的领域与实例 存在的主要问题
高光谱地质应用的历史
• 从 20 世纪 70 年代末至 80 年代初美国提 出高光谱遥感概念模型并研制成像光谱仪 以来,世界各国进行高光谱遥感的应用。 • 80 年代以来,高光谱遥感被广泛地应用于 地质、矿产资源及相关环境的调查中。 • 我国在20世纪80年代末开展了高(成像)光谱 技术的研究,取得了极大的进展
1.光谱微分技术
包括对反射光谱进行数学模拟和计算不同阶数的 微分(差分)值,以确定光谱弯曲点和最大最小反射 率的波长位置。 光谱微分强调曲线的变化和压缩均值影响。 一阶微分去除部分线性或接近线性的背景、噪声 光谱对目标光谱(须为非线性的)的影响。
2.光谱匹配技术
是对地物光谱和实验室测量的参考光谱进行 匹配或地物光谱与参考光谱数据库比较,求得 它们之间的相似或差异性,一达到识别的目的。 两个光谱曲线的相似性常用计算的交叉相关系 数及绘制交叉相关曲线图来确定。
国内外高光谱地质应用主要进展
• • • • 多层次的高光谱信息获取体系 基于高光谱数据的矿物精细识别 高光谱影像地质环境信息反演 基于高光谱遥感的行星地质探测
多层次的高光谱信息获取体系
地面光谱仪主要有澳大利亚的 PIMA,美国的 ASD、 GER、热红外 FT-IR; 机载成像光谱仪:美国的 VIRIS、 澳大利亚的 HyMap、加拿大的 CASI 系列等;中科院开发的 机载 OMIS 系列、PHI、 干涉成像光谱仪。 星载成像光谱仪美国的 Hyperion,德国的 EnMAP 和日本的 Hyper-X。 在外星探测中,有火星探测 热红外高光谱仪等,中 国和印度的探月计划中也将搭载高光谱仪。
国内外高光谱地质应用技术与方法
1.光谱微分技术(spectral derivative) 2.光谱匹配技术 (spectral matching) 3.混合光谱分解技术(spectral unmixing) 4.光谱分类技术(spectral classification) 5.光谱特征提取(spectral feature extraction) 6.模型方法(modeling)
高光谱遥感定义:
高光谱遥感是在电磁波谱的可见光、近红外、 中红外和热红外波段范围内,利用成像光谱仪 获取许多非常窄的光谱连续的影像数据的技术。 高光谱遥感具有较高的光谱分辨率,通常达到 10~2λ数量级。
高光谱遥感技术简介 高光谱遥感技术是近些年来迅速发展起来的一种全新的遥感技 术,它是集探测器技术、精密光学机械、微弱信号检测、计算机技 术、信息处理技术于一体的综合性技术。在成像过程中,它利用成 像光谱仪以纳米级的光谱分辨率,以几十或几百个波段同时对地表 地物成像,能够获得地物的连续光谱信息,实现了地物空间信息、 辐射信息、光谱信息的同步获取,因而在相关领域具有巨大的应用 价值和广阔的发展前景。同其他常用的遥感手段相比,成像光谱仪 获得的数据具有以下特点:波段多;光谱分辨率高;相邻波段的相关 性高,数据冗余大;空间分辨率较高。高光谱遥感由于具有很高的 光谱分辨率,因而能够提供更为丰富的地面信息。其正在受到国内 外的广泛关注,并在诸如农业、海洋、林业、军事、宇宙和天文学 等领域发挥着越来越重要的作用,越来越多的地物因子可以用高光 谱数据反演,而且精度不断提高。笔者主要介绍高光谱遥感在植被 信息提取研究中的进展和应用展望。
相关文档
最新文档