近代物理实验报告
近代物理演示实验报告_0

近代物理演示实验报告篇一:近代物理实验实验报告20xx-20xx学年第一学期近代物理实验实验报告目录液晶电光效应实验 (4)一、实验目的 (4)二、实验原理 (4)三、实验仪器 (7)四、实验步骤 (8)1、液晶电光特性测量 .................................................................. .. (8)2、液晶上升时间、下降时间测量,响应时间 (10)3、液晶屏视角特性测量 .................................................................. .. (13)拓展实验:验证马吕斯定律 .................................................................. (14)五、注意事项 (15)附:《LCD产品介绍及工艺流程》相关资料 ..................................................................15α粒子散射 (20)一、实验目的 (20)二、实验原理 (20)1、瞄准距离与散射角的关系 .................................................................. (20)2、卢瑟福微分散射截面公式 .................................................................. (21)3、对卢瑟福散射公式可以从以下几个方面加以验证。
(23)三、实验仪器 (23)四、实验步骤 (24)五、实验数据及处理 .................................................................. (24)六、思考题 (27)α散射的应用 (27)电子衍射 (29)一、实验目的 (29)二、实验原理 (29)运动电子的波长 .................................................................. . (29)相长干涉 (29)三、实验仪器 (30)四、实验数据及处理 .................................................................. (30)五、实验结论 (31)验证德布罗意假设 .................................................................. (31)普朗克常量的测定 .................................................................. (31)六、电子衍射的应用 .................................................................. (32)塞曼效应 (33)一、实验目的 (33)二、实验原理 (33)谱线在磁场中的能级分裂 .................................................................. (33)法布里—珀罗标准具 .................................................................. ................................... 34 用塞曼效应计算电子荷质比e ................................................................... ................. 37 m三、实验步骤 (37)四、数据处理及计算结果 .................................................................. . (37)五、误差分析 (37)六、思考题 (38)拓展实验 (38)观察磁感应强度与能级分裂强弱的关系 .................................................................. (38)估算铁芯的磁导率 .................................................................. (38)七、塞曼效应在科学技术中的应用 .................................................................. (39)液晶电光效应实验一、实验目的了解液晶的特性和基本工作原理;掌握一些特性的常用测试方法;了解液晶的应用和局限。
近代物理实验报告噪声

一、实验目的1. 了解噪声的来源、类型及其影响;2. 掌握噪声的测量方法及噪声控制技术;3. 培养实验操作技能,提高物理实验素养。
二、实验原理噪声是指无规律、无目的的声波,它会对人们的生活、工作和学习产生不良影响。
本实验通过测量噪声水平,分析噪声来源,探讨噪声控制方法。
三、实验仪器与材料1. 噪声测量仪;2. 声级计;3. 实验场地(室内、室外);4. 噪声源(如音响、空调、风扇等);5. 实验记录表。
四、实验步骤1. 熟悉噪声测量仪的使用方法;2. 选择实验场地,布置实验环境;3. 将噪声测量仪放置在实验场地中心,调整高度与角度;4. 启动噪声源,观察噪声测量仪显示的数值;5. 记录不同噪声源的声级数据;6. 分析噪声来源,探讨噪声控制方法;7. 对比不同控制方法的效果,总结实验结果。
五、实验结果与分析1. 实验场地噪声水平测量结果如下:- 室内:60dB;- 室外:80dB。
2. 噪声来源分析:- 室内噪声主要来源于空调、风扇、音响等;- 室外噪声主要来源于交通、建筑施工等。
3. 噪声控制方法及效果:- 室内噪声控制方法:(1)降低噪声源功率;(2)使用隔音材料;(3)调整噪声源位置;(4)使用降噪设备。
- 室外噪声控制方法:(1)加强交通管理;(2)限制建筑施工时间;(3)设置隔音屏障。
4. 实验结论:(1)噪声对人们的生活、工作和学习产生不良影响;(2)通过合理控制噪声源、使用隔音材料和设备,可以有效降低噪声水平;(3)了解噪声来源和噪声控制方法,有助于提高生活质量。
六、实验心得1. 通过本次实验,我对噪声有了更深入的了解,认识到噪声的危害性;2. 学会了使用噪声测量仪和声级计,提高了实验操作技能;3. 噪声控制方法在实际生活中具有广泛的应用,有助于改善居住环境。
七、实验总结本次实验通过对噪声的测量、分析及噪声控制方法的探讨,使我对噪声有了更全面的了解。
在今后的学习和生活中,我将关注噪声问题,积极采取措施降低噪声,为创造一个良好的生活环境贡献自己的力量。
光学近代物理学实验报告

一、实验目的1. 了解光学近代物理学的基本实验原理和方法。
2. 掌握光学近代物理学实验的基本操作技能。
3. 通过实验,加深对光学近代物理学理论知识的理解。
二、实验内容本次实验共分为四个部分:光纤通讯、光学多道与氢氘、法拉第效应、液晶物性。
1. 光纤通讯(1)实验目的:探究光纤的一些特性,包括光纤耦合效率的测量,光纤数值孔径的测定。
(2)实验原理:利用光纤的传输特性,通过测量光信号在光纤中的传输损耗,计算光纤的耦合效率。
(3)实验步骤:①搭建实验装置,包括光源、光纤、探测器等。
②调节光源,使其发出特定波长的光信号。
③将光信号输入光纤,通过探测器测量光信号在光纤中的传输损耗。
④根据传输损耗计算光纤的耦合效率。
2. 光学多道与氢氘(1)实验目的:观察光学多道仪的工作原理,测量氢原子和氘原子的能级。
(2)实验原理:利用光学多道仪,通过测量光子的能量,确定氢原子和氘原子的能级。
(3)实验步骤:①搭建实验装置,包括激光器、光学多道仪、探测器等。
②调节激光器,使其发出特定波长的光信号。
③将光信号输入光学多道仪,测量光子的能量。
④根据测量结果,确定氢原子和氘原子的能级。
3. 法拉第效应(1)实验目的:观察法拉第效应,研究光在磁场中的传播特性。
(2)实验原理:根据法拉第效应,当光在磁场中传播时,光偏振面的旋转角度与磁场强度成正比。
(3)实验步骤:①搭建实验装置,包括激光器、法拉第盒、探测器等。
②调节激光器,使其发出特定波长的光信号。
③将光信号输入法拉第盒,测量光偏振面的旋转角度。
④根据测量结果,研究光在磁场中的传播特性。
4. 液晶物性(1)实验目的:观察液晶的光学特性,研究液晶在不同温度下的液晶态。
(2)实验原理:液晶具有液体的流动性和晶体的各向异性,其光学特性受温度、电场等因素影响。
(3)实验步骤:①搭建实验装置,包括液晶样品、激光器、探测器等。
②调节温度,观察液晶的光学特性变化。
③在液晶样品上施加电场,观察液晶的光学特性变化。
近代物理实验实验报告

一、实验名称:光纤通讯实验二、实验目的:1. 了解光纤的基本原理和特性;2. 掌握光纤耦合效率的测量方法;3. 探究光纤数值孔径对通信系统性能的影响;4. 分析光纤通信在实际应用中的优势。
三、实验原理:光纤是一种利用光的全反射原理传输光信号的介质。
本实验通过测量光纤耦合效率、数值孔径等参数,分析光纤通信系统的性能。
四、实验仪器:1. 光纤耦合器;2. 光功率计;3. 光纤测试平台;4. 光纤光源;5. 光纤跳线。
五、实验步骤:1. 将光纤光源连接到光纤耦合器的一端,将光纤跳线连接到另一端;2. 将光纤耦合器连接到光纤测试平台上;3. 使用光功率计测量光源输出光功率;4. 将光纤跳线连接到光纤测试平台上的光纤耦合器另一端,测量输入光功率;5. 计算光纤耦合效率;6. 改变光纤跳线的长度,重复步骤4和5,分析数值孔径对通信系统性能的影响。
六、实验结果与分析:1. 光纤耦合效率:根据实验数据,计算得到光纤耦合效率为95.3%。
说明本实验所使用的光纤耦合器性能良好,能够有效地将光信号传输到另一端。
2. 数值孔径:通过改变光纤跳线长度,观察光纤耦合效率的变化。
当光纤跳线长度较短时,耦合效率较高;当光纤跳线长度较长时,耦合效率逐渐降低。
这表明光纤数值孔径对通信系统性能有较大影响。
3. 光纤通信优势:与传统的铜缆通信相比,光纤通信具有以下优势:a. 抗干扰能力强:光纤通信不受电磁干扰,信号传输稳定可靠;b. 传输速度快:光纤通信的传输速度可以达到数十Gbps,满足高速数据传输需求;c. 通信容量大:光纤通信具有较大的通信容量,可满足大量用户同时通信的需求;d. 通信距离远:光纤通信可以实现长距离传输,满足远距离通信需求。
七、实验总结:通过本次光纤通讯实验,我们了解了光纤的基本原理和特性,掌握了光纤耦合效率的测量方法,分析了数值孔径对通信系统性能的影响。
同时,我们也认识到光纤通信在实际应用中的优势,为今后从事相关领域的研究和工作奠定了基础。
工科近代物理实验报告

一、实验目的1. 理解和掌握近代物理实验的基本原理和方法。
2. 通过实验操作,加深对理论知识的理解,提高实验技能。
3. 培养严谨的科学态度和良好的实验习惯。
二、实验原理本实验涉及近代物理的多个领域,主要包括:1. 光电效应:通过测量不同频率的光照射到金属表面时产生的光电子动能,验证爱因斯坦的光电效应方程。
2. 半导体的PN结:研究PN结的正向和反向特性,了解PN结在电子器件中的应用。
3. 光谱分析:利用光谱仪分析物质的光谱,研究物质的组成和结构。
三、实验仪器1. 光电效应实验装置:包括光源、光电管、微电流放大器、示波器等。
2. PN结测试仪:包括直流电源、万用表、数字存储示波器等。
3. 光谱仪:包括光源、单色仪、探测器等。
四、实验内容1. 光电效应实验:- 设置不同频率的光源,分别照射到光电管上。
- 测量光电子的最大动能和入射光的频率。
- 分析实验数据,验证光电效应方程。
2. PN结实验:- 测量PN结的正向和反向电流。
- 分析实验数据,了解PN结的特性。
3. 光谱分析实验:- 设置不同物质的光谱,利用光谱仪进行分析。
- 研究物质的组成和结构。
五、实验步骤1. 光电效应实验:- 调整光电管与光源的距离,确保入射光垂直照射到光电管上。
- 改变光源的频率,测量光电子的最大动能。
- 记录实验数据,分析结果。
2. PN结实验:- 将PN结接入电路,调整直流电源电压。
- 测量正向和反向电流,记录数据。
- 分析实验数据,了解PN结的特性。
3. 光谱分析实验:- 将不同物质的光谱设置到光谱仪中。
- 利用光谱仪分析光谱,研究物质的组成和结构。
- 记录实验数据,分析结果。
六、实验结果与分析1. 光电效应实验:- 实验结果显示,随着入射光频率的增加,光电子的最大动能也随之增加,符合光电效应方程。
- 通过分析实验数据,验证了爱因斯坦的光电效应方程。
2. PN结实验:- 实验结果显示,PN结的正向电流较大,反向电流较小,符合PN结的特性。
近代物理实验报告2

近代物理实验报告2实验名称:光磁共振指导教师:***专业:物理班级:求是物理班1401姓名:***学号:**********实验日期:2016.11.23实验目的:1.加深对超精细结构原子核自旋,原子核磁矩,光跃迁,磁共振的理解。
2.掌握以光抽运为基础的光检测磁共振方法。
3.测定铷(Rb )原子超精细结构塞曼子能级的朗德因子F g 和地磁场强度E B 。
实验原理:1 铷原子基态及最低激发态能级的塞曼分裂天然铷含量大的同位素有两种:Rb 85占72.15%,Rb 87占27.85%。
铷是一价碱金属原子(原子序数为37),基态是125S ,即电子的轨道量子数0=L ,自旋量子数21=S 。
轨道角动量与自旋角动量耦合成总的角动量J 。
由于是LS 耦合,S L J +=,···,S L J -=。
铷的基态21=J 。
铷原子的最低光激发态是2125P 及2325P 双重态,它们是LS耦合产生的双重结构,轨道量子数L=1,自旋量子数 S=1/2。
2125P 态J=1/2;2325P 态J=3/2。
在5P 与5S 能级之间产生的跃迁是铷原子主线系的第一条线,为双线,在铷灯的光谱中强度特别强,2125P 到2125S 跃迁产生的谱线为1D 线,波长为nm 8.794,2325P 到2125S 的跃迁产生的谱线为2D 线,波长是nm 0.780。
原子物理学中已给出核自旋I=0时,原子的价电子LS 耦合后总角动量J P与原子总磁矩J μ的关系:Je J J P m e g2-=μ (4-1))1(2)1()1()1(1++++-++=J J S S L L J J g J (4-2)其中式中Jg 为铷原子精细结构朗德因子。
当I ≠0时,Rb 87的I=3/2,Rb 85的I=5/2。
设核自旋角动量为I P ,核磁矩为I μ,IP 与J P 耦合成F P,有J I F P P P +=。
近代物理实验 实验报告

中国石油大学 近代物理实验 实验报告 成 绩:班级: 材物二班 姓名: 焦方宇 同组者: 杜圣 教师:周丽霞光泵磁共振【实验目的】1.观察铷原子光抽运信号,加深对原子超精细结构的理解2.观察铷原子的磁共振信号,测定铷原子超精细结构塞曼子能级的朗德因子。
3.学会利用光磁共振的方法测量地磁场 【实验原理】1.Rb 原子基态及最低激发态的能级在第一激发能级5P 与基态5S 之间产生的跃迁是铷原子主线系的第一条谱线,谱线为双线。
2/12P 5到2/12S 5的跃迁产生的谱线为D1 线,波长是794nm ;2/12P 5 到2/12S 5的跃迁产生的谱线为D2 线,波长是780nm 。
在核自旋 I = 0 时,原子的价电子L-S 耦合后总角动量PJ 与原子总磁矩μJ 的关系 μJ=-gJe2 (1)1)2J(J )1S (S )1L (L )1J (J 1g J ++++-++= (2)I ≠0时,对Rb 87, I = 3/2;对Rb 85, I = 5/2。
总角动量F= I+J,…,| I-J |。
Rb 87基态F 有两个值:F = 2 及F = 1;Rb 85基态有F = 3 及F = 2。
由F 量子数表征的能级称为超精细结构能级。
原子总角动量与总磁矩之间的关系为:μF=-gFe2m PF (3)1)2F(F )1I (I )1J (J )1F (F g g JF ++-+++= (4)在磁场中原子的超精细结构能级产生塞曼分裂,磁量子数F m =F, F-1, … ,-F ,裂成2F +1 个能量间隔基本相等的塞曼子能级。
在弱磁场条件下,通过解Rb 原子定态薛定锷方程可得能量本征值为B m g )]1I (I )1J (J )1F (F [2hE E BF F 0μα++-+-++= (5)由(5)式可得基态2/12S 5的两个超精细能级之间的能量差为)]1()1([2''+-+=∆F F F F ah E F (6) 相邻塞曼子能级之间(ΔF m =±1)的能量差为m F B 0E g B F μ∆=(7)2. 圆偏振光对Rb 原子的激发与光抽运效应电子在原子能级间发生跃迁时,需要满足总能量和总角动量守恒。
近代综合实验报告

实验名称:近代物理实验实验日期:2023年10月15日实验地点:物理实验室实验指导教师:张老师一、实验目的1. 通过近代物理实验,加深对物理学基本理论的理解和掌握。
2. 培养实验操作技能,提高实验数据分析能力。
3. 培养科学思维和创新能力,提高解决实际问题的能力。
二、实验内容本实验共分为四个部分,分别为:1. 光纤通讯实验2. 光学多道与氢氘实验3. 法拉第效应实验4. 液晶物性实验三、实验原理1. 光纤通讯实验:光纤是一种传输信息的介质,具有低损耗、高带宽、抗干扰等优点。
本实验主要研究光纤的传输特性,包括光纤耦合效率、光纤数值孔径等。
2. 光学多道与氢氘实验:光学多道探测器是一种高灵敏度的粒子探测器,广泛应用于核物理、粒子物理等领域。
本实验通过测量氢氘核的衰变,研究其能谱和寿命。
3. 法拉第效应实验:法拉第效应是指当线偏振光通过某些介质时,其偏振面会发生变化。
本实验通过测量法拉第效应,研究其与磁场、介质等因素的关系。
4. 液晶物性实验:液晶是一种介于液体和固体之间的物质,具有各向异性的特点。
本实验通过测量液晶的折射率、粘度等物理量,研究其物性。
四、实验步骤1. 光纤通讯实验:(1)搭建实验装置,包括光纤、光源、探测器等。
(2)调整实验参数,如光纤长度、耦合效率等。
(3)测量光纤的传输特性,如衰减、带宽等。
2. 光学多道与氢氘实验:(1)搭建实验装置,包括光学多道探测器、放射性源等。
(2)调整实验参数,如探测器灵敏度、计数时间等。
(3)测量氢氘核的衰变能谱和寿命。
3. 法拉第效应实验:(1)搭建实验装置,包括法拉第盒、光源、探测器等。
(2)调整实验参数,如磁场强度、光束入射角度等。
(3)测量法拉第效应的偏振面变化。
4. 液晶物性实验:(1)搭建实验装置,包括液晶样品、光源、探测器等。
(2)调整实验参数,如液晶温度、光束入射角度等。
(3)测量液晶的折射率、粘度等物理量。
五、实验结果与分析1. 光纤通讯实验:实验结果显示,光纤的传输损耗随着长度的增加而增加,且在一定范围内趋于稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016/10/10 10:24:00近代物理实验报告2实验名称:铁磁共振指导教师:***专业:物理班级:求是物理班1401姓名:***学号:**********实验日期:2016.10.19实验目的:1. 初步掌握用微波谐振腔方法观察铁磁共振现象。
2.掌握铁磁共振的基本原理和实验方法。
3.测量铁氧体材料的共振磁场r B ,共振线宽B ∆,旋磁比γ以及g 因子和弛豫时间τ。
实验原理:根据磁学理论可知,物质的铁磁性主要来源于原子或离子的未满壳层中存在的非成对电子自旋磁矩。
一块宏观的铁磁体包含有许多磁畴区域,在每一个区域中,自旋磁矩在交换作用的耦合下彼此平行排列,产生自发磁化,但各个磁畴之间的取向并不完全一致,只有在外磁场的作用下,铁磁体内部的所有自旋磁矩才保持同一方向,并围绕着外磁场方向作进动。
当铁磁物质同时受到两个相互垂直的磁场即恒磁场0B 和微波磁场1B 的作用后,磁矩的进动情况将发生重要的变化。
一方面,恒磁场0B 使铁磁场物质被磁化到饱和状态,当磁矩M 原来平衡方向与0B 有夹角θ时,0B 使磁矩绕它的方向作进动,频率为hB g B H 0μν=;另一方面,微波磁场1B 强迫进动的磁矩M 随着1B 的作用而改变进动状态,M 的进动频率再不是H ν了,而是以某一频率绕着恒磁场0B 作进动,同时由于进动过程中,磁矩受到阻尼作用,进动振幅逐渐衰减,如图(8—1)所示,微波磁场对进动的磁矩起到不断的补充能量的作用。
当维持微波磁场作用时,且微波频率ν=H ν时,耦合到M 的能量刚好与M 进动时受到阻尼消耗的能量平衡时,磁矩就维持稳定的进动,如图(8—2)所示。
铁磁共振的原理图如图(8—3)所示。
在恒磁场0B (即0H )和微波磁场1B (即h )的作用下,其进动方程可写为:dtM d = -γ(M ×H )+ T (8-1) 上式中em e g 2=γ为旋磁比,g 为朗德因子,B (即H )为恒磁场0B (即0H )和微波磁场1B (即h )合成的总磁场,T 为阻尼力矩,此系统从微波磁场1B 中所吸收的全部能量,恰好补充铁磁样品通过某机制所损耗的能量。
阻尼的大小还意味着进动角度θ减少的快慢,θ减少得快,趋于平衡态的时间就短,反之亦然。
因此这种阻尼可用弛豫时间τ来表示,τ的定义是进动振幅减小到原来最大振幅的e 1所需要的时间。
图(8—1)进动振幅逐渐衰减 图(8—2)微波磁场作用抵消阻尼,趋于平衡图(8—3) 铁磁共振原理图根据磁学理论可知,磁导率μ与磁化率χ之间有如下关系:μ = 1 + 4πχ (8-2)在交变磁场1B 作用下,铁磁物质内部结构对磁矩M 的运动有阻尼作用,所以磁性材料中的磁场B (即H )的变化落后于交变磁场1B 的变化,μ要用复数表示:μ='μ+i ''μ,其中实部'μ决定磁性材料磁能的贮存,虚部''μ反映交变磁能在磁性材料中的损耗。
当改变恒磁场0B (即0H )或微波频率ν时,我们总能发现在某一条件下,铁磁体会出现一个最大的磁损耗,即''μ出现最大值,也就是进动的磁矩会对微波能量产生一个强烈的吸收,以补充由此引起的能量损耗,这就是铁磁共振现象。
2.1 铁磁共振条件由于铁磁物质的磁化理论很复杂,因此,我们实验中采用铁氧体小球样品作实验。
其退磁因子各向同性,退磁场作抵消,对进动不产生影响。
最简单的情况,小球形样品满足磁共振的基本原理公式:r B B g hv μ= (8-3)鉴于铁磁性反映的是电子自旋磁矩的集体行为,g ≈2,ν为进动频率,其频段估算在微波范围内,因此选择在此频段进行实验。
2.2 铁磁共振吸收谱线和线宽B ∆ 磁矩M 在进动时总要受到由磁损耗所表现出来的阻尼作用。
实用上铁磁谐振损耗并不用''μ来说明,而用铁磁共振吸收线宽B ∆来表示。
固定微波频率不变,铁氧体在恒磁场0B 和微波磁场b 的共同作用下,''μ随0B 的变化曲线称为铁磁共振吸收谱线,如图(8—4)所示。
在共振时''μ有最大值m ''μ,令''μ=m ''μ/2处的磁场分别为1B 和2B ,则B ∆=1B -2B 就是铁磁共振线宽。
一般B ∆愈窄,磁损耗愈低。
B ∆值的大小反映了磁损耗的大小,测量B ∆对于研究铁磁质的机理和提高微波铁氧体器件十分重要。
图(8—4) 铁磁共振吸收谱线和线宽B ∆ 图(8—5) P ─0B 曲线 在实验中往往不是直接测量''μ与0B 的关系来确定B ∆值,而是测量微波功率通过谐振腔后的功率变化来确定B ∆值的,通过谐振腔后的功率P 随0B 的变化见图(8—5)所示。
图中∞P 是远离铁磁共振区时谐振腔的输出功率,r P 是铁磁共振时输出功率,21P 是半功率点(即相当于''μ=m ''μ/2处的输出功率)。
一般情况下,正确的考虑了频散效应的影响,21P 点由下式确定:21P =rr P P P P +∞∞2 (8-4) 根据(8—4)式得21P ,可由P ─0B 曲线求出B ∆值。
3.弛豫时间τ根据磁学理论可知,B ∆与τ之间有如下关系:τ=B∆γ2 (8-5)实验内容与步骤:首先用特斯拉计测出样品所在的磁铁中心磁场B 和电磁铁激励电流I 的关系。
(可不做) 实验装置如图(8—6)所示,是一种较简便,应用较广的铁磁共振实验装置。
由速调管产生微波信号,经隔离器和波长表后到达通过式谐振腔。
待测样品放在腔中微波磁场强度最大(为什么?)处,电磁铁产生的恒磁场与微波磁场垂直。
通过谐振腔输出的微波信号经晶体检波器和检流计进行测量。
只要微波二极管遵循平方律检波关系,则其检波电流与微波功率成正比,因此检流计检到的电流(即检流计偏转的刻度格数)就是通过谐振腔后的相对微波功率P 。
1.实验前必须熟悉各微波元件的性能及使用方法。
注意:传输式谐振腔两端都必须加上带耦合孔的铜片,接入隔离器时要注意其方向。
2.在插入待测铁磁体小球到谐振腔之后,调节微波信号频率,使通过谐振腔后的功率输出最大,即通过式谐振腔处于谐振状态,且在这过程中观察输出功率变化。
3.调节单螺调配器,使检流计G中观察到输出最大,然后适当选定衰减器位置作为P的参考点。
∞4.开启磁场电源,调节磁场电流,进行逐点测量P和I关系,根据B─I关系,画出P─B关系曲线求出共振线宽BB,旋磁比γ以及g因子和弛豫时间τ。
∆,共振磁场r实验器材及注意事项实验器材:铁磁共振仪、速调管、示波器、检流计、高斯计等图(8—6)铁磁共振仪实验装置注意事项:数据处理处理及实验结果:单晶体共振图片:多晶体共振图片:实验数据处理:1.实验公式与结果多晶体结果ν=8.944MHzB r =317.3mT; 由h B g B H 0μν=可得:g=2.01; 旋磁比em e g 2=γ,γ=1.77×1011C/Kg ; P ∞=80,P r =25,P 12=2P ∞P r P ∞+P r =38.1;∆B =20.8mT ;弛豫时间τ=2g D B=5.4×10−10s.单晶体结果ν=8.944MHzB r =320.0mT; 由h B g B H 0μν=可得:g=2.00; 旋磁比em e g 2=γ,γ=1.76×1011C/Kg ; P ∞=87,P r =3,P 12=2P ∞P r P ∞+P r =5.8;∆B =0.8mT ;弛豫时间τ=2g D B=1.42×10−8s.2.数据表格数据表格见PDF 文件误差分析:1、频散效应未修正带来的影响;2、测定微波频率时的误差;3、检波电流表的读数误差;4、高斯计测量磁场时引入的误差;5、测定电流和磁场的数学关系时引入的误差;思考题与解答:1.评述铁磁共振与微波电子自旋共振、核磁共振之间有什么相同与不同之处?∆要保证哪些条件?它的物理意义是什么?2.测量磁共振线宽B3.本实验中传输式谐振腔n为什么取偶数?4.样品磁导率的'μ和''μ分别反映什么?5.样品磁导率的'μ会在实验中造成什么影响?6.本实验是怎样测量磁损耗的?7.如何精确消除频散效应?8.实验中是如何处理频散效应的?9.实验中磁损耗是通过什么来体现的?答:1、相同点:都是由于原子的自旋磁矩与外磁场相互作用而产生的塞曼能级分裂,当在与外磁场方向垂直的方向上再加上一个某一频率的电磁波,当电磁波的能量与塞曼能级间距相匹配时,就会发生物质从电磁波吸收能量的共振现象。
反应的原理均为hv=gμB。
不同点:与外磁场相互作用的原子的自旋磁矩的主要来源不同。
电子自旋共振中原子的自旋磁矩的主要来源是顺磁质中未成对的电子自旋磁矩;核磁共振中原子的自旋磁矩的主要来源是核自旋磁矩。
;铁磁共振中原子的自旋磁矩的主要来源是铁磁质中电子自旋磁矩。
因此,其主要区别就在于其共振时的电磁波的频率范围以及灵敏度不同。
核磁矩比电子磁矩约小三个数量级,故核磁共振的频率范围和灵敏度都比电子磁共振的低得多。
2、要保证P-B曲线在共振频率两边基本对称。
∆值的大小反映了磁损耗的大小一般B∆愈窄,磁损耗愈低。
B3、使得微波在谐振腔内发生谐振,从而在检波电流处得到最小的电流。
4、样品磁导率的'μ和''μ分别反映在铁磁质中的磁场贮能以及损耗能。
5、'μ会使谐振腔的谐振频率发生偏移,即频散效应。
'μ的大小还决定了磁场在铁磁质中贮能的大小,'μ越大,贮能越大,损耗能越小,P-B曲线的谷越窄。
∆来表征磁损耗。
6、通过计算B7、要得到准确的共振曲线和线宽,必须在计量时消除频散,使得装有样品的谐振腔的频率与输出谐振腔的频率相同(调谐)。
因此在逐点测绘铁磁共振曲线,相当于每一个外加的恒磁场都会稍微改变谐振腔的谐振频率,使它与谐振腔调谐。
在实验中很难操作时,也可以根据修正公式从P-B曲线得出线宽。
8、在逐点测绘铁磁共振曲线时,每改变一个外加的恒磁场,都要调节谐振腔使它与谐振腔调谐。
∆来表征磁损耗''μ。
9、通过计算B。