考研数学二真题(1999年)
考研数学二历年真题(2000-2012)

2 2
的极值.
(17)(本题满分 12 分) 过 (0,1) 点作曲线 L : y ln x 的切线,切点为 A ,又 L 与 x 轴交于 B 点,区域 D 由 L 与直线 A B 围成,求区域 D 的面积及 D 绕 x 轴旋转一周所得旋转体的体积. (18)(本题满分 10 分) 计算二重积分 xy d ,其中区域 D 为曲线 r 1 cos 0 与极轴围成.
D
(19)(本题满分 10 分) 已知函数 f ( x ) 满足方程 f ( x ) f ( x ) 2 f ( x ) 0 及 f ( x ) f ( x ) 2 e x , (I) 求 f ( x ) 的表达式; (II) 求曲线 y f ( x 2 ) f ( t 2 )d t 的拐点.
(6) 设区域 D 由曲线 y sin x , x
, y 1 围成,则 ( x y 1)d x d y
5 D
( (A) (B) 2 (C) -2 (D) -
)
0 0 1 1 (7) 设 α 1 0 , α 2 1 , α 3 1 , α 4 1 ,其中 c1 , c 2 , c 3 , c 4 为任意常数,则下列向量 c c c c 2 3 4 1
*
1 T (8)设 A , P 均为 3 阶矩阵, P 为 P 的转置矩阵,且 P A P = 0 0
T
0 1 0
0 0 ,若 2
)
T ,则 Q A Q 为( P= ( 1, 2, 3) , Q = ( 1 + 2, 2, 3)
2 A . 1 0 2 C . 0 0
考研数学二真题33套:1985年至2018年

u v , . x x
3 0 1 (2)设矩阵 A 和 B 满足关系式 A B = 2 B , 其中 A 1 1 0 , 求矩阵 B. 0 1 4
四、(本题满分 8 分) 求微分方程 y 6 y (9 a 2 ) y 1 的通解,其中常数 a 0.
L
(2 xy 2 y )dx ( x 2 4 x)dy =
_____________. (5) 已 知 三 维 向 量 空 间 的 基 底 为 α1 (1,1, 0), α 2 (1, 0,1), α 3 (0,1,1), 则 向 量
β ( 2 , 0 , 0 ) 在此基底下的坐标是_____________.
五、选择题(本题共 4 小题,每小题 3 分,满分 12 分.每小题给出的四个选项中,只 有一个符合题目要求,把所选项前的字母填在题后的括号内)
(a ) (1)设 lim f ( x ) f 2 1, 则在 x a 处
xa
( x a)
( (B) (D)
f (x) f (x)
) 取得极大值 的导数不存在 的值( )
为人服务-2018
(含 33 年共 33 套研究生《数学一》历年真 题)1985 年—2018 年全国硕士研究生入学统一考 试《数学一》真题试卷及参考答案(含 33 年历年 真题 33 套)
温馨提示:已排版编辑好,可直接打印,省力、省时!祝你应考成功! 全国硕士研究生入学统一考试《数学一》真题试卷目录(33 套)
y 1 t z 2 t y ln x
与两直线
y e 1 x
及
y0
所围成的平面图形的面积是
及 x 1 y 2 z 1 都平行且过原点的平面方
[考研类试卷]考研数学二(高等数学)历年真题试卷汇编33.doc
![[考研类试卷]考研数学二(高等数学)历年真题试卷汇编33.doc](https://img.taocdn.com/s3/m/0a7955f002768e9951e738f2.png)
[考研类试卷]考研数学二(高等数学)历年真题试卷汇编33一、解答题解答应写出文字说明、证明过程或演算步骤。
0 函数f(x)在[0,+∞)上可导,f(0)=1且满足等式f'(x)+f(x)-∫0x f(t)dt=0。
1 求导数f'(x);2 证明:当x≥0时,成立不等式e-x≤f(x)≤1成立。
3 利用代换y=u/cosx将方程y"cosx-2y'sinx+3ysinx=e x化简,并求出原方程的通解。
4 设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,且此曲线上点(0,1)处的切线方程为y=x+1,求该曲线的方程,并求函数y=y(x)的极值。
5 某湖泊的水量为V,每年排入湖泊内含污染物A的污水量为V/6,流入湖泊内不含A的水量为V/6,流出湖泊的水量为V/3,已知1999年底湖中A的含量为5m0,超过国家规定指标。
为了治理污染,从2000年初起,限定排入湖泊中含A 污水的浓度不超过m0/V。
问至多需要经过多少年,湖泊中污染物A的含量降至m0以内。
(注:设湖水中A的浓度是均匀的)6 设函数f(x),g(x)满足f'(x)=g(x),g'(x)=2e x-f(x),且f(0)=0,g(0)=2,求∫0π[]dx。
7 设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0)。
(Ⅰ)试求曲线L的方程;(Ⅱ)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形面积最小。
7 设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y'≠0,x=x(y)是y=y(x)的反函数。
8 试将x=x(y)所满足的微分方程+(y+sinx)(dx/dy)3=0变换为y=y(x)满足的微分方程;9 求变换后的微分方程满足初始条件y(0)=0,y'(0)=2/3的解。
[考研类试卷]考研数学二(函数、极限、连续)历年真题试卷汇编1.doc
![[考研类试卷]考研数学二(函数、极限、连续)历年真题试卷汇编1.doc](https://img.taocdn.com/s3/m/acb2e696240c844768eaee18.png)
(B)必要条件但非充分条件
(C)充分必要条件
(D)既非充分条件又非必要条件
8 (1998年试题,二)设数列xn满足 xnyn=0,则下列断言正确的是( ).
(A)若xn发散,则yn必发散
(B)若xn无界,则yn必有界
(C)若xn有界,则yn必为无穷小
(D)若 为无穷小,则yn必为无穷小
[考研类试卷]考研数学二(函数、极限、连续)历年真题试卷汇编1
一、选择题
下列每题给出的四个选项中,只有一个选项符合题目要求。
1 (2005年试题,二)设F(x)是连续函数f(x)的一个原函数,“ ”表示“M的充分必要条件是N”,则必有( )。
(A)F(x)是偶函数 f(x)是奇函数
(B)F(x)是奇函数 (x)是偶函数
(A)充分必要条件
(B)充分非必要条件
(C)必要非充分条件
(D)非充分也非必要条件
6 (2003年试题,二)设{an},{bn},{cn}均为非负数列,且 =∞,则必有( )。
(A)ann对任意n成立
(B)bnn对任意n成立
(C)极限 ancn不存在
(D)极限 bncn不存在
7 (1999年试题,二)“对任意给定的ε∈(0,1),总存在正整数N,当n≥N时,恒有|xn一a|≤2ε”是数列{xn}收敛于a的( ).
35 (2002年试题,一)
36 (1999年试题,十)设f(x)是区间[0,+∞)上单调减少且非负的连续函数, 证明数列{an}的极限存在.
9 (2002年试题,二)设y=y(x)是二阶常系数微分方程yn+py'+qy=e3x满足初始条件y(0)=y'(0)=0的特解,则当x→0时,函数 的极限( ).
考研数二历年真题答案

考研数二历年真题答案为了帮助考研数学二科目的学生更好地备考,以下整理了近几年的考研数学二历年真题及其详细答案。
通过仔细研究和解析这些真题,考生们可以更好地了解考试内容和出题思路,从而更有针对性地复习和备考。
一、2000年考研数学二真题及答案(下面是2000年考研数学二的真题及其答案,请考生查看。
)二、2001年考研数学二真题及答案(下面是2001年考研数学二的真题及其答案,请考生查看。
)三、2002年考研数学二真题及答案(下面是2002年考研数学二的真题及其答案,请考生查看。
)四、2003年考研数学二真题及答案(下面是2003年考研数学二的真题及其答案,请考生查看。
)五、2004年考研数学二真题及答案(下面是2004年考研数学二的真题及其答案,请考生查看。
)六、2005年考研数学二真题及答案(下面是2005年考研数学二的真题及其答案,请考生查看。
)七、2006年考研数学二真题及答案(下面是2006年考研数学二的真题及其答案,请考生查看。
)八、2007年考研数学二真题及答案(下面是2007年考研数学二的真题及其答案,请考生查看。
)九、2008年考研数学二真题及答案(下面是2008年考研数学二的真题及其答案,请考生查看。
)十、2009年考研数学二真题及答案(下面是2009年考研数学二的真题及其答案,请考生查看。
)十一、2010年考研数学二真题及答案(下面是2010年考研数学二的真题及其答案,请考生查看。
)十二、2011年考研数学二真题及答案(下面是2011年考研数学二的真题及其答案,请考生查看。
)十三、2012年考研数学二真题及答案(下面是2012年考研数学二的真题及其答案,请考生查看。
)十四、2013年考研数学二真题及答案(下面是2013年考研数学二的真题及其答案,请考生查看。
)十五、2014年考研数学二真题及答案(下面是2014年考研数学二的真题及其答案,请考生查看。
)十六、2015年考研数学二真题及答案(下面是2015年考研数学二的真题及其答案,请考生查看。
考研数学二(微分方程)历年真题试卷汇编2.doc

考研数学二(微分方程)历年真题试卷汇编2(总分:62.00,做题时间:90分钟)一、选择题(总题数:9,分数:18.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
(分数:2.00)__________________________________________________________________________________________ 2.(2010年试题,2)设y 1,y 1是一阶非齐次微分方程y " +p(x)y=q(x)的两个特解,若常数λ,μ使λy 1 +μy 2是该方程的解,λy 1一μy 2是该方程对应的齐次方程的解,则( ).(分数:2.00)3.(2003年试题,二) 2.00)4.(1998年试题,二)已知函数y=y(x)在任意点x 2.00)B.2πC.π5.(2011年试题,一)微分方程y "一λ2 y=e λx +e -λx (λ>0)的特解形式为( ).(分数:2.00)A.a(e λx +e -λx )B.ax(e λx +e一-λx )C.x(ae λx +be -λx )D.x 2 (ae λx +be -λx )6.(2008年试题,一)在下列微分方程中,以y=C 1 e x +C 2 cos2x+C 3 sin2x(C 1,C 2,C 3为任意常数)为通解的是( ).(分数:2.00)A.y """ +y ""一4y " -4y=0B.""" +y "" +4y " +4y=0C.""" -y "" -4y " -4y=0D.""" -y "" +4y " -4y=07.(2006年试题,二)函数y=C 1 e x +C 2 e -2x +xe x满足的一个微分方程是( ).(分数:2.00)A.y ""一y "一2y=3xe xB.y ""一y "一2y=3e xC.y "" +y "一2y=3xe xD.y ""一y "一2y=3e x8.(2004年试题,二)微分方程y "" +y=x 2 +1+sinx的特解形式可设为( ).(分数:2.00)A.y * =ax 2 +bx+c+x(Asinx+Bcosx)B.)y * =x(ax 2 +bx+c+Asinx+Bcosx)C.y * =ax 2 +bx+c+AsinxD.y * =ax 2 +bx+c+Acosx9.(2000年试题,二)具有特解y 1=e -x,y 2=2xe -x,y 3=3e x的三阶常系数齐次线性微分方程是( ).(分数:2.00)A.y """一y ""一y " +y=0B.y """ +y ""一y "一y=0C.y """一6y "" +11y "一6y=0D.y """一2y ""一y " +2y=0二、填空题(总题数:11,分数:22.00)10.(2012年试题,二)微分方程ydx+(x一3y 2 )dy=0满足条件y|x=1 =1的解为y= 1.(分数:2.00)填空项1:__________________11.(2011年试题,二)微分方程y " +y=e -x满足条件y(0)=0的解为y= 1(分数:2.00)填空项1:__________________12.(2008年试题,二)微分方程(y+x 2 e -x )dx一xdy=0的通解是 1.(分数:2.00)填空项1:__________________13.(2006年试题,一) 2.00)填空项1:__________________14.(2005年试题,一)微分方程xy " +2y=xlnx满足 2.00)填空项1:__________________15.(2004年试题,一)微分方程(y+x 2 )dx一2xdy=0满足 2.00)填空项1:__________________16.(2001年试题,一) 2.00)填空项1:__________________17.(2002年试题,一)微分方程xy "" +y 12 =0满足初始条件 2.00)填空项1:__________________18.(2010年试题,9)三阶常系数线性齐次微分方程y """一2y "" +y "一2y=0通解为y= 1.(分数:2.00)填空项1:__________________19.(2007年试题,二)二阶常系数非齐次线性微分方程y ""一4y "+3y=2e 2x的通解为y= 1.(分数:2.00)填空项1:__________________20.(1999年试题,一)微分方程y ""一4y=e 2x的通解为 1.(分数:2.00)填空项1:__________________三、解答题(总题数:11,分数:22.00)21.解答题解答应写出文字说明、证明过程或演算步骤。
1999年全国硕士研究生入学统一考试数学二试题答案与解析

1999年全国硕士研究生入学统一考试数学二试题答案与解析一、填空题(本题5小题,每小题3分,满分15分。
把答案填在题中横线上。
) (1)曲线sin 2,cos x e t y e t'=⎧⎨'=⎩在点()0,1处的法线方程为___________。
【思路点拔】本题的考点是曲线的法线方程。
欲求曲线的法线方程,需先求曲线法线斜率,即与曲线方程的一阶导数值乘积为-1的数,然后由直线的点斜式即可求曲线的法线方程。
【解题分析】cos sin sin 22cos 2x y t t ty x t t t'-'=='+。
()(),0,1x y =对应0t =,012xt y ='=,所求法线方程为12y x -=-。
即21x y +=。
(2)设函数()y y x =由方程()23ln sin x y x y x +=+确定,则x dy dx==_________。
【思路点拔】本题的考点是隐函数求导。
隐函数求导有两种方法:解法一,直接求导法;解法二,利和我函数的求导公式求解。
【解题分析】解法一:方程两边对x 求导得32223cos x y x y x y x x y'+'=+++。
以0x =代入原方程得ln 0y =,1y =;以0x =,1y =代入32223cos x y x y x y x x y'+'=+++。
得01x y ='=。
解法二:令()()23ln sin F x y x y x y x ⋅=+--22123sin Fx x x y x x y=⋅--+ 321Fy x x y=-+ dy Fxdx Fy=()()()2223223cos 1x x y x y x x y x x y -+-+=--+由题意:0x =时,1y =∴1x dy dx==。
(3)25613x dx x x +=-+⎰______________。
历年考研数学历年真题

下载链接到个年真题做真题填空选择都要做到400那么顺手。
2011年考研数学必备——1996年到2010年——15年考研数学真题(数1、数2、数3、数4)大汇总——免费下载2010年全国硕士研究生入学考试数学一试题2010年全国硕士研究生入学考试数学二试题2010年全国硕士研究生入学考试数学三试题2009年全国硕士研究生入学统一考试数学一试题2009年全国硕士研究生入学统一考试数学二试题2009年全国硕士研究生入学统一考试数学三试题2008年全国硕士研究生入学统一考试数学一试题2008年全国硕士研究生入学统一考试数学二试题2008年全国硕士研究生入学统一考试数学三试题2008年全国硕士研究生入学统一考试数学四试题2007年全国硕士研究生入学统一考试数学一试题2007年全国硕士研究生入学统一考试数学二试题2007年全国硕士研究生入学统一考试数学三试题2007年全国硕士研究生入学统一考试数学四试题2006年全国硕士研究生入学统一考试数学一试题2006年全国硕士研究生入学统一考试数学二试题2006年全国硕士研究生入学统一考试数学三试题2006年全国硕士研究生入学统一考试数学四试题2005年全国硕士研究生入学统一考试数学一试题2005年全国硕士研究生入学统一考试数学二试题2005年全国硕士研究生入学统一考试数学三试题2005年全国硕士研究生入学统一考试数学四试题2004年全国硕士研究生入学统一考试数学一试题2004年全国硕士研究生入学统一考试数学二试题2004年全国硕士研究生入学统一考试数学三试题2004年全国硕士研究生入学统一考试数学四试题2003年全国硕士研究生入学统一考试数学一试题2003年全国硕士研究生入学统一考试数学二试题2003年全国硕士研究生入学统一考试数学三试题2003年全国硕士研究生入学统一考试数学四试题2002年全国硕士研究生入学统一考试数学一试题2002年全国硕士研究生入学统一考试数学二试题2002年全国硕士研究生入学统一考试数学三试题2002年全国硕士研究生入学统一考试数学四试题2001年全国硕士研究生入学考试数学一试题2001年全国硕士研究生入学考试数学二试题2001年全国硕士研究生入学考试数学三试题2001年全国硕士研究生入学考试数学四试题2000年全国硕士研究生入学考试数学一试题2000年全国硕士研究生入学考试数学二试题2000年全国硕士研究生入学考试数学三试题2000年全国硕士研究生入学考试数学四试题1999年全国硕士研究生入学考试数学一试题1999年全国硕士研究生入学考试数学二试题1999年全国硕士研究生入学考试数学三试题1999年全国硕士研究生入学考试数学四试题1998年全国硕士研究生入学考试数学一试题1998年全国硕士研究生入学考试数学二试题1998年全国硕士研究生入学考试数学三试题1998年全国硕士研究生入学考试数学四试题1997年全国硕士研究生入学考试数学一试题1997年全国硕士研究生入学考试数学二试题1997年全国硕士研究生入学考试数学三试题1997年全国硕士研究生入学考试数学四试题1996年全国硕士研究生入学考试数学一试题1996年全国硕士研究生入学考试数学二试题1996年全国硕士研究生入学考试数学三试题1996年全国硕士研究生入学考试数学四试题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
lim
x0
1 tan x 1 sin x . x ln 1 x x 2
四、(本题满分6分) 计算
1
arctan x dx . x2
第 2 页 共 18 页
五、(本题满分7分)
求初值问题
y x 2 y 2 dx xdy 0(x 0) 的解. 0 y x1
用, , ,线性表出; 1 2 4
(2) p 为何值时,该向量组线性相关?并此时求出它的秩和一个极大线性无关组.
第 6 页 共 18 页
1999 年全国硕士研究生入学统一考试 数二试题解析
一、填空题
(1)、 y 2x 1 0
解:点 0,1 对应t 0 ,则曲线在点0,1 的切线斜率为
1999 年全国硕士研究生入学统一考试 数二试题
一、填空题(本题共5小题,每小题3分,满分15分。把答案填在题中横线上。) (1) 曲线
x et sin 2t y et cos t
,在点0,1 处的法线方程为
(2) 设函数 y y x 由方程ln x2 y x3 y sin x 确定,则
x 2 x 1 x 2 x 3 2x 2 2x 1 2x 2 2x 3 为 f x ,则方程 f x 0 的根的个数为( (5)记行列式 3x 3 3x 4x 5 3x 5 4x 4x 3 5x 7 4x 3
(A) 1. 三、(本题满分5分) 求 (B) 2. (C) 3. (D) 4.
5x 0
sin t dt ,x t
sin x 0
1 t t dt ,则当 x 0 时x 是 x 的
(B)低阶无穷小 (D)等价无穷小 )
1
(
)
(A)高阶无穷小 (C)同阶但不等价的无穷小 (
(3)设 f (x) 是连续函数, F x 是 f (x) 的原函数,则 (A)当 f (x) 是奇函数时, F x 必是偶函数.
第 3 页 共 18 页
七、(本题满分 8 分) 已知函数 y
x3
x 1
2
,求
(1)函数的增减区间及极值; (2)函数图形的凹凸区间及拐点 (3)函数图形的渐近线.
八、(本题满分 8 分) 设函数 f x 在闭区间1,1上具有三阶连续导数,且 f 1 0 , f 1 1 , f 0 0 ,证明:在 开区间1,1 内至少存在一点,使 f 3 .
1 cos x , x 0 x ,其中 g x 是有界函数,则 f ( x) 在 x 0 处 ( (1) 设 f ( x) x 2g x , x 0
(A) (B) (C) (D) 极限不存在. 极限存在,但不连续. 连续,但不可导. 可导.
)
(2) 设x
第 4 页 共 18 页
九、(本题满分 9 分)
设函数 y x x 0 二阶可导,且 y x 0 , y 0 1 .过曲线 y y x 上任意一点 P x, y 作该曲
线的切线及 x 轴的垂线,上述两直线与 x 轴所围成的三角形的面积记为 S1 ,区间0, x上以 y y x 为曲 边的曲边梯形面积记为 S2 ,并设2S1 S2 恒为 1,求此曲线 y y x 的方程.
六、(本题满分7分) 为清除井底的污泥,用缆绳将抓斗放入井底,抓起污泥后提出井口 见图,已知井深30m 30m,抓斗自重 400N , 缆绳每米重50N ,抓斗抓 起的污泥重 2000N ,提升速度为3m / s ,在提升过程中,污泥以 20N / s 的速度从抓斗缝隙中漏掉,现将抓起污泥的抓斗提升至井口,问克服重 力需作多少焦耳的功?(说明:①1N 1m 1J ; 其中m, N , s, J 分别表示 米,牛顿,秒,焦耳;②抓斗的高度及位于井口上方的缆绳长度忽略不 计.)
dy dx x 0
(3)
x
2
x5 dx 6x 13 x2 x2
在区间 ,
(4) 函数 y
1
3 上的平均值为 2 2
(5) 微分方程 y 4 y e2 x 的通解为 二、选择题(本题共5小题,每小题3分,满分15分。每小题给出得四个选项中,只有一个是符合题目要求 的,把所选项前的字母填在提后的括号内。)
(B)当 f (x) 是偶函数时, F x 必是奇函数.
(C)当 f (x) 是周期函数时, F x 必是周期函数.
第 1 页 共 18 页
(D) 当 f (x) 是单调增函数时, F x 必是单调增函数. (4) “对任意给定的 0,1 ,总存在正整数 N ,当 n N 时,恒有 xn a 2”是数列xn 收敛于 a 的 ( ) (A)充分条件但非必要条件. (C)充分必要条件. (B)必要条件但非充分条件. (D)既非充分条件又非必要条件.
十二、(本题满分 5 分) 设向量组 1 1,1,1, 3
T
,2 2, 1, p 2 1,3,5,1, 3 3, , 4 2,6,10, p
T T
T
(1) p 为何值时,该向量组线性无关?并在此时将向量 4,1, 6,10
T
十、(本题满分 6 分) 设 f x 是区间 0, 上单调减少且非负的连续函数, a n
fx dx fk
n i 1 1
n
n 1, 2, ,证明数列an 的极限存在.
第 5 页 共 18 页
十一、(本题满分 8 分)
1 1 1 ,矩阵 X 满足 A* X A1 2X ,其中 A* 是 A 的伴随矩阵,求矩阵 X . 设矩阵 A 1 1 1 1 1 1