FSK调制解调原理及设计

合集下载

FSK调制解调原理实验

FSK调制解调原理实验

FSK调制解调原理实验一、实验目的1.了解FSK调制解调的基本原理;2.了解FSK调制解调器的实现过程;3.学习使用软件工具进行FSK调制解调实验。

二、实验原理FSK(Frequency Shift Keying)调制解调是一种常用的数字调制解调技术,它通过改变信号的调制频率来表示不同的数字信号。

FSK调制解调一般分为两个部分:调制器(Modulator)和解调器(Demodulator)。

(一)FSK调制器原理FSK调制器的任务是根据输入信息信号的不同,产生两个不同频率的载波信号。

当输入是数字"0"时,调制器选择低频率载波信号进行调制;当输入是数字"1"时,调制器选择高频率载波信号进行调制。

调制可采用线性调制或非线性调制两种方式。

线性调制实质是将低频调制信号与载波信号作直接叠加得到调制信号。

设载波频率为$f_c$,低频信号频率为$f_0$,则调制后信号可以表示为:$$s(t) = \cos(2\pi f_c t) + A_0 \cos(2\pi f_0 t)$$非线性调制利用逻辑电路切换不同频率的载波信号,常采用矩形脉冲函数进行调制。

设载波频率为$f_c$,低频信号频率为$f_0$,则调制后信号可以表示为:$$s(t)= \begin{cases}\cos(2\pi f_1 t), & \text{当} 0 \leq t \leq T_b \text{且输入为数字"0"时}\\\cos(2\pi f_2 t), & \text{当} 0 \leq t \leq T_b \text{且输入为数字"1"时}\end{cases}$$其中$T_b$为每个码元(bit)的时间长度,$f_1$和$f_2$为两个不同频率的载波频率。

(二)FSK解调器原理FSK解调器的任务是对调制信号进行解调,即还原出原始的数字信号。

FSK调制及解调实验报告

FSK调制及解调实验报告

FSK调制及解调实验报告FSK调制及解调实验报告一、实验目的1.深入理解频移键控(FSK)调制的基本原理和特点;2.掌握FSK调制和解调的实验方法和技能;3.通过实验观察和分析FSK调制解调的性能和应用。

二、实验原理频移键控(Frequency Shift Keying,FSK)是一种常见的数字调制方法,它利用不同频率的信号代表二进制数据中的“0”和“1”。

在FSK调制中,输入信号被分为两种频率,通常表示为f1和f2,分别对应二进制数据中的“0”和“1”。

FSK调制的基本原理是将输入的二进制数据序列通过频率切换的方式转换为高频信号序列。

具体来说,当输入数据为“0”时,选择频率为f1的信号进行传输;当输入数据为“1”时,选择频率为f2的信号进行传输。

解调过程中,接收端将收到的混合信号进行滤波处理,根据不同的频率将其分离,再通过低通滤波器恢复出原始的二进制数据序列。

三、实验步骤1.FSK调制过程(1) 将输入的二进制数据序列通过串并转换器转换为并行数据序列;(2) 利用FSK调制器将并行数据序列转换为FSK信号;(3) 通过高频信道发送FSK信号。

2.FSK解调过程(1) 通过高频信道接收FSK信号;(2) 利用FSK解调器将FSK信号转换为并行数据序列;(3) 通过并串转换器将并行数据序列转换为原始的二进制数据序列。

四、实验结果与分析1.FSK调制结果与分析在FSK调制实验中,我们选择了两种不同的频率f1和f2分别表示二进制数据中的“0”和“1”。

通过对输入的二进制数据进行FSK调制,我们成功地将原始的二进制数据转换为FSK信号,并可以通过高频信道进行传输。

在调制过程中,我们需要注意信号转换的准确性和稳定性,以确保传输的可靠性。

2.FSK解调结果与分析在FSK解调实验中,我们首先接收到了通过高频信道传输过来的FSK信号,然后利用FSK解调器将信号转换为并行数据序列。

最后,通过并串转换器将并行数据序列恢复为原始的二进制数据序列。

FSK调制与解调系统设计

FSK调制与解调系统设计

FSK调制与解调系统设计FSK(Frequency Shift Keying)调制与解调是一种基于频率变化的调制解调技术,广泛应用于无线通信和数据传输系统中。

本文将介绍FSK调制与解调的基本原理和系统设计要点。

1.原理介绍FSK调制是通过改变载波信号的频率来表示数字信号的不同状态。

典型的FSK调制方案有两种:二进制FSK(BFSK)和多级FSK(MFSK)。

在BFSK中,不同的数字0和1被分配给两个不同的频率值,例如0代表低频,1代表高频;在MFSK中,n个数字状态被分配给n个不同的频率值。

随着数字信号的变化,调制后的信号频率也相应变化,从而传输了数字信号的信息。

FSK解调是指将接收到的FSK信号恢复为数字信号的过程。

解调器通过检测信号的频率来确定数字信号的值。

具体过程如下:首先,对接收到的FSK信号进行低通滤波,以去除高频成分。

然后,利用频率判决电路来判断接收到的信号频率,根据预设的频率判决阈值将频率转换为数字信号。

2.系统设计要点(1)选取合适的载波频率:在FSK调制中,载波频率的选择非常重要。

应根据传输环境和要求合理选择载波频率,以确保信号传输的稳定性和可靠性。

(2)设计合理的调制解调电路:调制电路应具有良好的线性特性和较宽的动态范围,以实现准确的调制。

解调电路应具有良好的低通滤波功能和稳定的频率判决电路,以实现准确的解调。

(3)抗噪声设计:在FSK调制解调系统设计中,抗噪声能力是非常关键的。

通过增加前端的信号增益、抑制杂散信号和加入错误检测纠错码等方法,可以提高系统的抗噪声性能。

(4)设计适当的调制解调参数:调制解调参数的选择对系统性能有重要影响。

例如,在BFSK调制中,频率偏移量和数据速率的选择应综合考虑传输距离、噪声干扰和系统复杂度等因素。

(5)误码率性能分析:在系统设计完成后,应进行误码率性能分析,通过误码率曲线来评估系统的可靠性和性能。

总结:。

实验四 FSK调制与解调

实验四  FSK调制与解调

FSK 调制解调一、实验目的1. 掌握FSK 调制器的工作原理及性能测试;2. 学习基于软件无线电技术实现FSK 调制、解调的实现方法。

二、 实验仪器1. RZ9681实验平台 2. 实验模块: ● 主控模块● 基带信号产生与码型变换模块-A2 ● 信道编码与频带调制模块-A4 ● 纠错译码与频带解调模块-A5 3. 信号连接线 4. 100M 四通道示波器三、实验原理3.1 FSK 调制电路工作原理2FSK (二进制频移键控,Frequency Shift Keying )信号是用载波频率的变化来传递数字信息,被调载波的频率随二进制序列0、1状态而变化。

2FSK 信号的产生方法主要有两种:一种采用模拟调频电路来实现;另一种采用键控法来实现,即在二进制基带矩形脉冲序列的控制下通过开关电路对两个不同的独立频率源进行选通,使其在每一个码元期间输出0f 或1f 两个载波之一。

FSK 调制和ASK 调制比较相似,只是把ASK 没有载波的一路修改为了不同频率的载波,如下图所示。

图3.3.2.1 FSK 调制电路原理框图上图中,将基带时钟和基带数据通过两个铆孔输入到可编程逻辑器件中,由可编程逻辑器件根据设置的工作模式,完成FSK 的调制,因为可编程逻辑器件为纯数字运算器件,因此调制后输出需要经过D/A 器件,完成数字到模拟的转换,然后经过模拟电路对信号进行调整输出,加入射随器,便完成了整个调制系统。

-A图3.3.2.2 2FSK 调制信号波形示意图在二进制频移键控中,幅度恒定不变的载波信号的频率随着输入码流的变化而切换(称为高音和低音,代表二进制的1和0)。

通常,FSK 信号的 表达式为:bc bbFSK T t t f f T E S ≤≤∆+=0)22cos(2ππ(二进制1)bc bbFSK T t t f f T E S ≤≤∆-=0)22cos(2ππ(二进制0)其中Δf 代表信号载波的恒定偏移。

FSK调制解调实验报告

FSK调制解调实验报告

FSK调制解调实验报告实验报告:FSK调制解调实验一、实验目的FSK调制解调是数字通信中常用的调制解调方式之一,通过本次实验,我们学习FSK调制解调的原理、实现方法和实验技巧,理解其在数字通信中的应用。

同时,通过实验验证FSK调制解调的正确性和稳定性,并掌握实验数据的分析和处理方法。

二、实验原理FSK调制在信号传输中广泛应用,其原理是将数字信号调制成两个不同的频率信号,通常用0和1两个数字分别对应两个不同的频率。

在调制端,通过将0和1信号分别转换成相应的频率信号,并通过切换不同的载波波形来实现不同频率信号的调制。

在解调端,通过将接收到的调制信号分别和两个对应的参考频率信号进行相关运算,从而还原出原始的0和1信号。

实验所需材料:1.FSK调制解调器2.函数发生器3.示波器4.电缆和连接线实验步骤:1.将函数发生器的输出信号接入FSK调制器的MOD输入端,调整函数发生器的频率和幅度,使其适配FSK调制器的输入端。

2.调整FSK调制器的MOD输入切换开关,选择合适的调制波形(常用的有正弦波和方波两种)。

3.通过示波器观察和记录已调制的FSK信号波形。

4.将已调制的信号通过电缆传输到解调器端。

5.调整解调器的参考频率和解调器的解调方式。

6.通过示波器观察和记录解调器输出的数字信号波形。

7.将解调输出与调制前的原始信号进行比较,验证FSK调制解调的正确性。

三、实验结果和数据分析根据实验步骤的指导,我们依次完成了FSK调制解调的实验,在观察示波器上的波形时,我们发现调制波形的频率随着输入数据的0和1的变化而变化,已达到我们的预期效果。

在解调端,我们观察到解调输出的数字信号与调制前的原始信号一致,由此可验证FSK调制解调的正确性。

对于实验数据的分析和处理,我们应注意以下几点:1.频率的选择:合适的调制频率和解调频率能够保证调制解调的稳定和正确性,应根据具体情况进行选择。

2.调制波形的选择:正弦波和方波是常见的调制波形,两者各有优缺点,可根据实际需要进行选择。

FSK调制解调原理

FSK调制解调原理

FSK调制解调原理FSK调制解调是一种常用于数字通信系统中的调制解调方式。

FSK是频移键控调制(Frequency Shift Keying)的简称,它将数字信号转换为离散的频率信号进行传输。

本文将从调制原理、解调原理以及应用等方面进行详细介绍。

一、调制原理对于二进制数字信号,例如“0”和“1”,可以选择两个固定频率的载波信号,分别代表“0”和“1”。

当发送“0”时,使用频率为f1的载波信号,当发送“1”时,使用频率为f2的载波信号。

这样就可以将数字信号转换成两个离散的频率信号进行传输。

二、解调原理FSK解调原理是对接收到的频率信号进行频率判决,将频率转换为数字信号。

常用的解调方法有非相干解调、相干解调和差分相干解调。

1.非相干解调:非相干解调是最简单的解调方法之一,它直接对接收到的信号进行频率测量。

通过比较测量的频率与预定的频率值进行判决,将频率转换成二进制数字信号。

非相干解调简单易于实现,但对信噪比要求较高,容易受到噪声的影响。

2.相干解调:相干解调是一种通过与本地振荡器进行相干性检测的解调方法。

接收到的信号与本地振荡器产生的相干信号进行混频,通过相干滤波器将混频后的信号进行滤波。

相干解调能够提高抗噪性能,但需要本地振荡器与信号的频率一致。

3.差分相干解调:差分相干解调是相干解调的一种改进方法。

它通过将相邻两个相干解调器输出的数字信号进行差分运算,得到差分输入的数字信号。

差分相干解调具有较好的抗噪性能,适用于高噪声环境下的解调。

三、应用1.数字通信系统:FSK调制解调可以用于数字通信系统中,通过频率的变化将数字信号进行传输。

例如,调制解调器、调频广播等。

2.数据传输:FSK调制解调可以用于数据传输中,例如网络通信、无线通信等。

通过不同的频率进行传输,实现数据的传输和接收。

3. RFID技术:FSK调制解调在RFID(Radio Frequency Identification)技术中得到广泛应用。

2FSK调制解调原理及设计

2FSK调制解调原理及设计

2FSK调制解调原理及设计2FSK调制解调技术通常用于调制两个离散频率(频移)来表示二进制数据流中的0和1、其中一个频率用于表示0,另一个频率用于表示1、在调制过程中,将基带数字信号转换为模拟信号,并将其移频到所需的频率。

解调过程则通过检测输入信号的频率来还原原始的二进制数据流。

1.调制器设计:调制器将二进制数据流转换为模拟信号,并在不同的频率上调制这些信号。

常见的调制器设计包括频率锁相环(PLL)和直接数字频率合成(DDS)。

PLL使用反馈回路来产生一个输出信号,其频率与输入信号的相位差很小。

DDS则使用数字信号直接合成所需的频率。

2.频率选择器:频率选择器用于选择调制信号的频率。

通过控制频率选择器的开关或滤波器,可以选择不同的频率来代表0和1、频率选择器可以是可编程的,以便在需要时切换不同的调制频率。

3.解调器设计:解调器将传输信号转换为数字信号,使数据能够被读取和处理。

解调器通常包括一个带通滤波器和一个判决器。

带通滤波器用于滤除不需要的频率成分,使解调信号只包含所需的频率分量。

判决器则用于将接收到的信号映射到二进制数据流中的0和14.错误检测和纠正:在接收端,通常还需要实施错误检测和纠正机制来提高数据传输的可靠性。

常见的错误检测和纠正方法包括奇偶校验、循环冗余检测(CRC)和海明码。

2FSK调制解调技术在数字通信系统中得到了广泛的应用,特别是在无线通信领域。

它具有简单可靠的特点,适用于低复杂度的通信系统。

同时,2FSK调制解调技术也可以扩展为多级FSK调制解调技术,以提高数据传输速率和信号带宽利用率。

总之,2FSK调制解调是一种常见且有效的数字调制解调技术,其原理和设计涉及调制器设计、频率选择器、解调器设计以及错误检测和纠正等关键步骤。

这种技术在数字通信系统中具有广泛的应用,并且可以根据需要进行扩展和优化。

fsk调制解调原理及设计.doc

fsk调制解调原理及设计.doc

一.2FSK 调制原理:1、2FSK 信号的产生:2FSK 是利用数字基带信号控制在波的频率来传送信息。

例如,1码用频率f1来传输,0码用频率f2来传输,而其振幅和初始相位不变。

故其表示式为{)cos()cos(21122)(θωθωϕ++=t A t A FSK t 时发送时发送"1""0"式中,假设码元的初始相位分别为1θ和2θ;112f π=ω和222f π=ω为两个不同的码元的角频率;幅度为A 为一常数,表示码元的包络为矩形脉冲。

2FSK 信号的产生方法有两种:(1)模拟法,即用数字基带信号作为调制信号进行调频。

如图1-1(a )所示。

(2)键控法,用数字基带信号)(t g 及其反)(t g 相分别控制两个开关门电路,以此对两个载波发生器进行选通。

如图1-1(b )所示。

这两种方法产生的2FSK 信号的波形基本相同,只有一点差异,即由调频器产生的2FSK 信号在相邻码元之间的相位是连续的,而键控法产生的2FSK 信号,则分别有两个独立的频率源产生两个不同频率的信号,故相邻码元的相位不一定是连续的。

(a) (b)2FSK 信号产生原理图由键控法产生原理可知,一位相位离散的2FSK 信号可看成不同频率交替发送的两个2ASK 信号之和,即 )cos(])([)cos(])([)cos(·)()cos()()(221122112θωθωθωθωϕ+-++-=+++=∑∑∞-∞=∞-∞=t nT t g a t nT t g a t t g t t g t n s n n s n FSK其中)(t g 是脉宽为s T 的矩形脉冲表示的NRZ 数字基带信号。

{P,0P 11概率,概率-=n a {P 1,0P 1-=概率,概率n a 其中,n a 为n a 的反码,即若1=n a ,则0=n a ;若0=n a ,则1=n a 。

2、2FSK 信号的频谱特性:由于相位离散的2FSK 信号可看成是两个2ASK 信号之和,所以,这里可以直接应用2ASK 信号的频谱分析结果,比较方便,即)]()()()([]|)(||)(||)(||)([|)()()(2211161222221211622221f f f f f f f f T f f Sa T f f Sa T f f Sa T f f Sa f S f S f S S S S S T ASK ASK FSK S ++-+++-+++-+++-=+=δδδδππππ2FSK 信号带宽为 s s FSK R f f f f f B 2||2||21212+-=+-≈ 式中,s s f R =是基带信号的带宽。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.2FSK 调制原理:
1、2FSK 信号的产生:
2FSK 是利用数字基带信号控制在波的频率来传送信息。

例如,1码用频率f1来传输,0码用频率f2来传输,而其振幅和初始相位不变。

故其表示式为
式中,假设码元的初始相位分别为1θ和2θ;112
f π=ω和222f π=ω为两个不同的码元的角频率;幅度为A 为一常数,表示码元的包络为矩形脉冲。

2FSK 信号的产生方法有两种:
(1)模拟法,即用数字基带信号作为调制信号进行调频。

如图1-1(a )所示。

(2)键控法,用数字基带信号)(t g 及其反)(t g 相分别控制两个开关门电路,以此对两个载波发生器进行选通。

如图1-1(b )所示。

这两种方法产生的2FSK 信号的波形基本相同,只有一点差异,即由调频器产生的2FSK 信号在相邻码元之间的相位是连续的,而键控法产生的2FSK 信号,则分别有两个独立的频率源产生两个不同频率的信号,故相邻码元的相位不一定是连续的。

(a) (b)
2FSK 信号产生原理图
由键控法产生原理可知,一位相位离散的2FSK 信号可看成不同频率交替发送的两个2ASK 信号之和,即
其中)(t g 是脉宽为s T 的矩形脉冲表示的NRZ 数字基带信号。

其中,n a 为n a 的反码,即若1=n a ,则0=n a ;若0=n a ,则1=n a 。

2、2FSK 信号的频谱特性:
由于相位离散的2FSK 信号可看成是两个2ASK 信号之和,所以,这里可以直接应用2ASK 信号的频谱分析结果,比较方便,即
2FSK 信号带宽为 s s F S K R f f f f f B 2||2||21212+-=+-≈ 式中,s s f R =是基带信号的带宽。

二.2FSK 解调原理:
仿真是基于非相干解调进行的,即不要求载波相位知识的解调和检测方法。

其非相干检测解调框图如下
M 信号非相干检测解调框图
当k=m 时检测器采样值为:
当k ≠m 时在样本和中的信号分量将是0,只要相继频率之间的频率间隔是,就与相移值无关了,于是其余相关器的输出仅有噪声组成。

其中噪声样本{}和{}都是零均值,具有相等的方差 对于平方律检测器而言,即先计算平方包络
并取其最大值信号。

二进制FSK系统的理论误码率与信噪比的关系给出如下
2FSK具体设计调制与解调
2FSK采用键控法调制,相干解调法进行解调
程序代码如下:
Fc=10; %载频
Fs=100; %系统采样频率
Fd=1; %码速率
N=Fs/Fd;
df=10;
numSymb=25;%进行仿真的信息代码个数
M=2; %进制数
SNRpBit=60;%信噪比
SNR=SNRpBit/log2(M);
seed=[12345 54321];
numPlot=25;
%产生25个二进制随机码
x=randsrc(numSymb,1,[0:M-1]);%产生25个二进制随机码
figure(1)
stem([0:numPlot-1],x(1:numPlot),'bx');
title('二进制随机序列')
xlabel('Time');
ylabel('Amplitude');
%调制
y=dmod(x,Fc,Fd,Fs,'fsk',M,df);
numModPlot=numPlot*Fs;
t=[0:numModPlot-1]./Fs;
figure(2)
plot(t,y(1:length(t)),'b-');
axis([min(t) max(t) -1.5 1.5]);
title('调制后的信号')
xlabel('Time');
ylabel('Amplitude');
%在已调信号中加入高斯白噪声
randn('state',seed(2));
y=awgn(y,SNR-10*log10(0.5)-10*log10(N),'measured',[],'dB');%在已调信号中加入高斯白噪声figure(3)
plot(t,y(1:length(t)),'b-');%画出经过信道的实际信号
axis([min(t) max(t) -1.5 1.5]);
title('加入高斯白噪声后的已调信号')
xlabel('Time');
ylabel('Amplitude');
%相干解调
z1=ddemod(y,Fc,Fd,Fs,'fsk',M,df);
%带输出波形的相干M元频移键控解调
figure(4)
stem([0:numPlot-1],x(1:numPlot),'bx');
hold on;
stem([0:numPlot-1],z1(1:numPlot),'ro');
hold off;
axis([0 numPlot -0.5 1.5]);
title('相干解调后的信号原序列比较')
legend('原输入二进制随机序列','相干解调后的信号') xlabel('Time');
ylabel('Amplitude');
%误码率统计
[errorSym ratioSym]=symerr(x,z1);
figure(6)
simbasebandex([0:1:5]);
title('相干解调后误码率统计')。

相关文档
最新文档