机器视觉检测系统【深度解读】

合集下载

机器视觉检测的过程和原理

机器视觉检测的过程和原理

机器视觉检测的过程和原理
机器视觉检测是指利用计算机视觉技术对图像或视频进行分析和理解,从中提取出所需要的信息或对象的过程。

它一般包括以下几个步骤:
1. 图像采集:通过摄像头或其他图像采集设备获取图像或视频。

2. 图像预处理:对采集到的图像进行预处理,包括去噪、增强、边缘检测等。

3. 物体检测:利用目标检测算法,对图像中的物体或感兴趣区域进行识别和标记。

4. 特征提取:从检测到的物体中提取关键特征,如颜色、纹理、形状等。

5. 特征匹配:将提取到的特征与数据库中的特征进行匹配,从而得到物体的种类或其他相关信息。

6. 结果分析与显示:根据匹配结果进行分析和判定,并将结果可视化显示出来,如在图像中标注物体位置、显示物体类别等。

机器视觉检测的原理主要包括以下几个方面:
1. 图像处理:利用数字图像处理技术对图像进行预处理,包括滤波、增强、边
缘检测等,以提高图像的质量和减少干扰。

2. 特征提取:从图像中提取关键特征,如颜色、纹理、形状等,通过分析这些特征可以对物体进行识别和分类。

3. 目标检测:采用目标检测算法,如基于深度学习的目标检测算法(如Faster R-CNN、YOLO等),通过对图像进行多次卷积、池化和全连接等操作,最终得到目标物体的位置和类别。

4. 特征匹配:将提取到的特征与数据库中的特征进行匹配,比较它们的相似性,从而确定物体的种类或相关信息。

5. 结果分析与显示:根据匹配结果进行分析和判定,并将结果可视化显示出来,如在图像中标注物体位置、显示物体类别等。

自动化机器视觉系统

自动化机器视觉系统

自动化机器视觉系统自动化机器视觉系统(Automated Machine Vision System)是一种基于计算机视觉技术的先进系统,能够实现物体的自动检测、识别和分析。

该系统结合了传感器、图像处理算法和决策系统,以实现对物体的快速而准确的处理。

本文将从系统原理、应用场景和未来发展等方面进行介绍。

1. 系统原理自动化机器视觉系统利用相机或其他光学传感器捕捉物体的图像,并通过图像处理算法对图像进行分析。

系统通常会采用特定的光源和滤波器来改善图像的质量和对比度。

图像处理算法包括图像增强、特征提取和分类等步骤。

最后,通过决策系统对处理结果进行评估和判断,实现对物体的自动化处理。

2. 应用场景自动化机器视觉系统在工业、医疗、农业和安防等领域有广泛的应用。

以下是几个典型的应用场景:2.1 工业自动化在工业生产线上,自动化机器视觉系统能够实现对产品的检测、排序和包装等操作。

例如,在电子制造业中,系统可以检测电路板上的缺陷或误焊,以提高产品质量和生产效率。

2.2 医疗影像分析自动化机器视觉系统在医学影像领域也有重要的应用。

通过对医学图像进行处理和分析,系统能够帮助医生进行疾病的诊断和治疗。

例如,在眼科领域,系统可以检测和定量测量眼底图像中的病变,辅助眼科医生诊断眼部疾病。

2.3 农业智能化自动化机器视觉系统在农业领域有助于实现农业智能化和精准农业。

系统可以识别农田中的杂草和病虫害,并自动施放相应的农药或杀虫剂,提高农作物的产量和质量。

2.4 安防监控在安防领域,自动化机器视觉系统可以用于实现视频监控和事件识别。

系统可以对图像进行实时分析,检测和识别异常行为或危险事件,并及时报警。

这在提升安全性和保护财产方面起到至关重要的作用。

3. 未来发展随着计算机视觉技术的不断发展,自动化机器视觉系统的应用前景非常广阔。

以下是一些可能的未来发展方向:3.1 深度学习和神经网络深度学习和神经网络是近年来在计算机视觉领域中取得突破的技术。

视觉检测系统的原理是什么?

视觉检测系统的原理是什么?

视觉检测系统的原理是什么?
视觉检测系统的原理是使用相机、镜头、光源3大组合代替人工检测条码字符、裂痕、包装、表面图层是否完整、凹陷等,能有效的提高生产流水线的检测速度和精度,大大提高产量和质量,降低人工成本,同时防止因为人眼疲劳而产生的误判(本案例基于电子书视觉检测设计)。

灰阶画面检测(灰阶指显示画面从最亮到最暗不)
同亮度的层次等级,灰阶等级越多,所呈现的画面效果就越细腻。

对该画面的判别要求是判断电子书是否正常显示该画面,而无需计算灰阶等级数。

可截取部份画面分析处理。

软件算法方面,可采用行扫和边界判别法,确定画面呈现直线型的边界。

通过对行扫灰度值的计算,
确定画面的灰度值呈现规律变化,从而迅速判断画面是否为灰阶画面。

方格画面检测
黑白方格画面常用于MTF的测试,用来计算显示黑白颜色的对比效果。

对该画面的判别要求不要计算MTF,而只需要判别是否正常显示该画面。

可截取某一部份画面做分析处理。

软件计算方法,可通过边缘判定方法,确定画面是否呈现有规律的方形的边界。

并通过对像素灰度值的算,确定画面为黑白两色,从而确定画面为黑白方块画面。

纯白画面检测
纯白画面测试常用于污点测试,测试方法是逐个比较相邻像素点的灰度值,如果发生突变,则认为出现污点。

该测试需注意的是外界光源效果对测试结果的影响,以及边缘部份光强较弱导致的误判。

这都必须在设备开发和软件计算时考虑进去。

如果被测体是一个6-10寸的LCD屏,现有CCD无法一次型测量这么大的全部画面,而测试需求为整个画面都要测试,所以必须让产品或CCD在测试过程中移动多次。

机器视觉检测系统【深度解读】

机器视觉检测系统【深度解读】

机器视觉检测系统现代工业自动化生产中涉及到各种各样的检验、生产监视和零件识别应用,如汽车零配件批量加工的尺寸检查和自动装配的完整性检查、电子装配线的元件自动定位、IC上的字符识别等。

通常这种带有高度重复性和智能性的工作是由肉眼来完成的,但在某些特殊情况下,如对微小尺寸的精确快速测量、形状匹配以及颜色辨识等,依靠肉眼根本无法连续稳定地进行,其它物理量传感器也难以胜任。

人们开始考虑用CCD照相机抓取图像后送入计算机或专用的图像处理模块,通过数字化处理,根据像素分布和亮度、颜色等信息来进行尺寸、形状、颜色等的判别。

这种方法是把计算机处理的快速性、可重复性与肉眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉检测技术的概念。

视觉检测技术是建立在计算机视觉研究基础上的一门新兴测试技术。

与计算机视觉研究的视觉模式识别、视觉理解等内容不同,视觉检测技术重点研究的是物体的几何尺寸及物体的位置测量,如轿车白车身三维尺寸的测量、模具等三维面形的快速测量、大型工件同轴度测量以及共面性测量等,它可以广泛应用于在线测量、逆向工程等主动、实时测量过程。

视觉检测技术在国外发展很快,早在20世纪80年代,美国国家标准局就曾预计未来90%的检测任务将由视觉检测系统来完成。

因此仅在80年代,美国就有100多家公司跻身于视觉检测系统的经营市场,可见视觉检测系统确实很有发展前途。

在近几届北京国际机床展览会上已经见到国外企业展出的应用视觉检测技术研制的先进仪器,如流动式光学三坐标测量机、高速高精度数字化扫描系统、非接触式光学三坐标测量机等。

2.机器视觉检测系统构成、分类及工作原理2.1 系统构成与工作原理(1)系统构成典型的视觉系统一般包括光源、镜头、CCD照相机、图像处理单元(或图像采集卡)、图像处理软件、监视器、通讯/输入输出单元等。

(2)工作原理视觉系统的输出并非图像视频信号,而是经过运算处理之后的检测结果(如尺寸数据)。

通常,机器视觉检测就是用机器代替肉眼来做测量和判断。

解读机器视觉系统解析及优缺点

解读机器视觉系统解析及优缺点

解读机器视觉系统解析及优缺点在现代工业自动化生产中,涉及到各种各样的检验、生产监视及零件识别应用,例如零配件批量加工的尺寸检查,自动装配的完整性检查,电子装配线的元件自动定位,IC上的字符识别等。

通常人眼无法连续、稳定地完成这些带有高度重复性和智能性的工作,其它物理量传感器也难有用武之地。

由此人们开始考虑利用光电成像系统采集被控目标的图像,而后经计算机或专用的图像处理模块进行数字化处理,根据图像的像素分布、亮度和颜色等信息,来进行尺寸、形状、颜色等的判别。

这样,就把计算机的快速性、可重复性,与人眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉的概念。

一个成功的机器视觉系统是一个经过细致工程处理来满足一系列明确要求的系统。

当这些要求完全确定后,这个系统就设计并建立来满足这些精确的要求。

机器视觉的优点包括以下几点:■精度高作为一个精确的测量仪器,设计优秀的视觉系统能够对一千个或更多部件的一个进行空间测量。

因为此种测量不需要接触,所以对脆弱部件没有磨损和危险。

■连续性视觉系统可以使人们免受疲劳之苦。

因为没有人工操作者,也就没有了人为造成的操作变化。

多个系统可以设定单独运行。

■成本效率高随着计算机处理器价格的急剧下降,机器视觉系统成本效率也变得越来越高。

一个价值10000美元的视觉系统可以轻松取代三个人工探测者,而每个探测者每年需要20000美元的工资。

另外,视觉系统的操作和维持费用非常低。

■灵活性视觉系统能够进行各种不同的测量。

当应用变化以后,只需软件做相应变化或者升级以适应新的需求即可。

许多应用满意过程控制(SPC)的公司正在考虑应用机器视觉系统来传递持续的、协调的和精确的测量SPC命令。

在SPC中,制造参数是被持续监控的。

整个过程的控制就是要保证这些参数在一定的范围内。

这使制造者在生产过程失去控制或出现坏部件时能够调节过程参数。

机器视觉系统比光学或机器传感器有更好的可适应性。

它们使自动机器具有了多样性、灵活性和可重组性。

机器视觉检测系统

机器视觉检测系统

工作原理:机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格/ 不合格、有/ 无等,实现自动识别功能。

①工业相机与工业镜头——这部分属于成像器件,通常的视觉系统都是由一套或者多套这样的成像系统组成,如果有多路相机,可能由图像卡切换来获取图像数据,也可能由同步控制同时获取多相机通道的数据。

根据应用的需要相机可能是输出标准的单色视频(RS-170/CCIR)、复合信号(Y/C)、RGB信号,也可能是非标准的逐行扫描信号、线扫描信号、高分辨率信号等。

②光源——作为辅助成像器件,对成像质量的好坏往往能起到至关重要的作用,各种形状的LED灯、高频荧光灯、光纤卤素灯等都容易得到。

③传感器——通常以光纤开关、接近开关等的形式出现,用以判断被测对象的位置和状态,告知图像传感器进行正确的采集。

④图像采集卡——通常以插入卡的形式安装在PC中,图像采集卡的主要工作是把相机输出的图像输送给电脑主机。

它将来自相机的模拟或数字信号转换成一定格式的图像数据流,同时它可以控制相机的一些参数,比如触发信号,曝光/积分时间,快门速度等。

图像采集卡通常有不同的硬件结构以针对不同类型的相机,同时也有不同的总线形式,比如PCI、PCI64、Compact PCI,PC104,ISA等。

⑤PC平台——电脑是一个PC式视觉系统的核心,在这里完成图像数据的处理和绝大部分的控制逻辑,对于检测类型的应用,通常都需要较高频率的CPU,这样可以减少处理的时间。

同时,为了减少工业现场电磁、振动、灰尘、温度等的干扰,必须选择工业级的电脑。

⑥视觉处理软件——机器视觉软件用来完成输入的图像数据的处理,然后通过一定的运算得出结果,这个输出的结果可能是PASS/FAIL信号、坐标位置、字符串等。

机器视觉检测系统的工作原理及检测流程

机器视觉检测系统的工作原理及检测流程

机器视觉检测系统的工作原理及检测流程各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢在机器视觉检测系统工作流程中,主要分为图像信息获取、图像信息处理和机电系统执行检测结果3个部分,另外根据系统需要还可以实时地通过人机界面进行参数设置和调整。

当被检测的对象运动到某一设定时会被传感器发现,传感器会向PLC控制器发送“探测到被检测物体”的电脉冲信号,PLC控制器经过计算得出何时物体将移动到CCD工业相机的采集,然后准确地向图像采集卡发送触发信号,采集开检测的此信号后会立即要求CCD工业相机采集图像。

被采集到的物体图像会以BMP文件的格式送到工控机,然后调用专用的分析工具软件对图像进行分析处理,得出被检测对象是否符合预设要求的结论,根据“合格”或“不合格”信号,执行机会对被检测物体作出相应的处理。

系统如此循环工作,完成对被检测物体队列连续处理。

如下图所示。

①工件定位传感器探测到被检测物体已经运动到接近机器视觉摄像系统的视野中心,向机器视觉检测系统的图像采集单元发送触发脉冲。

②机器视觉检测系统的图像采集单元按照事先设定的程序和延时,分别向摄像机和照明系统发出触发脉冲。

③机器视觉摄像机停止目前的扫描,重新开始新的一帧扫描,或者机器视觉摄像机在触发脉冲来到之前处于等待状态,触发脉冲到来后启动一帧扫描。

⑦机器视觉检测系统的图像采集单元接收模拟视频信号通过A/D转换器将其数字化,或者是直接接收机器视觉摄像机数字化后的数字视频信号。

从上述的工作流程可以看出,机器视觉检测系统是一种相对复杂的系统。

大多和检测对象都是运动的物体,系统与运动物体的匹配和协调动作尤为重要,所以给系统各部分的动作时间和处理速度带来了严格的要求。

在某些应用领域,例如机器人、飞行物体制导等,对整个系统或者系统的一部分的重量、体积和功耗等都会有严格的要求。

③特征提取:处理器识别并量化图像的关键特征,例如、数量、面积等。

然后将这些数据传送到控制程序。

机器视觉检测系统功能特性及原理介绍

机器视觉检测系统功能特性及原理介绍

机器视觉检测系统功能特性及原理介绍导语:机器视觉检测系统就是利用机器代替人眼来作各种测量和判断。

它是计算机学科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。

图像处理和模式识别等技术的快速发展,极大地推动了机器视觉行业应用的发展。

机器视觉检测系统就是利用机器代替人眼来作各种测量和判断。

它是计算机学科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。

图像处理和模式识别等技术的快速发展,极大地推动了机器视觉行业应用的发展。

机器视觉检测系统又称工业视觉系统,其原理是:将感产品或区域进行成像,然后根据其图像信息用专用的图像处理软件进行处理,根据处理结果软件能自动判断产品的位置、尺寸、外观信息,并根据人为预先设定的标准进行合格与否的判断,输出其判断信息给执行机构。

机器视觉检测系统采用CCD工业相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格/不合格、有/无等,实现自动识别功能。

机器视觉检测系统主要具有三大类功能:一是定位功能,能够自动判断感兴趣的物体、产品在什么位置,并将位置信息通过一定的通讯协议输出,此功能多用于全自动装配和生产,如自动组装、自动焊接、自动包装、自动灌装、自动喷涂,多配合自动执行机构(机械手、焊枪、喷嘴等);第二功能是测量,也就是能够自动测量产品的外观尺寸,比如外形轮廓、孔径、高度、面积等测量;三是缺陷检测功能,这是视觉系统用的最多的一项功能,它可以检测产品表面的相关信息,如:包装正误,包装是否正确、印刷有无错误、表面有无刮伤或颗粒、破损、有无油污、灰尘、塑料件有无穿孔、雨雾注塑不良等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机器视觉检测系统内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.现代工业自动化生产中涉及到各种各样的检验、生产监视和零件识别应用,如汽车零配件批量加工的尺寸检查和自动装配的完整性检查、电子装配线的元件自动定位、IC上的字符识别等。

通常这种带有高度重复性和智能性的工作是由肉眼来完成的,但在某些特殊情况下,如对微小尺寸的精确快速测量、形状匹配以及颜色辨识等,依靠肉眼根本无法连续稳定地进行,其它物理量传感器也难以胜任。

人们开始考虑用CCD照相机抓取图像后送入计算机或专用的图像处理模块,通过数字化处理,根据像素分布和亮度、颜色等信息来进行尺寸、形状、颜色等的判别。

这种方法是把计算机处理的快速性、可重复性与肉眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉检测技术的概念。

视觉检测技术是建立在计算机视觉研究基础上的一门新兴测试技术。

与计算机视觉研究的视觉模式识别、视觉理解等内容不同,视觉检测技术重点研究的是物体的几何尺寸及物体的位置测量,如轿车白车身三维尺寸的测量、模具等三维面形的快速测量、大型工件同轴度测量以及共面性测量等,它可以广泛应用于在线测量、逆向工程等主动、实时测量过程。

视觉检测技术在国外发展很快,早在20世纪80年代,美国国家标准局就曾预计未来90%的检测任务将由视觉检测系统来完成。

因此仅在80年代,美国就有100多家公司跻身于视觉检测系统的经营市场,可见视觉检测系统确实很有发展前途。

在近几届北京国际机床展览会上已经见到国外企业展出的应用视觉检测技术研制的先进仪器,如流动式光学三坐标测量机、高速高精度数字化扫描系统、非接触式光学三坐标测量机等。

2.机器视觉检测系统构成、分类及工作原理2.1 系统构成与工作原理(1)系统构成典型的视觉系统一般包括光源、镜头、CCD照相机、图像处理单元(或图像采集卡)、图像处理软件、监视器、通讯/输入输出单元等。

(2)工作原理视觉系统的输出并非图像视频信号,而是经过运算处理之后的检测结果(如尺寸数据)。

通常,机器视觉检测就是用机器代替肉眼来做测量和判断。

首先采用CCD照相机将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号。

图像系统对这些信号进行各种运算来抽取目标的特征,如:面积、长度、数量、位置等。

后,根据预设的容许度和其他条件输出结果,如:尺寸、角度、偏移量、个数、合格/不合格、有/无等。

上位机(如PC和PLC)实时获得检测结果后,指挥运动系统或I/O系统执行相应的控制动作(如定位和分类)。

2.2 系统分类从视觉系统的运行环境分类,可分为PC—BASED系统和PLC—BASED系统。

基于PC的系统利用了其开放性、高度的编程灵活性和良好的Windows界面,同时系统总体成本较低。

PC—Based系统内含高性能图像采集卡,一般可接多个镜头,并提供库函数支持。

目前世界一流的PC—Based视觉系统生产厂商美国Data Translation公司,其MACH 系列(如DT3155)和MV系列PC I工业视觉卡已经成为业界标准;配套软件方面,32位SDK for Windows95/98/NT提供C/C++编程用DLL,DT Active Open Layer可视化控件提供VB 和VC++下的图形化编程环境,而DT Vision Foundry则是Windows下面向对象的机器视觉组态软件,用户可用它快速开发复杂高级的应用。

类似的还有美国NI公司,该公司将机器视觉和运动控制功能与其被广泛应用的Labview虚拟仪器软件相结合,效果显著。

与美国公司大力发展PC结构相比,日本和德国公司在PLC—Based系统方面走在前列。

在PLC系统中,视觉的作用更像一个智能化的传感器,图像处理单元独立于系统,通过串行总线和I/O与PLC交换数据。

日本松下公司的Image Checker M100/M200系统可说是这方面的代表。

该系统利用高速专用ASIC进行256级灰度检测,带逻辑条件和数学运算功能。

系统软件固化在图像处理器中,通过类似于游戏键盘的简单装置对显示在监视器中的菜单进行配置,开发周期短,系统可*性高,其新一代产品A110/A210体现了集成化、小型化、高速化和低成本的特点。

欧姆龙、Keyence等公司也有类似的系统,但在技术性能上相对简单,更适用于进行有无判别或形状匹配等。

而德国Siemens公司的智能化PROFIBUS工业视觉系统SIMATICVS 710提供了一体化的、分布式的高档图像处理方案,它将处理器、CCD、I/O集成在一个机箱内,提供PROFIBUS的联网方式或集成的I/O和RS232接口,更重要的是通过PCWINDOWS下的Pro Vision软件进行组态。

VS 710第一次将PC的灵活性、PLC的可靠性、分布式网络技术和一体化设计结合在一起,使得西门子在PC和PLC 体系之间找到了完美的平衡。

3.机器视觉检测系统的典型应用领域及市场现状现代视觉理论和技术的发展,不仅在于模拟人眼能完成的功能,更重要的是它能完成人眼所不能胜任的工作。

在当今电子、光学和计算机等技术不断成熟和完善的基础上,视觉技术这个新兴技术门类也得到迅速发展。

机器视觉的特点是自动化、客观性、非接触和高精度。

与一般意义上的图像处理系统相比,机器视觉系统强调的是精度、速度以及工业现场环境下的可靠性。

机器视觉特别适用于大批量生产过程中的质量检查,如:零件装配完整性、装配尺寸精度、零件加工精度、位置/角度测量、零件识别、特性/字符识别等,主要应用于包括汽车、制药、电子与电气、制造、包装、食品、饮料、医学等领域,用于对汽车仪表盘加工精度的检查、高速贴片机上对电子元件的快速定位、对管脚数目的检查、IC表面印字符的辨识、胶囊生产中对胶囊壁厚和外观缺陷的检查、轴承生产中对滚珠数量和破损情况的检查、食品包装上对生产日期的辨识、对标签贴放位置的检查以及医疗方面对细胞数量和性质的判断等。

由于机器视觉系统可以快速获取大量信息,易于自动处理,也易于与设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。

机器视觉系统的特点是提高生产的柔性和自动化程度,在一些不适合人工作业的危险工作环境或人工视觉难以满足要求的场合,采用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量不仅效率低而且精度不高,而用机器视觉检测方法可以大大提高生产效率和生产的自动化程度;此外,机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。

国际上视觉系统的应用方兴未艾,仅1998年的市场规模已达46亿美元,而在国内,工业视觉系统尚处于概念导人期,各行业的领先企业在解决了生产自动化的问题以后,才开始将目光转向视觉测量自动化。

4.机器视觉检测系统在检测方面的应用机器视觉系统在工业在线检测的各个领域得到广泛应用。

(1)大型工件平行度、垂直度测量采用激光扫描与CCD探测系统的大型工件平行度、垂直度测量仪,它是以稳定的准直激光束为测量基线,配以回转轴系,旋转五角标棱镜扫出互相平行或垂直的基准平面,并将其与被测大型工件的各面进行比较。

在加工或安装大型工件时,可用该认错器测量面间平行度及垂直度。

(2)热轧螺纹钢几何参数在线动态检测系统该系统以频闪光作为照明光源,利用面阵和线阵CCD作为螺纹钢外形轮廓尺寸的探测器件,实现热轧螺纹钢几何参数在线测量的动态检测。

(3)轴承状态实时监控采用视觉技术实时监控轴承的负载和温度变化,消除过载和过热的危险。

该技术将传统的通过测量滚珠表面来保证加工质量和安全操作的被动式测量变为主动监控。

(4)基于机器视觉的仪表板总成智能集成测试系统汽车仪表板总成上安装有速度里程表、水温表、汽油表、电流表、信号报警灯等,其生产批量大,出厂前需要进行一次质量终检。

检测项目包括速度表等五个仪表指针的指示误差,24个信号报警灯和若干照明灯是否损坏或漏装等。

通常采用人工目测方法检查,但误差大、可靠性差,不能满足自动化生产的需要。

机器视觉检测技术的智能集成测试系统改变了这种现状,实现了对仪表板总成智能化、全自动、高精度、快速度的质量检测,克服了人工检测所造成的各种误差,大大提高了检测的效率和可靠性。

(5)金属板表面自动探伤系统在对表面质量要求很高的特殊大型金属板进行检测时,原始的检测方法是采用人工目视或用百分表加探针进行检测,该方法不仅易受主观因素的影响,而且可能给被测表面带来新的划伤。

金属板表面自动探伤系统利用机器视觉检测技术对金属表面缺陷进行自动检查,可在生产过程中高速、准确地进行检测,同时由于该系统采用非接触式测量,避免了产生新划伤的可能。

该系统采用激光器作为光源,通过针孔滤波器滤除激光束周围的杂散光,采用扩束镜和准直镜使激光束变为平行光并以45度的入射角均匀照射在被测金属板表面上。

金属板放在检验台上,检验台可在x、y、z三个方向上移动,摄像机采用TCD142D型2048线阵CCD,镜头采用普通照相机镜头,CCD接口电路采用单片机系统。

PC主机主要完成图像预处理及缺陷的分类或划痕的深度运算等,并可将检测到的缺陷或划痕图像在显示器上显示。

CCD接口电路和PC机之间通过RS.232口进行双向通讯,构成人机交互式数据采集与处理。

该系统主要利用线阵CCD的自扫描特性与被检钢板在x方向的移动相结合,提取金属板表面的三维图像信息。

(6)汽车车身轮廓尺寸精度检测系统英国ROVER汽车公司800系列汽车车身轮廓尺寸精度的100%在线检测,是机器视觉系统用于l3l工业检测中的一个典型实例。

该系统由62个测量单元组成,每个测量单元包括一台激光器和一个CCD摄像机,用以检测车身外壳上288个测量点;汽车车身置于测量框架下,通过软件校准车身的精确位置。

每个激光器、摄像机单元均在离线状态下经过校准,同时还有一个在离线状态下用三坐标测量机校准过的校准装置用以对摄像机进行在线校准;检测系统以每40秒检测一个车身的速度,可检测三种类型的车身;系统将检测结果与从CAD模型中提取出来的合格尺寸相比较,测量精度为±0.1mm。

ROVER公司的质量检测人员用该系统来判别关键部分的尺寸一致性,如车身整体外型、车门、玻璃窗口等。

检测实践证明,该系统可成功进行800系列汽车车身轮廓尺寸精度的在线检测,并将用于检测ROVER 公司其它系列的车身轮廓尺寸精度。

(7)奥迪白车身表面质量检测系统奥迪公司近来研制了一种能够对白车身表面缺陷进行全自动检测的系统,取名为“智能控制白车身表面质量检测系统”。

相关文档
最新文档