金属材料切削加工性

合集下载

金属切削加工的基本知识

金属切削加工的基本知识
(2)进给速度vf和进给量f
进给速度vf是单位时间内刀具对工件沿进给方
向的相对位移,单位是mm/s或mm/min。
进给量f是工件或刀具每回转一周时两者沿进
给运动方向的相对位移,单位是mm/r。
二者关系:
vf=f×n
切 削 用 量 三 要 素
(3)背吃刀量 工件上已加工表面和待加工表面间的垂直距 离,单位为mm。 外圆柱表面车削的深度可用下式计算: ap=(dw-dm)/2 mm 对于钻孔工作 ap=dm/2 mm 上两式中 dm——已加工表面直径(mm) dw—— 待加工表面直径(mm)
(3)金刚石
是目前人工制造出的最硬的物质,分天然和人造两种。
特点:
耐磨性好,可用于加工硬质合金、陶瓷、高硅铝合金及耐磨塑料等高硬度、
高耐磨的材料;
其热稳定性差, 强度低、脆性大、对振动敏感,只宜微量切削; 与铁有极强的化学亲合力,不适于加工黑金属。
(4)立方氮化硼
由软的立方氮化硼在高温高压下加入催化剂转变而成。
切 削 层 横 截 面 要 素
由切削刃正在切削的这一层金属叫作切削层。切削层的 截面尺寸称为切削层参数。它决定了刀具切削部分所承受的 负荷和切屑尺寸的大小,通常在基面Pr内度量。 1. 切削厚度 ac (λs= 0)
ac= f sinκr
2. 切削宽度 aw
aw= ap/sinκr
3. 切削层面积 Ac ( κr = 0)
特点:Leabharlann 有很高的硬度及耐磨性; 热稳定性好,可用来加工高温合金; 化学惰性大,可用与加工淬硬钢及冷硬铸铁; 有良好的导热性、较低的摩擦系数。
第二节 金属切削过程中的基本规律
一、切削变形
1.变形区的划分

钢材的工艺性能

钢材的工艺性能
6
顶锻性
顶锻性是指金属材料承受打铆、镦头等的顶锻变形的性能。金属的顶锻性,是用顶锻试验测定的。
7
冷弯性
金属材料在常温下能承受弯曲而不破裂的性能,称为冷弯性。出现裂纹前能承受的弯曲程度愈大,则材料的冷弯性能愈好。
8
热处理工艺性
热处理是指金属或合金在固态范围内,通过一定的加热、保温和冷却方法,以改变金属或合金的内部组织,而得到所需性能的一种工艺操作。热处理工艺就是指金属经过热处理后其组织和性能改变的能力,包括淬硬性、淬透性、回火脆性等。(钢材网 )
序号
名称
含义
1
铸造性
金属材料能用铸造方法获得合格铸件的能力称为铸造性。铸造性包括流动性、收缩性和偏析倾向等。流动性是指液态金属充满铸模的能力,流动性愈好,愈易铸造细薄精致的铸件,收缩性是指铸件凝固时体积收缩的程度,收缩愈小,铸件凝固时变形愈小。偏析是指化学成分不均匀,偏析愈严重,铸件各部位的性能愈不均匀,铸件的可靠性愈小。
2
切削加工性
金属材料的切削加工性系指金属接受切削加工的能力,也是指金属经过加工而成为合乎要求的工件的难易程度。通常可以切削后工作表面的性
焊接性是指金属在特定结构和工艺条件下通过常用焊接方法获得预期质量要求的焊接接头的性能。焊接性一般根据焊接时产生的裂纹敏感性和焊缝区力学性能的变化来判断。
4
锻性
锻性是材料在承受锤锻、轧制、拉拔、挤压等加工工艺是会改变形状而不产生裂纹的性能。它实际上是金属塑性好坏的一种表现,金属材料塑性越高,变形抗力就越小,则锻性就越好。锻性好坏主要决定于金属的化学成分、显微组织、变形温度、变形速度及应力状态等因素。
5
冲压性
冲压性是指金属经过冲压变形而不发生裂纹等缺陷的性能。许多金属产品的制造都要经过冲压工艺,如汽车壳体、搪瓷制品坯料及锅、盆、盂、壶等日用品。为保证制品的质量和工艺的顺利进行,用于冲压的金属板、带等必须具有合格的冲压性能。

金属材料的加工工艺性能

金属材料的加工工艺性能
某些钛合金,铸造镍基高温合金,
7 难切削材料 0.15~0.5
8 很难切削材料 <0.15 不同级织,不同硬度对不同切削加工操作(如车,铣,刨,镗,拉等)切削加工性是不同的。 如回火索氏体的中碳钢,车削加工性较好,钻削加工性中等,拉,拨加工性较差。 14.4.3. 热处理工艺性能 机床主轴 在选用机床主轴的材料和热处理工艺时,必须考虑以下几点: (1) 受力的大小。不同类型的机床,工作条件有很大差别,如高速机床和精密机床主轴的工作条件与重型机床主轴的要作条件相比,无论在弯曲或扭转疲劳特性方面差别都很大。 (2) 轴承类型。如在滑动轴承上工作时,轴颈需要有高的耐磨性。 (3) 主轴的形状及其可能引起的热处理缺陷。结构形状复杂的主轴在热处理时易变形甚至开裂,因此在选材上应给予重视。 主轴是机床中主要零件之一,其质量好坏直接影响机床的精度和寿命。因此必须根据主轴的工作条件和性能要求,选择用钢和制定合理的冷热加工工艺。 1、 机床主轴的工作条件和性能要求。该主轴的工作条件如下: (1) 承受交变的弯曲应力与扭转应力,有时受到冲击载荷的作用; (2) 主轴大端内锥孔和锥度外圆,经常与卡盘、顶针有磨擦; (3) 花键部分经常有碰撞或相对滑动。 由此定出技术条件: (1) 整体调质后硬度应为HB200~230,金相组织为回火索氏体; (2) 内锥孔和外圆锥面处硬度为HRC45~50,表面3~5mm内金相组织为回火屈氏体和少量回火马氏体; (3) 花键部分的硬度为HRC48~53,金相组织同上。 2、 选择用钢 C515车床属于中速,中负荷,在滚动轴承中工作的机床,因此选用45钢。 3、 主轴工艺路线 下料——锻造——正火——粗加工(外圆余留4~5mm)——调质——半精车外圆(余留2.5~3.5mm),钻中心孔,精车外圆(余留0.6~0.7mm,锥孔留余0.6~0.7mm),铣键槽——局部淬火(锥孔及外锥体)——车定刀槽,粗磨外圆(余留0.4~0.5mm),滚铣花键——花键淬火——精磨。 4、 热处理工序作用 正火处理是为了得到合适的硬度(HB170~230),以便机加工,改善锻造组织,为调质作准备。 调质处理是为了主轴的综合机械性能和疲劳强度,调质后硬度为HB200~230,组织为回火索氏体。 内锥孔和外圆锥面部分经盐浴局部淬火和回火后得到所要求的硬度,以保证装配精度和耐磨性。 5、 热处理工艺 调质中淬火时由于主轴各部分的直径不同,应注意变形问题。调质后变形虽可用校直来修正,但校直时的附加应力对主轴精加工后的尺寸稳定性是不利的。为减小变形,应注意淬火操作方法。可采取预冷淬火和控制水中冷却时间来减小变形。 花键部分高频淬火以减小变形和达到硬度要求。 经淬火后的内锥孔和外圆锥面部分需经260~300℃回火,花键部分需经240~250℃回火,以消除淬火应力并达到规定的硬度值。

金属材料的切削加工特性

金属材料的切削加工特性
9
1.金屬材料物理性能的影響: ►硬度:材料抵抗局部塑性變形的能力.有洛氏硬
度.布氏硬度和維氏硬度三種. ►強度:材料抵抗外力破壞的能力. ►一般材料的硬度和強度越高,加工性能越差.如
高強度鋼比一般鋼材難加工.
10
1.金屬材料物理性能的影響: ►塑性:材料發生變形后不能恢復原狀,產生金屬
流動的能力. ►一般材料的塑性越大越難加工. ►韌性:材料發生變形后恢復原狀的能力. ►材料韌性越高加工性越差.如合金結構鋼其強
氮等對加工性能影響較大. 材料韌性越高加工性越差. 金屬材料的切削加工特性
導熱性:材料傳遞熱量的能力.用導熱系數表示. ► 15%)與高碳鋼(含碳量大于0.
依据材料性質的不同選用不同的刀具及加工參數. 如合金結構鋼其強度大,韌性高,故較難加工.
導熱系數越大,加工性能越好.如不銹鋼導熱系 ► 目的:軟化材料,改善組織,便於切削加工.
金屬材料的切削加工特性
1
培訓內容
► 金屬材料切削加工性的常用指標 ► 影響金屬材料加工性能的因素 ► 改善加工性能的途徑
2
加工特性: 金屬材料進行切削加工的難易程度
► 刀具的切削加工性能與材料切削加工性的關 系最為密切 ,不能脫離刀具的切削性能孤立 地加工材料的切削性能,應將兩者結合起來.
3
1. 刀具壽命或者一定壽命下的切削速度 2. 切削力或者切削速度 3. 加工零件的表面質量 4. 切屑控制或斷屑的難易程度
15
B>淬火:在臨界溫度以上保溫一定時間,快泠 如油泠,水冷,風冷等得到非平衡狀態組織 目的:提高材料的硬度和強度.滿足使用要求. C>回火:在臨界溫度以下保溫一定時間的工 藝.所有零件淬火后都需回火,它有淬火后回火 和冷加工后去應力回火兩種. 目的:穩定組織,消除應力.

金属材料的性能

金属材料的性能

金属材料的性能金属材料的性能分为使用性能和工艺性能。

●使用性能是指金属材料为保证机械零件或工具正常工作应具备的性能,即在使用过程中所表现出的特性。

金属材料的使用性能包括力学性能、物理性能和化学性能等;●工艺性能是指金属材料在制造机械零件和工具的过程中,适应各种冷加工和热加工的性能。

工艺性能也是金属材料采用某种加工方法制成成品的难易程度,它包括铸造性能、锻一、金属材料的力学性能●金属材料的力学性能是指金属材料在力作用下所显示的与弹性和非弹性反应相关或涉及应力──应变关系的性能,如强度、塑性、硬度、韧性、疲劳强度等。

●物体受外力作用后导致物体内部之间相互作用的力,称为内力。

●单位面积上的内力,称为应力σ(N/mm2)。

●应变є是指由外力所引起的物体原始尺寸或形状的相对变化(%)金属材料的力学性能主要有:强度、刚度、塑性、硬度、韧性和疲劳强度等。

●金属材料在力的作用下,抵抗永久变形和断裂的能力称为强度。

●塑性是指金属材料在断裂前发生不可逆永久变形的能力。

金属材料的强度和塑性指标1●拉伸试验是指用静拉伸力对试样进行轴向拉伸,测量拉伸力和相应的伸长,并测其力(1)拉伸试样。

拉伸试样通常采用圆柱形拉伸试样,分为短试样和长试样两种。

长试样L0=10d0;短试样L0=5d0。

a)拉断前 b)拉断后图1-5 圆形拉伸试样(2)试验方法。

2.力伸长曲线●在进行拉伸试验时,拉伸力F和试样伸长量△L之间的关系曲线,称为力伸长曲线。

试样从开始拉伸到断裂要经过弹性变形阶段、屈服阶段、变形强化阶段、缩颈与断裂四个阶段。

图1-7 退火低碳钢力伸长曲线3.金属材料的强度指标主要有:屈服点σs、规定残余伸长应力σ0.2、抗拉强度σb等。

(1)屈服点和规定残余延伸应力。

●屈服点是指试样在拉伸试验过程中力不增加(保持恒定)仍然能继续伸长(变形)时的应力。

屈服点用符号σs表示。

单位为N/mm2或MPa●规定残余延伸应力是指试样卸除拉伸力后,其标距部分的残余伸长与原始标距的百分比达到规定值时的应力,用应力符号σ并加角标“r和规定残余伸长率”表示,如σr0.2表示规定残余伸长率为0.2%(2)抗拉强度。

第十七章 金属切削加工基础知识

第十七章 金属切削加工基础知识

图17-17 刀具磨损的三个阶段
• 第五节
工件材料的切削加工性
• 一、 衡量工件材料切削加工性的指标 • 由于切削加工性是对材料多方面的综合评价,所以很难用一个简单的 物理量来精确规定和测量。在生产和实验中,常取某一项指标来反映 材料切削加工性的某一具体方面,最常用的是vT和Kr。 • vT——指在一定的切削条件下,当刀具的寿命为T分钟时,切削某种材 料所允许的最大的切削速度。vT越高,表示材料的切削加工性越好。 通常取T=60min,则vT可写作v60。 • Kr——称为相对加工性,一般以正火状态45钢的v60为基准,写作 (v60),然后将其它各种材料的v60与之相比所得的比值。当Kr>1时, 表示该材料比45钢容易切削。反之,则比45钢难切削。常用工件材料 的相对加工性可分为八级,见表17-2。
• 五、切削热与切削温度 • 1.切削热的来源: • ⑴是正在加工和已加工表面所发生的弹性和塑性变形而产生的大量的热, 是切削热的主要来源; • ⑵是切屑与刀具前刀面之间的摩擦产生的热; • ⑶是工件与刀具后刀面之间的摩擦产生的热。切削时所消耗的功约有98% -99%转换为切削热。 • 2.切削温度 • 切削温度过高,会使刀头软化,磨损加剧,寿命下降;工件和刀具受热膨 胀,会导致工件精度超差影响加工精度,特别是在加工细长轴、薄壁套时, 更应注意热变形的影响。 ⑴ • 在生产实践中,为了有效地降低切削温度,常应用切削液,切削液能带走 大量的热,对降低切削温度的效果显著,同时还能起到润滑、清洗和防锈的 作用。常见的切削液有: • ⑴切削油 主要是各种矿物油、动植物油和加入油性、极压添加剂的混 合油。其润滑性能好,但冷却性能较差,主要用来减少磨损和降低工件的表 面粗糙度,一般用于低速精加工,如铣削加工和齿轮加工等。 • ⑵水溶液 主要成分是水并加入防锈剂、表面活性剂或油性添加剂。其 热导率高、流动性好,主要起冷却作用,同时还具有防锈、清洗等作用。 • ⑶乳化液 由乳化油加水稀释而成,呈乳白色或半透明状,有良好的流 动性和冷却作用,是应用最广泛的切削液。低浓度的乳化液用于粗车、磨削。 高浓度乳化液用于精车、钻孔和铣削等。在乳化液中加入硫、磷等有机化合 物,可提高润滑性。适用于螺纹、齿轮等精加工。

第2-7节工件材料的切削加工性




参考资料1:不锈钢的切削加工性
与45钢相比,1Cr18Ni9Ti不锈钢的相对可切削性约为0.3-.05之间,是一 种难切削材料。 其难加工性主要表现在: 高温强度和高温硬度高,一般钢材切削时,随着切削温度的升高其强度 会明显降低,切屑易被切离,而1Cr18Ni9Ti在700度时仍不能降低其机 械性能,故切屑不易被切离,切削过程中切削力大,刀具易磨损。 塑性和韧性高,虽然1Cr18Ni9Ti的抗拉强度和硬度都不高,但综合性能 很好,塑性和韧性高,它的延伸率、断面收缩率和冲击值都较高, 1Cr18Ni9Ti的延伸率是40%,是40#的210-237%,是45#的250-280%, 是20Cr、40Cr钢的400-500%,所以切屑不易切离、卷曲和折断,切屑 变形所消耗的功能增多,如切除一定体积的1Cr18Ni9Ti所消耗的能量比 切除相同体积的低碳钢约高50%,并且大部分能量转化为热能,使切削 温度升高。 由 于1Cr18Ni9Ti不易加工,切屑不易切离和折断,故刀具和工件之间所 产生的摩擦热也多,而不锈钢1Cr18Ni9Ti的导热率低(约为普通钢的1/21/3),散热差,由切屑带走的热量少。大部分的热量被刀具吸收,致使 刀具的温度升高,加剧刀具磨损。
2、工件材料化学成分的影响 (1)钢材的化学成分对切削加工性的影响
碳素钢的强度与硬度随含碳量的增加而提高,而塑性与韧性 随含碳量的增加而减小。低碳钢的塑性和韧性较高,又不易断 屑,因此切削加工性较差;高碳钢的强度和硬度较高,易使刀 具磨损,因此切削加工性较差;中碳钢的切削加工性较好。 在钢中加入铬、镍、钒、钼、钨、锰、硅、铝等合金元素可 以改变钢的切削加工性。
铁的加工性比冷硬铸铁好。
(3)以切屑控制或断屑的难易为衡量指标
在自动线上或自动机床上,常以切屑控制或断屑的难易程度 作为衡量材料切削加工性的指标。

六组材料特性及切削力

六组材料特性及切削力在金属切削工业中,有许多用不同材料制造的零件。

每种材料都有自己独特的特性,受到合金元素、热处理、硬度等的影响。

这极大地影响了切削刀具槽形、牌号和切削参数的选择。

在材料组之间的差别可用另外一种方式显示出来。

即在一定条件下,剪断特定切屑横截面的切削力 (FT) 。

该值我们称之为特定切削力值 (Kc),它指示不同的工件材料类型,它显示了不同的工件材料类型的区别。

在计算一道工序所需的功率时,需要应用到该值。

Kc1是平均切屑厚度1mm 时的特定切削力值。

下面我们将六个材料组的特性及切削力逐一说明:ISO P–在金属切削领域,钢是应用最为广泛的材料组,范围从非合金钢到高合金钢,包括铸钢和铁素体以及马氏体不锈钢。

通常钢具有良好的切削加工性,但具体性能因材料硬度、碳含量等不同而有很大的区别。

ISO M–不锈钢是一种合金材料,其中含有至少12%的铬,其他合金有镍和钼等。

不同的材料状态,例如铁素体、马氏体、奥氏体、奥氏体-铁素体(双相) 等,形成一个大的材料系列。

所有这类材料的共同点是,加工时切削刃会产生大量的热,易形成沟槽磨损和积屑瘤。

ISO K–与钢不同,铸铁是短切屑型材料。

灰口铸铁(GCI) 和可锻铸铁(MCI)非常容易加工,而球墨铸铁(NCI)、蠕墨铸铁(CGI) 和奥氏体铸铁(ADI) 就比较难加工。

所有铸铁都含有碳化硅(SiC),它会对切削刃造成严重磨损。

ISO S–耐热优质合金包括许多铁、镍、钴和钛基等高合金材料。

它们非常粘,极易形成积屑瘤,加工硬化严重,并产生大量的热量,非常类似于ISO M材料,但是更难以切削,导致切削刃的寿命更短。

ISO N–有色金属是软金属类型,例如铝、铜、黄铜等。

含硅(Si) 大于13%的铝合金对刀具具有非常强的磨料磨损性。

加工中通常应用具有锋利切削刃的刀片,一般可应用高切削速度并获得长刀具寿命。

ISO H–这一组包括硬度在HRc 45-65之间的钢材和硬度约为HB 400-600的冷硬铸铁。

8、金属切削加工基本理论

石的
合成方法,也是利用高温高压加催化剂的方法将六方 氮化硼转变成立方氮化硼。 • 立方氮化硼是六方氮化硼的同素异形体,硬度达 8000~9000HV,是人类已知的硬度仅次于金刚石的材
料,其热稳定性和化学惰性大大优于金刚石,可耐1
300~1500°C的高温,在1200~1300°也不易 与铁系材料发生化学反应,其导热率也大大高于高速
• 2、常用刀具材料
刀具材料类型: 工具钢(高速钢) 硬质合金 陶瓷 超硬材料 最常用
工具钢耐热性差,但抗弯强度高,价格便宜,焊接与 刃磨性能好,故广泛用于中、低切削的成形刀具,不 宜高速切削。
• 3)高速钢 • 高速钢是加入了钨(W)、钼(Mo)、铬(Cr)、钒(V) 等合金元素的高合金工具钢。它们都是强烈的 碳化物形成元素,在熔炼与热处理过程中与碳 形成了高硬度的碳化物,从而提高了钢的耐磨 性。 • 高速钢的强度(抗弯强度为硬质合金的2~3倍 ,为陶瓷的5~6倍)、硬度(62~70HRC)、耐 热性(600~700°C)、韧性、耐磨性和工艺性 均较好,刃磨锋利,故又称“锋钢”,适合于 大部分常用材料的切削加工。
6)超硬刀具材料
• 超硬刀具材料有金刚石和立方氮化硼。金刚石可分天然和人造两 种,其代号分别用JT和JR表示,都是碳的同素异形体。
• 天然金刚石大多属于单晶金刚石,单晶天然金刚石具 有各向异性(即不同晶面上强度、硬度和耐磨性差异很 大,可在100~500倍范围内变化,故制造时应考虑刃磨 方向),选择正确的刃磨方向,可使刀的刃口圆角半 径磨到最小,刀具极为锋利,可用于有色金属及非金 属的超精密加工。 • 天然金刚石价格十分昂贵,使用较少。
第8章 金属切削加工概论
【主要内容】 1.切削加工的基本慨念 (1)切削运动 (2)工件上的加工表面 (3)切削用量及切削层参数 2.切削刀具 (1)刀具材料 (2)刀具的几何形状及角度 (3)刀具的耐用度 3.切削过程中的物理现象 (1)切屑 (2)积屑瘤 (3)切削力 (4)切削热

金属的工艺性能


ቤተ መጻሕፍቲ ባይዱ
二、 锻造性能
金属的工艺性能
金属利用锻压加工方法成型的难易程度称 为锻造性能。锻造性能的好坏主要取决于金属的 塑性和变形抗力。塑性越好、变形抗力越小,金 属的锻造性能就越好。例如,碳钢在加热的状态 下有较好的锻造性能,铸铁则不能进行锻造。
三、 焊接性能
金属的工艺性能
焊接性能是指金属对焊接加工的适应能力,即 在限定的施工条件下被焊接成按规定设计要求的构 件,并满足预定使用要求的能力。焊接性能好的金 属可以获得没有裂缝、气孔等缺陷的焊缝,焊接质 量好,并且焊接接头具有一定的力学性能。如低碳 钢具有良好的焊接性能,而高碳钢、铸铁的焊接性 能较差。
金属的工艺性能
工艺性能是指金属在制造成各种机械零件或工具的过 程中,对各种不同加工方法的适应能力,即金属采用某种 加工方法制成成品的难易程度,它包括铸造性能、锻造性 能、焊接性能、切削加工性能等。例如,某种金属材料用 铸造成型的方法容易得到合格的铸件,则该种材料的铸造 性能好。工艺性能直接影响零件的制造工艺和质量,是选 择金属材料时必须考虑的因素之一。
一、 铸造性能
金属的工艺性能
金属在铸造成型过程中获得外形准确、内部健全的铸件的能力称 为铸造性能。铸造性能包括流动性、收缩性和偏析等。流动性是指熔 融金属的流动能力,它主要受金属的化学成分和浇注温度的影响,流 动性好的金属容易充满铸型,从而获得外形完整、尺寸精确、轮廓清 晰的铸件;收缩性是指铸件在凝固和冷却过程中体积和尺寸减小的现 象,收缩不仅影响铸件的尺寸精度,还会使铸件产生缩孔、疏松、内 应力、变形及开裂等缺陷,所以用于铸造的金属,其收缩率越小越好; 偏析是指铸件凝固后其内部化学成分不均匀的现象,偏析严重时将造 成铸件各部分的组织和力学性能相差很大,降低铸件的质量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章金属材料切削加工性切削加工性:Machinability,指金属材料被切削加工成合格零件的难易程度。

例如:以车削45#钢为例:材料硬度HB200(正火)单位切削力κc=200kg/mm2用YT15车刀车削:IT8 νc=120 θ=800ºC此种车削方法家喻户晓,人人皆知,谁都会做,没什么难点。

1. 铝合金,这是比较好加工的,κc=70,νc=800m/min时,θ也不高,T很长。

2. 灰口铸铁HT200 κc=114 断屑切削加工性评价指标:①刀具耐用度高;T②许用切削速度高;νc③已加工表面易于达到;④车削时断屑;⑤切削力小,切削温度低。

F c θ3. 45#淬火HRC50切削力F c大,切削温度θ高,刀具耐用度T低。

一般情况下不车,只能磨削。

IT8§1—1 衡量切削加工性指标以车削45#钢(HB200)为参照基准: 刀具材料:YT15; 刀具耐用度:T=60min ; [ν60]j =100m/min ;当切削LY12 ν60=300m/min 相比[]60603003100r j νκν=== 一、称相对加工性相对加工性比较表二、衡量指标: 1. 刀具耐用度T :T 较长,加工性较好。

例:45#钢 T=60min30C r M n SiA T=20min 加工性差。

2. 切削速度νc :例:45#钢 νc =100m/min YT15LY12 νc =300m/min YG153003100r κ== 加工性好。

泰勒公式: 0.4c ATν=切削速度是根据刀具耐用度确定的。

一定刀具耐用度下有一个允许的切削速度νT 。

3. 切削力F c (或者κc ) 凡切削力大者,加工性差。

单位切削力κc 比较4. 切削温度(θ)凡是切削温度高者,加工性差。

切削温度比较表条件: νc =60m/min a p =3 f=0.1 见图(一)θº12001000 900 1 2 3900 (100,800)800 860700 630 4600500400 50030020010 20 30 40 50 60 70 80 90 100 110 120 130 νc m/min图(一)1—GH131 2—1Cr18Ni9Ti 3—45#钢(正火)4—HT200YT15—45# YG8—GH131 1Cr18Ni9Ti HT200γo=15ºα0=8ºκr=75ºλs=0ºγε=0.2 a p=3 f=0.15. 已加工表面质量:包括:表面粗糙度表面残余应力 加工硬化程度及深度① ()''44r r a r ff R ctg ctg ctg κκκ==+2r πκ=时 ctg κc =0 R a (µf 决定R a 。

80C r 12Ni12M o νc =60 f= a p =0.520.1 0.2 0.3 f ② 残余应力:在没有外力作用的情况下,物体内部保持平衡而存在的应力。

产生的原因有:热塑变形效应,里层金属弹性的恢复,表层金属在切削热的作用下发生相变。

105-σ0.5 1 1.5 2 mm-5距表面深度车削νc=32m/min③加工硬化程度及深度冷硬层的硬度为材料的2倍;深度为:0.12—0.246. 断屑:f≥0.2时(νc=100) 车削45#钢断屑。

7. 还可以用加工费用和加工时间对比。

§1—2 工件材料对加工性的影响一、金属材料的化学成份对加工性的影响1. 碳C10#钢为低碳钢,含C0.1%,韧性好,难断屑。

采用正火方法,提高其硬度。

45#钢为中碳钢,含C0.45%,综合性能好,易切,硬度HB200。

80#钢为高碳钢,含C0.8%,含Fe3C多,材料硬,刀具磨损严重。

加工前采用退火处理,使其软些。

2. 铬C r在铁素体中固溶;形成CrC;HB和σb提高。

3. 镍Ni在铁素体中固溶;σb,δ提高,导热系数λ下降。

当Ni>8%时,变为奥氏体钢,加工硬化严重,切削加工性变差。

4. 锰Mn随着Mn含量增加,HB,σb增大,延伸率δ下降。

当Mn>1.5%时,加工性差。

也就是高锰钢。

5. 钒V形成vc,细化晶粒,HB↑δ↓,当1%V 时,加工性差。

6. 钼Mo形成MoC, HB↑, (δ↓), Mo>0.5%时,κr↓。

7. 硅Si在铁素体中固溶HB↑, (δ↓), λ↓, SiO2加剧刀具磨损。

8. 其它:MnS—非金属夹杂物,呈微粒均匀分布,塑性好,有润滑作用。

铅P b—单相微粒均匀分布,破坏铁素体连续性,有润滑作用。

相对加工性计算公式:κr=1.57(1.6)—0.7C—0.15Mn—0.1Si—0.1Ni—0.06Cr—0.06Mo 例子:30CrMnSiMoVκr=1.57—0.7×0.4—0.15×1—0.1×1.4—0.06×1.4—0.06×0.5=0.9二、热处理状态和金相组织对κr的影响:1. 铁素体:80HBS σb=29kg/mm2C溶解于α—Fe中为固溶体。

723ºC溶解量最高为0.02%,接近纯铁,韧性好,(δ=50%)难断屑。

2. 珠光体(正火):HBS260 σb=128 δ=20%由铁素体和Fe3C层片交替组成。

是铁素体和Fe3C的共析物。

3. 索氏体和屈氏体(调质)铁素体和Fe3C混合物。

比珠光体细。

450—600ºC回火——索氏体300—450ºC回火——托氏体4. 马氏体(HRC50) 淬火C在α—Fe中的过饱和固溶体。

奥氏体急冷形成马氏体。

100—250ºC回火获针状马氏体。

760HBS σb=206 δ=2.8%5. 奥氏体C在γ—Fe中的固溶体。

含(NiCrMn) 在常温下形成。

碳钢在高温下(727ºC) 奥氏体稳定。

220HBS σb=103 δ=50%三、材料力学性能和物理性能材料的化学成分和热处理方法决定了材料的力学性能。

例如:45#钢正火HBS200 σb=60kg/mm2调质HRC30 σb=75淬火 HRC50 σb =14020#钢 σb =3.6HBS 45#钢 σb =3.4HBS 80#钢 σb =3.25HBS1. 硬度 (160—200HBS) 强度HB ↑—κr ↓c r HB F HB HB T θκ⎫↑-↑⎪↑-↑↓⎬⎪↑-↓⎭淬火钢 (HRC50) 为难加工 2. 塑性δ塑性材料随着延伸率增大,需要的变形能增大;且加工硬化严重,切削力F c 增大,切削温度θ升高,刀具磨损严重。

例:45#钢 δ=16%1Cr18Ni9Ti δ=50% 难加工材料固溶强化奥氏体不锈钢。

3. 导热系数λ(物理性能) 45#钢 λ=0.12cal/cm ·s ·ºc凡是导热差的材料,切削热散不出去,由刀具导热,使切削区温度θ升高,加工性变差。

例如:YL12,HT60 散热快—κr =3 1Cr18Ni9Ti ,TC4,GH135—κr =0.5 λ=(1/3—1/5) 45#(λ)第二章 钛合金切削加工§2—1 钛合金的分类及力学性能一、钛合金分类:钛是同素异构体。

是α—Ti是低温稳定结构,呈密排六方晶格;β—Ti是高温稳定结构,呈体心立方晶格;882ºC为同素异构转变温度。

在这两种组织中加入各种不同原素,室温下获得三种基本组织:1.α钛合金α相固溶体组成的单相合金。

500—600 ºC保持强度;抗蠕变能力强;抗氧化能力强;不能热处理强化。

TA8—5Al—2.5Sn—3Cu—1.5Zr2. β钛合金β相固溶体组成的单相合金。

淬火时效强化可达167kg/mm2;热稳定性差。

TB2:5Mo—5V—8Cr—3Al3. α+β钛合金α和β两相组成,α为主,β<30%高温变形好;塑性好;淬火+时效强化;400—500 ºC长期工作。

TC4—Ti—6Al—4V二、钛合金的力学性能及物理性能TC4与TC10比较:随着合金原素增加,σb增大δ下降。

见表2—1钛合金化学成份及力学性能 表2—1TC4—AL5.5—6.75 V3.5—4.5 Fe0.3稳定α 稳定βO 20.2 C0.1 N0.05 H0.013(杂质) 1. 比强度:强度/密度=比强度45#钢:g=7.8g/cm 3 σb =60 TC4 g=4.5g/cm 3 σb =90607.77.8= 90204.5= 2. 耐蚀性:表面可生成致密坚固氧化膜。

3. 热强性:300—400ºC 为铝合金的4倍,可用于高速飞机蒙皮。

4. 化学活性大:与空气中的氧和氮生成硬脆化合物、加剧刀具磨损。

5.导热性差,弹性模量小。

λ为钢的1/6 λ=0.02cal/cm·s·ºCE为钢的1/2 E=11000kg/mm2加工时切削温度高,变形大。

后角选择要大α0=15º§2—2 钛合金切削加工特点一、变形系数小1. 硬度为HB300左右2. TC4—δ=10%3. 800ºC—α→β切屑增长(β体积大)4. 800ºC塑性小,屑收缩也小5. 800ºC吸收O2、N,脆断TC6各种νc下的Λh:二、切削温度高1. 比45#钢高1倍θº2. 刀屑接触长度l f=45#钢/23. νc =60 θ=900ºC45#钢θ=450ºC4. 切削热Q集中于刃口狭窄区5. 导热系数k=5.4/w m Cλ=0.04 cal/cm·s·ºC200三、切削力F c小20 40 60 80 100 νcF c=τs a p f (1.4Λh+C)因Λh=1,切削力比45#小1/2—2/3。

但单位切削力κc比45#大。

原因是刀—屑接触长度短,l f=1mm四、切屑为节状屑。

Ti与大气中的O2、N发生化学反应,生成TiO2、TiN硬脆化合物。

使切屑断裂。

五、粘结严重由于Ti的亲和力大,在高温高压下,粘刀现象严重。

逆铣更严重。

顺铣可提高已加工表面光洁度。

§2—3 刀具材料及几何参数选择高速钢的耐热性和耐磨性低于硬质合金;但它的加工性好,可制造各种复杂刀具:如钻头、拉刀、齿轮刀具、螺纹刀具等、故在难加工材料切削中,高速钢和硬质合金各占一半。

陶瓷刀具、金刚石和立方氮化硼只在局部获得应用。

一、高性能高速钢1. 高碳高速钢:增加的含量W18Cr4V的含C量0.02%可提高常温硬度和高温硬度。

切削性能不及钴高速钢,但价格便宜。

牌号有:95W18Cr4V100W6M o5C r4V22. 高钴高速钢:在钢中加Co,回火时从马氏体中析出WC和MoC,提高弥散硬化效果,提高热稳定性,提高常温硬度和高温硬度。

相关文档
最新文档