统计学一元线性回归课后习题答案课堂
应用回归分析课后习题参考答案

应用回归分析课后习题参考答案The following text is amended on 12 November 2020,J :Si =0 , eyX=O第二章一元线性回归分析 思考与练习参考答案一元线性回归有哪些基本假定答:假设1、解释变量X 是确定性变量,Y 是随机变 量; 假设2、随机误差项e 具有零均值、同方差和不序列相关性:E(£j=Oi=l f 2, •: nCov( J. 6)=0iHji 打二1, 2,…小假设3、随机误差项£与解释变量X 之间不相关:CoV (Xif £ i)二 0假设4、£服从零均值、同方差、零协方差的正态分布考虑过原点的线性回归模型E 〃北# J 21, 2,…,11误差£ (212…〃丿仍满足基本假定。
求伏的最小一乘估计 解:(■Ido : /-=-2y (r,- Ax, ; x ,=odp, 台Z ⑶B\ = -饷2)证明(式),&i ™0 p GiX 产 Q O0二工亿-汀二工(再- (A+AXj) ) 2 证明: I 1其中:2二瓦+毗e ・=Y. -KV (角+巧一忙01-1得:回归方程E <n 包r 的参数5已的最小二乘佔计与最大似然估计在什么条件下等价给岀证 明。
答:山于e fN(O, 2)所以乙二Oo+ 0/+ E i~NW&BK , 2 最大似然函数:22b j. i使得Ln (L)最大的,B\就是%伙的最大似然估计值。
同时发现使得Ln (L)最大就是使得下式最小,/J ” A AQ 二工厲-£)2二工(乙一(0° +AXi))2i I上式恰好就是最小二乘估讣的u 标函数相同。
值得注意的是:最大似然估 计是在6 *(0,')的假设下求得,最小二乘佔计则不要求分布假设。
所以在r . :Vfa 2丿的条件下,参数00,角的最小-乘佔汁与最大似然估计等价。
《统计学》第9章课后习题参考答案

第9章习题参考答案
9.1
解:(1)长度Y(厘米)与重量X(克)之间的散点图如下所示:
由Y与X的散点图可以大致推测长度Y关于重量X是线性相关,且二者呈正相关关系。
(2)首先,先分别求出平均重量和平均长度:
;;
其次,计算回归参数,其计算表如下:
表1:回归方程参数的计算表
(X-(Y-
最后,根据公式(9.6)计算相应的回归参数:
;
所以,Y关于X的一元线性回归方程为:
9.5
解:总变差,回归平方和,残差平方和的计算如下:
表2:总变差,回归平方和,残差平方和的计算表
∴残差平方和:;
回归平方和:
9.6
解:由表2得:
判定系数
又∵习题9.1的散点图显示Y与X是呈正相关关系
∴相关系数
显著性检验:
(1)回归方程的显著性检验:
原假设H0:该回归方程不显著;备择假设H1:该回归方程显著
计算F统计量:
∵在α=0.05的显著性水平下,有4454.79>F0.05(1,4)=7.71
∴拒绝原假设,认为该回归方程式显著的。
(2)回归参数的假设检验:
原假设H0:备择假设H1:
计算t统计量:;
[其中] ∵在α=0.05的显著性水平下,有15.98>t0.05(4)=2.776
∴拒绝原假设,即认为自变量X对因变量Y有显著性影响。
(3)相关关系的显著性检验:
原假设H0:ρ=0;备择假设H1:ρ
计算t统计量:;
∵在α=0.05的显著性水平下,有66.64> t0.05(4)=2.776
∴拒绝原假设,认为总体相关系数不为0。
计量经济学第三版课后习题答案第二章 经典单方程计量经济学模型:一元线性回归模型

第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。
总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。
本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。
同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。
本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。
统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。
Goss-markov定理表明OLS估计量是最佳线性无偏估计量。
其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
统计学一元线性回归课后习题答案分析

(1)绘制运送距离和运送时间的散点图,判断二者之间的关系形 态 (2)计算线性相关系数,说明两个变量之间的关系强度。 (3)利用最小二乘法求出估计的回归方程,并解释回归系数的实 际意义。
运送时间(天)
(1)绘制运送距离和运送时间的散点图,判断二者之间的关系形态
(4)计算判定系数,并解释其意义。
= 81444968.68 =0.9963 81750763.71
人均GDP对人均消费的影响达到99.6%。
(5)检验回归方程线性关系的显著性(a=0.05)。
提出假设
H0:1=0 人均消费水平与人均GDP之间的
线性关系不显著 计算检验统计量F
F SSR 1 81444968.68 1 1331.6921 SSE (n 2) 305795.03 (7 2)
率
次数
1
81.1
21
2
76.6
58
3
76.6
85
4
75.7
68
5
73.8
74
6
72.2
93
7
71.2
72
8
70.8
122
9
91.4
18
10
68.5
125
1)绘制散点图,说明二者之间的股息形态
顾客投诉次数
140 120 100
80 60 40 20
0 0
20
40
60
航班正点率
二者之间为负的线性相关关系
1580.46315 E( y0 ) 2975.74999
人均GDP为5 000元时,人均消费水平95%的预 测区间为[1580.46315,2975.74999]。
一元线性回归模型习题及答案解析

一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类__________。
AA 函数关系与相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系 2、相关关系是指__________。
DA 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系 3、进行相关分析时的两个变量__________。
AA 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机的或非随机都可以 4、表示x 和y 之间真实线性关系的是__________。
CA 01ˆˆˆt tY X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+5、参数β的估计量ˆβ具备有效性是指__________。
B A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 6、对于01ˆˆi i iY X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示回归值,则__________。
BA i i ˆˆ0Y Y 0σ∑=时,(-)=B 2iiˆˆ0Y Y σ∑=时,(-)=0 C ii ˆˆ0Y Y σ∑=时,(-)为最小 D 2iiˆˆ0Y Yσ∑=时,(-)为最小 7、设样本回归模型为i 01i iˆˆY =X +e ββ+,则普通最小二乘法确定的i ˆβ的公式中,错误的是__________。
DA ()()()i i 12iX X Y -Y ˆX X β--∑∑=B ()i iii122iin X Y -X Y ˆn X -X β∑∑∑∑∑=C ii122iX Y -nXY ˆX -nXβ∑∑= D i i ii12xn X Y -X Y ˆβσ∑∑∑=8、对于i 01i i ˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有__________。
应用回归分析整理课后习题参考答案

第二章 一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定?答: 假设1、解释变量X 是确定性变量,Y 是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n误差εi (i=1,2, …,n )仍满足基本假定。
求β1的最小二乘估计 解: 得:2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。
证明:∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ其中:即: ∑e i =0 ,∑e i X i =021112)ˆ()ˆ(ini i ni i i e X Y Y Y Q β∑∑==-=-=0)ˆ(2ˆ111=--=∂∂∑=ii ni i eX X Y Q ββ)()(ˆ1211∑∑===ni i ni ii X Y X β01ˆˆˆˆi ii i iY X e Y Y ββ=+=-0100ˆˆQQββ∂∂==∂∂2.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。
答:由于εi ~N(0, σ2 ) i=1,2, …,n所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数:使得Ln (L )最大的0ˆβ,1ˆβ就是β0,β1的最大似然估计值。
同时发现使得Ln (L )最大就是使得下式最小,∑∑+-=-=nii i n i X Y Y Y Q 121021))ˆˆ(()ˆ(ββ上式恰好就是最小二乘估计的目标函数相同。
统计学 一元线性回归

第11章 一元线性回归
第一节 变量间关系的度量 第二节 一元线性回归 第三节 利用回归方程进行估计和预测 第四节 残差分析
学习内容
1. 相关关系的分析方法 2. 一元线性回归的基本原理和参数的最小二乘估计 3. 回归直线的拟合优度 4. 回归方程的显著性检验 5. 利用回归方程进行估计和预测 6. 残差分析
r (x x)(y y) (x x)2 (y y)2
或化简为 r
n xy x y
n x2 x2 n y2 y2
相关系数的性质
性质1:r 的取值范围是 [-1,1]
|r|=1,为完全相关 r =1,为完全正相关 r =-1,为完全负相关
r = 0,讨论:r=0意为着什么?
3. 利用所求的关系式,根据一个或几个变量的 取值来预测或控制另一个特定变量的取值, 并给出这种预测或控制的精确程度。
回归分析的特点:
(1)相关分析所研究的两个变量是对等关系。 回归分析所研究的两个变量不是对等关系, 必须根据研究目的,先确定其中一个是自变 量,另一个是因变量。
(2)对两个变量x和y 来说,相关分析只能计算出一 个相关系数,计算中改变x和y 的地位不影响相关系 数的数值; 回归分析则不同,有时可以根据研究目的不同 分别建立两个不同的回归方程。即以x为自变量,y 为因变量,则可以得出y倚x 的回归方程;若以y 为 自变量,x为因变量,则可以得出x倚y 的回归方程。
影响
是不能由 x 和 y 之间的线性关系所解释的变异性 b0 和 b1 称为模型的参数
一元线性回归模型
(基本假定)
1. 因变量x与自变量y之间具有线性关系 2. 在重复抽样中,自变量x的取值是固定的,即假定x是非
贾俊平《统计学》配套题库 【课后习题】详解 第11章~第12章【圣才出品】

第11章一元线性回归一、思考题1.解释相关关系的含义,说明相关关系的特点。
答:变量之间存在的不确定的数量关系,称为相关关系。
相关关系的特点:一个变量的取值不能由另一个变量唯一确定,当变量x取某个值时,变量y的取值可能有几个。
对这种关系不确定的变量是不能用函数关系进行描述的。
2.相关分析主要解决哪些问题?答:相关分析就是对两个变量之间线性关系的描述与度量,它要解决的问题包括:(1)变量之间是否存在关系;(2)如果存在关系,它们之间是什么样的关系;(3)变量之间的关系强度如何;(4)样本所反映的变量之间的关系能否代表总体变量之间的关系。
3.相关分析中有哪些基本假定?答:在进行相关分析时,对总体主要有以下两个假定:(1)两个变量之间是线性关系;(2)两个变量都是随机变量。
4.简述相关系数的性质。
答:相关系数是根据样本数据计算的度量两个变量之间线性关系强度的统计量。
若相关系数是根据总体全部数据计算的,称为总体相关系数,记为ρ;若是根据样本数据计算的,则称为样本相关系数,记为r 。
相关系数的性质:(1)r 的取值范围在-1~+1之间,即-1≤r ≤1。
若0<r ≤1,表明x 与y 之间存在正线性相关关系;若-1≤r <0,表明x 与y 之间存在负线性相关关系;若r =+1,表明x 与y 之间为完全正线性相关关系;若r =-1,表明x 与y 之间为完全负线性相关关系。
可见当|r |=1时,y 的取值完全依赖于x ,二者之间即为函数关系;当r =0时,说明y 的取值与x 无关,即二者之间不存在线性相关关系。
(2)r 具有对称性。
x 与y 之间的相关系数xy r 和y 与x 之间的相关系数yx r 相等,即xy r =yx r 。
(3)r 数值大小与x 和y 的原点及尺度无关。
改变x 和y 的数据原点及计量尺度,并不改变r 数值大小。
(4)r 仅仅是x 与y 之间线性关系的一个度量,它不能用于描述非线性关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
x与y的简单相关系数是 0.9489,两 变量之间呈现高度正相关关系
13
(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义 最小二乘估计:y^ = ?^0+ ?^1 xLeabharlann { 将表中数据代入公式得:
=0.003585
=0.118129
∴y=0.118129 + 0.003585x
y关于x的回归方程为 y=0.118129 +
运送时间y 3.5 1.0 4.0 2.0 1.0 3.0 4.5 1.5 3.0 5.0
(1)绘制运送距离和运送时间的散点图,判断二者之间的关系形 态 (2)计算线性相关系数,说明两个变量之间的关系强度。 (3)利用最小二乘法求出估计的回归方程,并解释回归系数的实 际意义。
11
(1)绘制运送距离和运送时间的散点图,判断二者之间的关系形态
根据显著性水平 ? =0.05,查t分布表得t???(n2)=2.2281 由于?t?=7.435453> t???(12-2)=2.2281 , 拒绝H0,产量与生产费用之间存在着显著的正线性
相关关系 5
11.2 学生在期末考试之前用于复习的时间(单位:小时)和考 试分数(单位:分)之间是否有关系?为研究这一问题,一位 研究者抽取了由8名学生构成的一个随机样本,取得的数据如 下:
30 35
关
复习时关间
系
复习时间和考试分数存在正的线性相关关系
系列1 40
7
(2)计算相关系数,说明两个变量之间的关系强度。
r?
n? xy ? ? x? y
n? x2 ? ?? ?x 2 ? n? y2 ? ?? ?y 2
r?
8(20*64 ? 16*61 ? ... ? 22*77) ? (20 ? 16 ? ... ? 22)*(64 ? 61 ? ... ? 77)
表示实际值与估计值之间的差异程度是 0.5
10
11.5一家物流公司的管理人员想研究货物的运输距离和运输时 间的关系,为此,他抽出了公司最近10个卡车的运货记录的随 机样本,得到运送距离(单位:km)和运送时间(单位:天) 的数据如下表:
运送距离x 825 215 1070 550 480 920 1350 325 670 1215
r?
12(40*13?042*15?0...?140*185?)(40? 42?...?140)*(13?0150? ...?185)
12*(420? 422 ?...?1402)??20?16?22?2 ? 12*(1320?1502 ?...?185)?(130?150?...?1852)
r=0.9202
(1)绘制产量与生产费用的散点图,判断二者之间的关系形态。
产量与生产费用
200
180
160
140
120
用 费
100
80
系列1
60
40
20
0
0
20
40
60
80
100
120
140
160
产量
产量和费用存在正的线性相关系数
3
2)计算产量与生产费用之间的线性相关系数。
r?
n? xy? ? x? y
n? x2 ? ?? ?x 2 ? n? y2 ? ?? ?y 2
4
(3)对相关系数的显著性进行检验( ? =0.05),并说明二者之 间的关系强度。
1、提出假设: H0:? ? ? ;H1:? ? 0
2、计算检验的统计量
t ? r n ? 2 ~ t(n ? 2) 1? r2
t ? 0.9202
12 ? 2 1? 0.9202 2
? 7.435453
t???(12-2)=2.2281
8*(20 2 ? 162 ? ... ? 222 ) ? ?20 ? 16 ? ... ? 22?2 ? 8*(64 2 ? 612 ? ... ? 772) ? (64 ? 61 ? ... ? 77)2
r=0.8621
8
11.3、根据一组数据建立的线性回归方程 要求:
?? 1)解释截距 0的意义。 ?? 1)解释斜率 1的意义。
R2 ? SSR ? SSR ? 36 ? 0.9 SST SST ? SSE 40
回归直线对观测值的拟合程度为0.9,说明变量Y的 变异性中有90%是由自变量x引起的。
2)计算估计标准误差se 并解释其意义
n
? se ?
?yi ? y?i ?2
i?1
?
SSE ?
4 ? 0.5
n? 2
18 ? 2 16
一元线性回归课后习题讲解
--------第九组
1
11.1 从某一行业中随机抽取 12家企业,所得产量与生产费用的数据如下:
企业编号
产量(台) 1 2 3 4 5 6 7 8 9 10 11 12
生产费用 40 42 50 55 65 78 84 100 116 125 130 140
130 150 155 140 150 154 165 170 167 180 175 185 2
复习 时间X
考试 分数Y
20 16 34 23 27 32 18 22 64 61 84 70 88 92 72 77
6
要求:(1)绘制复习时间和考试分数的散点图,判断二者之 间的关系形态。
100
90
80
70
60
数 分
50
40
30
20
10
0
0
复
习
时
间
和
考
试
分
数
存
在
正
的
线
性
5
10
15 20 相 25
2)当=6时的E(y)
y? ? 10 ? 0.5x?
1)表示在没有自变量X的影响时其他各种因素对因变 量Y的影响为10 2)斜率的意义在于:自变量X变化对Y影响程度。回 归方程中,当x增加一个单位时,y将减少0.5个单位。 3)x=6时,代入方程,则,y=10-0.5 6=7
9
11.4 设SSR=36,SSE=4,n=18 要求:1)计算判定系数R^2并解释其意义
6.0
5.0 ) 天 4.0 ( 间 3.0 时 送 2.0 运
1.0
0.0 0
200
400
600
800 1000 1200 1400 1600
运送距离(公里)
根据图表显示,二者可能存在正线性相关关系
12
(2)计算线性相关系数,说明两个变量之间的关系强度
运送距离x 运送时间 y
运送距离 x
1
运送时间y 0.94894
0.003585x 表示运输距离每增加 1公里,
运送时间平均增加 0.003585天。
14
? 11.6 下面是7个地区2000年的人均国内生产总值 (GDP)和人均消费水平的统计数据:
地区
北京 辽宁 上海 江西 河南 贵州 陕西