一种4PSK的调制与解调系统的介绍
电路基础原理数字信号的调制与解调

电路基础原理数字信号的调制与解调数字信号的调制与解调是电路基础原理中的重要概念。
调制是将数字信号转化为模拟信号的过程,解调则是将模拟信号还原为数字信号的过程。
本文将介绍数字信号的调制与解调原理及其应用。
一、调制的基本原理调制是为了将数字信号传输到远距离时,能够克服传输噪声、提高信号质量而进行的一种技术。
数字信号经过调制后,会转化为模拟信号,其特点是连续的波形。
1.频移键控调制(FSK)FSK是一种基本的数字信号调制方式,它通过改变信号的频率来表示不同的数字。
在FSK中,使用两个频率来分别代表二进制的0和1。
2.相移键控调制(PSK)PSK是一种通过改变信号的相位来表示不同的数字的调制方式。
在PSK中,使用不同的相位来表示二进制的0和1。
3.正交幅度调制(QAM)QAM是一种通过改变信号的振幅和相位来表示不同的数字的调制方式。
在QAM中,通过改变信号的振幅和相位的组合来表示多个二进制数字。
二、解调的基本原理解调是将模拟信号还原为数字信号的过程,其目的是还原接收到的信号,以便后续的数字信号处理。
1.频移解调频移解调是将经过FSK调制的信号还原回数字信号的过程。
解调器需要检测接收到的信号的频率,并根据频率的不同判断出二进制的0和1。
2.相移解调相移解调是将经过PSK调制的信号还原为数字信号的过程。
解调器需要检测接收到信号的相位,并根据相位的变化来判断出二进制的0和1。
3.幅度解调幅度解调是将经过QAM调制的信号还原为数字信号的过程。
解调器需要测量接收到信号的振幅和相位,并根据这些信息来判断出二进制的0和1。
三、调制与解调的应用调制与解调技术广泛应用于通信领域,特别是在无线通信中。
1.无线电广播无线电广播使用调制技术将音频信号转化为无线电信号,并通过无线电波传输到接收器中,然后通过解调技术将无线电信号还原为音频信号。
2.移动通信移动通信中的调制与解调技术被用于将数字信号通过无线电信道传输,以实现声音、图像和数据的无线传输。
PSK(DPSK)调制与解调资料讲解

P S K(D P S K)调制与解调实验题目——PSK(DPSK)调制与解调一、实验目的1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。
2、掌握产生PSK(DPSK)信号的方法。
3、掌握PSK(DPSK)信号的频谱特性。
二、实验内容1、观察绝对码和相对码的波形。
2、观察PSK(DPSK)信号波形。
3、观察PSK(DPSK)信号频谱。
4、观察PSK(DPSK)相干解调器各点波形。
三、实验仪器1、信号源模块2、数字调制模块3、数字解调模块4、20M双踪示波器5、导线若干四、实验原理1、2PSK(2DPSK)调制原理2PSK信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形示意图如图所示。
2PSK 信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。
如果这个参考相位发生变化,则恢复的数字信息就会与发送的数字信息完全相反,从而造成错误的恢复。
这种现象常称为2PSK 的“倒π”现象,因此,实际中一般不采用2PSK 方式,而采用差分移相(2DPSK )方式。
2DPSK 方式即是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。
如图为对同一组二进制信号调制后的2PSK 与2DPSK 波形。
0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1数字信息(绝对码)PSK 波形DPSK 波形相对码从图中可以看出,2DPSK 信号波形与2PSK 的不同。
2DPSK 波形的同一相位并不对应相同的数字信息符号,而前后码元相对相位的差才唯一决定信息符号。
这说明,解调2DPSK 信号时并不依赖于某一固定的载波相位参考值。
只要前后码元的相对相位关系不破坏,则鉴别这个关系就可以正确恢复数字信息,这就避免了2PSK 方式中的“倒π”现象发生。
数字通信作业(4psk,2PSK分析)有完整程序

Digital Communication Project————2PSK and 4PSKRequirements:Please use Matlab programming to implement some digital baseband communication systems and plot the BER(bit error4PSK目录:Digital Communication Project (1)————2PSK and 4PSK (1)一、基本理论 (3)1.二进制移相键控(2PSK)的基本原理 (3)1.1 2PSK信号的产生 (3)1.2 2PSK的解调系统 (3)1.3 2PSK误码率分析 (4)2.四进制移相键控(4PSK)的基本原理 (4)2.14PSK信号的产生 (5)2.2 4PSK的解调系统 (6)2.3 4PSK误码率分析 (7)二、源程序及仿真分析 (7)1.2PSK源程序及仿真分析 (7)2.4PSK源程序及仿真分析 (9)3.2PSK和4PSK误码率分析 (10)一、基本理论1.二进制移相键控(2PSK)的基本原理2PSK信号的产生方法通常有两种:模拟调制法和键控法。
一般的模拟幅度调制的方法,用乘法器实现;数字键控法的开关电路受s(t)控制。
2PSK信号基本的解调方法是相干解调。
2PSK,二进制移相键控方式,是键控的载波相位按基带脉冲序列的规律而改变的一种数字调制方式。
就是根据数字基带信号的两个电平(或符号)使载波相位在两个不同的数值之间切换的一种相位调制方法。
两个载波相位通常相差180度,此时称为反向键控(PSK),也称为绝对相移方式。
1.1 2PSK信号的产生2PSK的产生:模拟法和数字键控法。
就模拟调制法而言,与产生2ASK信号的方法比较,只是对s(t)要求不同,因此2PSK信号可以看作是双极性基带信号作用下的DSB 调幅信号。
模拟调制法如图1.1所示。
通信原理psk在通信中的应用

通信原理PSK在通信中的应用1. 介绍相位调移键控(Phase Shift Keying,简称PSK)是一种数字调制方式,通过改变信号的相位来传输数字信息。
在通信领域中,PSK具有重要的应用。
本文将介绍PSK的工作原理以及在通信中的应用。
2. PSK的工作原理PSK利用不同相位的信号来表示数字信息。
它将数字信号映射到不同的相位状态,然后通过调制器将相位状态转换为模拟信号。
接收端利用相位差计算出数字信息。
PSK通常有多种变体,最常见的是二进制相位调移键控(Binary Phase Shift Keying,简称BPSK)和四进制相位调移键控(Quadrature Phase Shift Keying,简称QPSK)。
2.1 BPSKBPSK将数字信息表示为两个相位状态,通常是0度和180度。
传输的时间间隔被划分为多个符号时间,每个符号时间内,发送信号在不同的相位状态之间切换。
接收端通过检测信号的相位差来恢复传输的数字信息。
2.2 QPSKQPSK将数字信息表示为四个相位状态,通常是0度、90度、180度和270度。
类似于BPSK,QPSK也是在符号时间内通过不同相位状态的切换来传输数字信息。
接收端通过检测信号的相位差来恢复传输的数字信息。
3. PSK在通信中的应用PSK在通信领域中有广泛的应用。
下面列举了一些主要的应用场景:3.1 无线通信在无线通信中,PSK被广泛应用于数字调制和解调。
由于PSK的相对简单性和较低的误码率,它被用于传输数字音频、视频和数据等信息。
例如,无线局域网(WLAN)中的IEEE 802.11标准使用了QPSK。
3.2 卫星通信在卫星通信中,PSK用于信号的调制和解调。
卫星通信的信号传播距离较长,因此需要一种能够在高噪声环境下工作的调制方式。
PSK的抗干扰性能较好,使其成为卫星通信的理想选择。
3.3 数字广播数字广播系统中,PSK被用于数字音频信号的调制和解调。
通过将数字音频信号编码为相位状态,可以有效地传输音频内容。
实验九qpsk调制与解调实验报告

实验九Q P S K/O Q P S K调制与解调实验一、实验目的1、了解用CPLD进行电路设计的基本方法。
2、掌握QPSK调制与解调的原理。
3、通过本实验掌握星座图的概念、星座图的产生原理及方法,了解星座图的作用及工程上的作用。
二、实验内容1、观察QPSK调制的各种波形。
2、观察QPSK解调的各种波形。
三、实验器材1、信号源模块一块2、⑤号模块一块3、20M双踪示波器一台4、连接线若干四、实验原理(一)QPSK调制解调原理1、QPSK调制QPSK信号的产生方法可分为调相法和相位选择法。
用调相法产生QPSK信号的组成方框图如图12-1(a)所示。
图中,串/并变换器将输入的二进制序列依次分为两个并行的双极性序列。
设两个序列中的二进制数字分别为a和b,每一对ab称为一个双比特码元。
双极性的a和b脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,得到图12-1(b)中虚线矢量。
将两路输出叠加,即得如图12-1(b)中实线所示的四相移相信号,其相位编码逻辑关系如表12-1所示。
(a)(b)图12-1 QPSK调制2、QPSK解调图12-2 QPSK相干解调器由于四相绝对移相信号可以看作是两个正交2PSK信号的合成,故它可以采用与2PSK信号类似的解调方法进行解调,即由两个2PSK信号相干解调器构成,其组成方框图如图12-2所示。
图中的并/串变换器的作用与调制器中的串/并变换器相反,它是用来将上、下支路所得到的并行数据恢复成串行数据的。
(二)OQPSK调制解调原理OQPSK又叫偏移四相相移键控,它是基于QPSK的改进型,为了克服QPSK中过零点的相位跃变特性,以及由此带来的幅度起伏不恒定和频带的展宽(通过带限系统后)等一系列问题。
若将QPSK中并行的I,Q两路码元错开时间(如半个码元),称这类QPSK为偏移QPSK或OQPSK。
通过I,Q路码元错开半个码元调制之后的波形,其载波相位跃变由180°降至90°,避免了过零点,从而大大降低了峰平比和频带的展宽。
QPSK、DQPSK系统调制与解调

实验四QPSK与DQPSK调制实验一、实验目的在2PSK, 2DPSK的学习基础上,掌握QPSK,以及以其为基础的DQPSK, OQPSK, /4 —DQPSK等若干种相关的重要调制方式的原理,从而对多进制调相有一定了解。
1、移动通信技术应用综合实训系统”实验仪一台2、50MHz示波器一台。
3、实验模块:信源模块,QPSK-调制模块。
三、实验原理一)基本理论(A)四相绝对移相键控(QPSK)的调制四相绝对移相键控利用载波的四种不同相位来表征数字信息。
由于每一种载波相位代表两个比特信息,故每个四进制码元又被称为双比特码元。
我们把组成双比特码元的前一信息比特用a代表,后一信息比特用b代表。
双比特码元中两个信息比特ab通常是按格雷码(即反射码)排列的,它与载波相位的关系如表所列。
双比特码元载波相位©a b A方式B方式000°45°0190°135°实验设备由于四相绝对移相调制可以看作两个正交的二相绝对移相调制的合成,故两者的功率谱密度分布规律相同。
下面我们来讨论QPSK信号的产生与解调。
QPSK信号的产生方法与2PSK 信号一样,也可以分为调相法和相位选择法。
(1) 调相法用调相法产生QPSK信号的组成方框图如下所示图4-1 QPSK信号的组成方框图设两个序列中的二进制数字分别为a和b,每一对ab称为一个双比特码元。
并设经过串并变换后上支路为a,下支路为b。
双极性的a和b脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制。
表4-2 QPSK信号相位编码逻辑关系(2) 相位选择法用相位选择法产生QPSK信号的组成方框图如下所示图4-2相位选择法产生QPSK信号方框图(B)四相相对移相键控(DQPSK)的调制所谓四相相对移相键控也是利用前后码元之间的相对相位变化来表示数字信息。
若以前一码元相位作为参考,并令△©为本码元与前一码元的初相差。
psk解调算法

相位偏移键控(PSK)是一种常见的数字调制方案,它利用载波的相位偏移表示数据。
解调这些信号需要使用适当的解调算法。
以下是一种可能的解调算法:
1. 相位差检测:首先,需要测量接收到的信号的相位与一个参考相位之间的差异。
这个参考相位可以是未调制的载波信号,也可以是另一个已调制的PSK信号。
2. 查找表查找:然后,使用查找表或计算方法来确定发送的数据。
在BPSK中,0和π相位分别表示二进制0和1。
因此,可以使用简单的查找表来将相位偏移映射到相应的二进制值。
3. 判决和错误纠正:最后,根据查找表或计算结果进行判决,将解调出的二进制数据传输到下一级处理单元。
同时,可以进行错误纠正,例如使用奇偶校验或循环冗余校验(CRC)等算法来检测和纠正传输过程中的错误。
需要注意的是,具体的解调算法可能会因不同的应用场景和不同的调制方案而有所不同。
以上是一种基本的解调算法,适用于BPSK 等简单的PSK调制方案。
对于更复杂的调制方案,可能需要使用更复杂的解调算法和信号处理技术。
通信原理实验报告四DPSK和QPSK

实验四 调制解调(BPSK ,QPSK ,信噪比)一、实验目的掌握数字频带传输系统调制解调的仿真过程 掌握数字频带传输系统误码率仿真分析方法 二、实验原理数字频带信号通常也称为数字调制信号,其信号频谱通常是带通型的,适合于在带通型信道中传输。
数字调制是将基带数字信号变换成适合带通型信道传输的一种信号处理方式,正如模拟通信一样,可以通过对基带信号的频谱搬移来适应信道特性,也可以采用频率调制、相位调制的方式来达到同样的目的。
1. BPSK 调制解调原理假定:信道为加性高斯白噪声信道,其均值为0、方差为2σ,采用矩形成形,发射端BPSK 调制信号为:s (t )=A cos(2p f c t )b k ="1"-A cos(2p f c t )b k ="0"kT £t <(k +1)Tìíïîï经信道传输,接收端输入信号为:()()()d y t s t n t =+经相干解调,匹配滤波,定时恢复后输出:x k =A +n kb k ="1"-A +n k b k ="0"ìíïîï当1,0独立等概出现时,BPSK 系统的最佳判决门限电平*0d U =。
故判决规则为在取样时刻的判决值大于0,判1,小于0,判0。
BPSK 信号的功率谱密度为:()()()][42c m c m s f f P f f P A f P ++-=2. 2ASK 调制过程如果将二进制码元“0”对应信号0,“1”对应信号t f A c π2cos ,则2ASK 信号可以写成如下表达式:()()cos2T n s c n s t a g t nT A f tπ⎧⎫=-⎨⎬⎩⎭∑{}1,0∈n a ,()⎩⎨⎧≤≤=其他 0T t 0 1s t g 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调制部分模块连接图
实验仿码与载波相位的关系
4PSK调制原理
a
单/双极性
× coswct
输入
载波震荡 串/并变换 移相π/2
+
+ sinwct
4PSK输出
单/双极性
×
b 4PSK正交调制原理方框 图
4PSK调制原理
4PSK的调制方法有正交调制方式(双路二相调制合成法或直接调相 法)、相位选择法、插入脉冲法等。这里我们采用正交调制方式。 图中串/并变换器将输入的二进制序列分为速度减半的两个并行 双极性序列a和b(a,b码元在事件上是对齐的),再分别进行极性变 换,把极性码变为双极性码(0→-1,1→+1)然后分别调制到 cosωct和sinωct两个载波上,两路相乘器输出的信号是相互正交的抑 制载波的双边带调制(DSB)信号,其相位与各路码元的极性有关, 分别由a和b码元决定。经相加电路后输出两路的合成波形,即是 4PSK信号。图中两个乘法器,其中一个用于产生0o与180o两种相位 状态,另一个用于产生90o与270o两种相位状态,相加后就可以得到 45o,135o,225o和315o四种相位。
4PSK的一种调制方式
专业:信号与信息处理 组员:xxxxxx xxxxxx xxxxxx
主要内容
• • • • 4PSK的基本特点 4PSK调制原理 一种基于MATLAB的4PSK调制系统 实验仿真与结果
4PSK的基本特点
4PSK----四进制绝对移相键控,也可用 QPSK表示。其实质是两路正交双边带信号, 由两个正交的2PSK信号合成。其具有较高 的频谱利用率,较强的抗干扰能力,且其 实现较为简单,故在数字通信中被广泛应 用。
4PSK的基本特点
四进制相移调制是利用载波 的四种不同的相位差来表征输 入的数字信息,是四进制移相 键控。载波有四个相位,它可 以代表2位二进制差分相移键控。 如图所示:双比特码元与载波 相位的关系 四进制信号可等效为两个正 交载波进行双边带调制所得信 号之和。这样,就把数字调相 和线性调制联系起来,为四相 波形的产生提供依据。