某电力变压器继电保护设计(继电保护)

合集下载

电力变压器继电保护

电力变压器继电保护

电力变压器继电保护电力变压器是电力系统中重要的电力设备之一,用于升降电压以及提供电力输送中途的电力支撑。

为了保护电力变压器运行安全,必须采用继电保护,它是电力系统中最重要的保护手段之一。

本文将介绍电力变压器继电保护的原理、类型、应用以及故障处理方法。

一、原理继电保护是指利用电气原理和电气器件,通过电气信号实现保护、控制、监视等功能的一种自动化保护措施。

在电力系统中,继电保护通过对电压、电流、功率、状态等参数进行监测和判断,实现对电气设备的保护。

电力变压器作为电力系统中的重要设备,需要采用多种继电保护手段进行保护。

电力变压器继电保护的原理主要有以下几个方面:1、过电流保护过电流保护是指当电力变压器发生短路、过负荷等故障时,通过对电流进行测量,对相应的故障进行保护。

通常采用电流互感器(CT)对电流进行测量,并通过电流保护装置实现对变压器的保护。

3、差动保护4、绝缘监测保护绝缘监测保护是指通过对电力变压器绝缘状态进行监测,判断绝缘状态的变化情况,实现对电力变压器的保护。

通常采用绝缘监测装置对电力变压器绝缘状态进行监测,并通过绝缘监测装置的报警信号实现对变压器的保护。

二、类型主保护是指继电保护中最基本、最重要的保护方式。

它是指对电力变压器主要运行参数进行监测和判断,如对电流、电压、功率等根据规定的保护定值进行测量和判断,从而实现对电力变压器的保护。

2、备用保护备用保护是指当主保护失效或不能正常工作时,采用备用保护来对变压器进行保护。

通常备用保护是由多个继电保护组成的,当主保护失效时,备用保护可以及时地发挥作用,对变压器进行保护。

三、应用电力变压器继电保护在电力系统中的应用非常广泛,主要是用于保护电力变压器运行的安全与稳定。

1、电力供应管理电力供应管理是电力系统中非常重要的一环,电力变压器作为输电的关键设备,必须要有可靠的继电保护装置,确保电力的稳定供应。

2、防止故障电力变压器继电保护主要用于防止电力变压器的短路、过负荷等故障,当发生故障时,继电保护可及时切断电力变压器,确保安全运行。

电力变压器继电保护设计

电力变压器继电保护设计

浅析电力变压器继电保护设计摘要本文结合电力变压器运行中的故障,分析了电力变压器差动保护、瓦斯保护及过电流保护等继电保护装置配置原则和设计方案。

关键词电力变压器;继电保护;设计中图分类号tm4文献标识码a文章编号1674-6708(2010)27-0045-020 引言电力变压器是电力系统中极其重要的电气设备,它在整个电力系统中起转换枢纽的作用,变压器的安全运行与否,直接关系到电力系统能否连续稳定地工作。

因此,为了供电的可靠性和系统正常运行,就必须视其容量的大小、电压的高低和重要程度,设置相应的继电保护装置。

1 电力变压器继电保护装置配置原则在电力系统运行中,当电力系统发生故障或异常工况时,继电保护装置应实现在最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。

其配置原则如下:1)对于6.3mv·a及以上的常用工作变压器和并列运行的变压器,iomv·a及以上厂备用变压器和单独运行的变压器,以及2mv·a 及以上用电流速断保护灵敏性不满足要求的变压器,应装设差动保护装置。

对高压侧电压为330kv及以上的变压器,可装设双重差动保护装置。

2)当在变压器油箱内部发生故障(包括轻微的匝间短路和绝缘破坏引起的经电弧电阻的接地短路)时,由于故障点电流和电弧的作用,将使变压器油及其它绝缘材料因局部受热而分解产生气体,它们将从油箱流向油枕的上部。

当故障严重时,油会迅速膨胀并产生大量的气体,此时将有剧烈的气体夹杂着油流冲向油枕的上部。

因此,变压器应安装瓦斯保护装置。

3)对由外部相间短路引起的变压器过电流,根据变压器容量和运行情况的不同以及对变压器灵敏度的要求不同,可采用过电流保护、复合电压起动的过电流保护、负序电流和单相式低电压起动的过电流保护或阻抗保护作为后备保护、带时限动作于跳闸。

2 电力变压器继电保护装置设计方案2.1 差动保护设计变压器差动保护动作电流设计原则是将变压器两侧的电流互感器二次侧按正常时的“环流接线”,当变压器正常运行时,差动继电器中的电流等于两侧电流互感器(ct)的二次电流之差,它近于o,差动继电器不动作,保护也不会动作。

电力变压器继电保护设计

电力变压器继电保护设计

电力变压器继电保护设计摘要:由于电力变压器会受到外接负荷的影响,所以,在工作当中就会出现很多问题,发生故障,对电力系统产生不稳定的作用,对变压器造成很严重的损坏。

在以上讨论中我们可以看出,在电力系统当中,变压器继电保护有着非常重要的作用。

在设计继电保护时必须要掌握要点,如果在其中还存在哪些问题应及时处理,确保电力系统可以稳定运行。

关键词:电力;变压器;继电保护;设计引言随着电力事业的发展,行业内对电力变压器继电保护设计提出了新的标准。

只有全面合理设计继电保护装置,才能够实时监测电力变压器可能出现的各种故障,并及时处理变压器出现的相关问题。

1变压器继电保护原理及系统构成1.1电力变压器继电保护的工作原理电力变压器继电保护系统主要是根据电力系统中电能值的变化实现电力变压器继电保护系统的自调节功能。

电力变压器继电保护系统是专为电力变压器系统的继电保护系统设计的,无论是在工作状态下,还是在何种情况下,都能保证整个系统的安全。

根据电力变压器继电保护系统是否正常运行,继电保护的基本原理不尽相同。

为了确定电力变压器继电保护系统的运行状态,有必要对电力变压器继电保护系统的运行状态进行测量和分析。

1.2变压器继电保护系统构成变压器的继电保护系统包含多个构成部分,不同构成部分之间互相配合,才能够最大程度发挥继电保护的作用。

目前,变压器继电保护系统中主要包含以下模块。

第一,信号采集模块。

这一模块可以在变压器运行过程中实时采集相应的参数和状态信息,并及时将采集到的信号上传到信号处理模块。

第二,信号处理模块。

该模块在运行过程中主要是根据继电保护装置中已经设定好的信号处理程序处理前期得到的信号,并根据最终处理后的信号结果与保护动作阈值进行对比。

第三,信号输出模块。

针对处理程序结束后的结果输出,该模块与保护功能实现有着直接关系。

2电力变压器的故障问题(1)在非正常运行下,发生故障的问题包括有,超负荷引起的容量负荷、过电流、油面减少引发的故障、高电压产生的过励磁故障以及高温度下引发的故障。

试论电力变压器继电保护设计

试论电力变压器继电保护设计
降压 变 压 器 ; ) 合 电 压 起 动 的过 电 流 保 护 , 般 用 于 升 压 变 压 器 及 (复 2 一 电 力 变 压 器 的故 障 通 常 可 以 分 为 油 箱 内部 故 障 和 油 箱 外 部 故 障 过 电流 保 护 灵 敏 性 不 满 足 要 求 的降 压 变 压 器 ; ) ( 负序 电 流及 单 相式 低 3 两 种 。 箱 内 部故 障 主要 是 指发 生 在 变 压 器 油 箱 内包 括 高 压 侧 或 低 压 电压 起 动 的过 电流 保 护 ,一 般 用 于 6 MV 油 3 A及 以 上 大容 量 升 压 变压 器 侧 绕 组 的 相 间 短 路 、 间 短 路 、 性 点 直 接 接 地 系 统 侧 绕 组 的 单 相 接 和 系统 联 络变 压 器 ; ) 抗 保 护 , 于 升压 变 压器 和 系统 联 络变 压 器 , 匝 中 (阻 4 对 地 短 路 以及 铁 芯 的 绕损 等 。变 压 器 内部 故 障非 常危 险 , 为 故 障 时 产 当采 用 第 ( () 因 2 3的保 护 不 能 满 足 灵 敏 性 和 选 择 性 时 , 采 用 阻抗 保 护 。 ) 可 生 的 电弧 , 仅会 损 坏 绕 组 的绝 缘 、 坏 铁 芯 , 不 烧 而且 由 于 绝 缘 材 料 和 变 24 过 励 磁 保 护 .
【 摘 要 】 电力系统继 电保护是保证 电力 系统安全运行、 高经济效益的有效技 术。 电力 系统升压 降低压 中, 提 在 电力 变压器得到 了广泛地应 用 。 此 设 置性 能 良好 、 作 可 靠 的继 电保 护 装 置 是 电 力 系统 工 作 的 必要 条 件 。 本 文 结 个 人 经验 对 电 力 变 压 器 继 电保 护及 设 计 进 行 了探 讨 。 因 动

电力变压器继电保护设计方案

电力变压器继电保护设计方案

电力变压器继电保护设计方案电力变压器是电力系统中重要的设备之一,经常被用作输电和配电系统中的变换器。

由于电力变压器的故障会对整个电力系统产生严重影响,因此必须采取必要的保护措施,保障电力系统的稳定性和可靠性。

本文介绍电力变压器继电保护的设计方案,着重介绍继电保护原理和保护配置。

一、继电保护原理电力变压器继电保护一般采用电流互感器整流式保护。

电流互感器将变压器通路中的电流变为与它成比例的小电流,接入继电器中进行处理。

继电器通过比对电流大小和相位差等参数来判断电力变压器内部是否存在故障,如短路、接地等故障。

当发生故障时,继电器将发送开关信号给断路器,切断电力变压器的供电,保护电力系统的安全稳定运行。

二、保护配置电力变压器的保护配置根据其不同型号和规格有所不同,但通常包括以下保护。

1. 过流保护过流保护是电力变压器最基本的保护之一。

当电力变压器通路中的电流超出额定电流值时,其可能会引起故障,如短路和接地等。

过流保护采用不同的越限电流值来判断电力变压器是否发生故障。

过电压保护是指当电力变压器出现过电压时,通过继电器的动作来保护设备。

过电压保护通常采用电压比率继电器,对比变压器的一次和二次侧电压,当二次侧电压过高时,继电器动作,切断断路器,保护电力变压器及其周边设备。

3. 低压保护低压保护是用来检查电力变压器一次侧的电压是否低于额定电压的保护措施。

当电力变压器一次侧电压低于设定值,继电器将会动作,发送开关信号,使断路器切断供电。

4. 短路保护5. 零序保护零序保护是用来检测电力变压器周边设备的相对接地。

当电力变压器周边设备出现接地故障时,电流会通过地线回到中性点,形成零序电流。

零序保护采用电流互感器接入继电器,当检测到零序电流超过设定值时,继电器将动作,切断电力变压器供电,以保护电力系统的稳定性。

三、总结电力变压器是电力系统中最核心的设备之一,其保护显得尤为重要。

电力变压器继电保护采用电流互感器整流式保护,采用过流、过电压、低压、短路、零序保护等多种方式,以确保电力系统的安全稳定运行。

电力变压器继电保护设计

电力变压器继电保护设计

电力变压器继电保护设计1. 介绍电力变压器是电力系统中不可或缺的设备之一,其作用是将电能从一个电压等级转换到另一个电压等级。

在电力系统中,变压器扮演着重要的角色,是保证电能质量安全稳定运行的重要组成部分。

而为了保证变压器的安全、可靠运行,必须有一个有效的继电保护系统。

本文将从电力变压器继电保护的设计方案出发,分析变压器继电保护系统的原理和实现方法,以及保护系统的分类和应用场景,旨在为变压器的安全运行提供一个有效的继电保护方案。

2. 继电保护原理和实现继电保护系统是电站或配电系统中常用的一种保护措施。

电力变压器一般会装置三相过流保护、差动保护、接地保护等多个保护装置,通过相互协调、相互触发,保证保护系统的可靠性和稳定性,达到保护电力设备的目的。

2.1 过流保护过流保护是电力系统中最基本、最常见的一种电气保护。

它是指电气设备中的电流超出额定工作电流范围时,通过保护装置有效把设备从电力系统中隔离,以达到保护设备的效果。

过流保护的元件包括保护继电器、电流互感器、断路器、线路开关等。

2.2 差动保护差动保护是指通过在电气设备两端接入同名同标号的相互差动继电器,将对数闸、电流互感器联接到差动继电器上,利用差动继电器测量被保护设备的两侧电流,比较其差值,当电气设备出现内部故障时,捕捉到其绕组电流波形发生变化,有效识别出故障发生位置。

2.3 接地保护接地保护是电力系统中的一种重要保护,主要解决电气设备的绝缘故障。

在一般情况下,电气设备之间是通过绝缘来防止电流流过去,而当设备的绝缘发生破损时,便有可能产生对地故障。

接地保护一般采用电流式保护和电压式保护两种方式。

3. 保护系统分类继电保护系统一般有两种保护方案,分别为主保护和备用保护。

主保护指的是对被保护对象采取的主要保护措施,因此其可靠性很高,可以为被保护对象提供有效的保护。

备用保护是指当主保护装置出现故障或失效时,备选保护装置接替主保护装置的功能,保证电量设备的可靠性和运行的连续性。

电力变压器继电保护设计论文

电力变压器继电保护设计论文

电力变压器继电保护设计论文摘要:电力变压继电保护是维持电路稳定运输的重要部件。

随着电网越来越繁复密集,为了确保供电系统安全稳定运行,必须要正确安装继电保护装置,并将相关数值进行准确严格设置,保障电力系统运行的安全性。

前言随着我国电力事业的迅猛发展,电网的规模不断得到扩大,其密度也越来越密集,这时候电力变压器也在不断接受外界负荷的挑战,伴随着越来越多的故障发生。

在超高压的输电设备中,需要大型的电力变压器进行维持,但是一旦有故障发生,会直接致使超高压输电设备进入瘫痪状态,对社会财产造成严重的损失。

所以,为了维持供电的稳定性、安全性,必须对电力变压继电保护作出严格的审查与检验,保证其满足供电需求。

一、电力变压器继电保护工作原理电力变压系统继电保护的工作原理是当电力系统有数值改变时电力变压继电保护体统随着进行系统自我调节功能。

电力变压继电保护无论处在何种工作状态,其核心的工作目的就是保护电力系统安全稳定的运行。

电力变压继电保护的工作状态与维护状态是不尽相同的,保护工作的开启需要对其他参数进行测量和确认工作,并对不同状态下的工作参数进行逐一分析,然后在整合的数据中找寻有出入的数据,从而发展成不同工作原理[1]。

继电保护工作在正常的工作状态中工作流程是先进行测量工作,再进行逻辑分析,最后进行执行任务。

如果继电保护出现问题就会有相应的故障产生,这时继电保护需要记住正常工作的物理参数并和故障时的物理参数进行对比,找到故障发生原因,并对故障进行测量和分析。

二、电力变压器继电保护的结构构造随着技术的发展,电力变压器变压保护以改变成微机型的继电保护装置。

继电保护装置主要由三个部分组成,一部分构成是电力信号的采集程序,这个程序的主要工作内容是对电力体系运营中所产生的数据进行分析与整理,然后将汇总过的数据传递给继电变压装置。

第二个部分是由电力系统中的信号处理程序构成,其主要工作内容是对各种信息进行汇总,并处理其中出现的信息异常,并将产生的问题进行汇总后,再启动运行[2]。

探讨电力变压器的继电保护设计

探讨电力变压器的继电保护设计

探讨电力变压器的继电保护设计作者:吕勇裴斌来源:《建筑与文化》2013年第05期【摘要】我国的电力事业随着我国的经济建设快速发展而飞速前进。

不断扩大的电力设施以及日益复杂的电力网络都给人们的日常生产和生活带来了极大地方便。

变压器室电力系统中一种极为重要的装置,但是电力变压器在运行的过程中总会出现这样那样的故障,破坏了电力系统的正常运行。

为了保证我国电力系统的顺利运作,很有必要对电力变压器的继电保护装置进行优化设计。

本文就如何优化设计电力变压器的继电保护装置进行了简要的阐述。

【关键词】电力变压器;继电保护;优化设计;保护措施1.前言在现代化的社会里,我们的日常生活离不开电,发电厂产生的电通过输送电路到达用户,而电的输送却是与电力变压器息息相关的。

电力变压器广泛用于现实生活中如机床、照明、电器、机械电子、医疗设备等。

电力变压器由于各种人为的或者环境的因素,在使用过程中会发生故障,对我们的日常生活造成不良的影响。

因此优化设计电力变压器的继电保护装置,保障电力的顺利运行就有着很重要的现实意义。

2.常见的电力变压器故障电力变压器由于各种人为的或者环境的因素,在使用过程中难免会产生这样那样的故障。

广义的说常见的变压器故障分为两种类型。

第一种类型是内部故障,这种故障主要发生在电力变压器的油箱里面;第二种类型是外部故障,这种类型的故障在油箱外部比较常见,常发生在绝缘套管及其引出线上。

在故障发生时,前者要切除变压器可以依靠差动保护动作以及瓦斯;而后者一般只能由差动保护动作实现。

在故障发生的情况下,利用瓦斯和差动保护等的速动保护切除故障变压器,变压器的动稳定性则是设备是否损坏的主要因素。

如果电力变压器的故障发生在两侧母线及其相连的间隙时,若故障设备的保护装置保护拒动或者故障设备未配保护,如低压侧母线保护等,这种情况下切除故障变压器只能靠变压器后备保护动。

此时由于故障造成的过量电流就可能通过变压器一段时间,这是因为电力变压器的后备保护带具有延时性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 继电保护相关理论知识1.1 继电保护的概述研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。

因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。

1.2.1 继电保护的任务当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。

1.2.2继电保护基本原理和保护装置的组成继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。

因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。

依据反映的物理量的不同,保护装置可以构成下述各种原理的保护:(1)反映电气量的保护电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压的比值(阻抗)和它们之间的相位角改变等现象。

因此,在被保护元件的一端装没的种种变换器可以检测、比较并鉴别出发生故障时这些基本参数与正常运行时的差别.就可以构成各种不同原理的继电保护装置。

例如:反映电流增大构成过电流保护;反映电压降低(或升高)构成低电压(或过电压)保护;反映电流与电压间的相位角变化构成方向保护;反映电压与电流的比值的变化构成距离保护。

除此以外.还可根据在被保护元件内部和外部短路时,被保护元件两端电流相位或功率方向的差别,分别构成差动保护、高频保护等。

同理,由于序分量保护灵敏度高,也得到广泛应用。

新出现的反映故障分量、突变量以及自适应原理的保护也在应用中。

(2)反映非电气量的保护如反应温度、压力、流量等非电气量变化的可以构成电力变压器的瓦斯保护、温度保护等。

继电保护相当于一种在线的开环的自动控制装置,根据控制过程信号性质的不同,可以分模拟型(它又分为机电型和静态型)和数字型两大类。

对于常规的模拟继电保护装置,一般包括测量部分、逻辑部分和执行部分。

测量部分从被保护对象输入有关信号,再与给定的整定值比较,以判断是否发生故障或不正常运行状态;逻辑部分依据测量部分输出量的性质、出现的顺序或其组合,进行逻辑判断,以确定保护是否应该动作;执行部分依据前面环节判断得出的结果子以执行:跳闸或发信号。

2 变电所继电保护和自动装置规划2.1系统分析及继电保护要求本设计110/35KV系统为双电源35KV单母线分段接线,110KV侧单母线分段接线,所接负荷多为化工型,属一二类负荷居多。

为保证安全供电和电能质量,继电保护应满足四项基本要求,即选择性、速动性、灵敏性和可靠性。

2.2本系统故障分析本设计中的电力系统具有非直接接地的架空线路及中性点不接地的电力变压器等主要设备。

就线路来讲,其主要故障为单相接地、两相接地和三相接地。

电力变压器的故障,分为外部故障和内部故障两类。

变压器的外部故障常见的是高低压套管及引线故障,它可能引起变压器出线端的相间短路或引出线碰接外壳。

变压器的内部故障有相间短路、绕组的匝间短路和绝缘损坏。

变压器的不正常运行过负荷、由于外部短路引起的过电流、油温上升及不允许的油面下降。

2.3 本设计继电保护装置原理概述2.3.1 110KV线路电流速断保护110KV线路电流速断保护是根据短路时通过保护装置的电流来选择动作电流的,以动作电流的大小来控制保护装置的保护范围;有无时限电流速断和延时电流速断,采用二相二电流继电器的不完全星形接线方式,本设计选用无时限电流速断保护。

2.3.2 110KV线路过电流保护110KV线路过电流保护是利用短路时的电流比正常运行时大的特征来鉴别线路发生了短路故障,其动作的选择性由过电流保护装置的动作具有适当的延时来保证,有定时限过电流保护和反时限过电流保护;本设计与电流速断保护装置共用两组电流互感器,采用二相二继电器的不完全星形接线方式,选用定时限过电流保护,作为电流速断保护的后备保护,来切除电流速断保护范围以外的故障,其保护范围为本线路全部和下段线路的一部分。

2.3.3 平行双回线路横联方向差动保护平行双回线路横联方向差动保护是通过比较两线路的电流相位和数值相同与否鉴别发生的故障;由电流起动元件、功率方向元件和出口执行元件组成,电流起动元件用以判断线路是否发生故障,功率方向元件用以判断哪回线路发生故障,双回线路运行时能保证有选择的动作。

该保护动作时间0S,由于横联保护在相继动作区内短路时,切除故障的时间将延长一倍,故加装一套三段式电流保护,作为后备保护。

2.3.4 变压器瓦斯保护变压器瓦斯保护是利用安装在变压器油箱与油枕间的瓦斯继电器来判别变压器内部故障;当变压器内部发生故障时,电弧使油及绝缘物分解产生气体。

故障轻微时,油箱内气体缓慢的产生,气体上升聚集在继电器里,使油面下降,继电器动作,接点闭合,这时让其作用于信号,称为轻瓦斯保护;故障严重时,油箱内产生大量的气体,在该气体作用下形成强烈的油流,冲击继电器,使继电器动作,接点闭合,这时作用于跳闸并发信,称为重瓦斯保护。

2.3.5 变压器纵联差动保护变压器纵联差动保护是按照循环电流的原理构成。

在变压器两侧都装设电流互感器,其二次绕组按环流原则串联,差动继电器并接在回路壁中,在正常运行和外部短路时,二次电流在臂中环流,使差动保护在正常运行和外部短路时不动作,由电流互感器流入继电器的电流应大小相等,相位相反,使得流过继电器的电流为零;在变压器内部发生相间短路时,从电流互感器流入继电器的电流大小不等,相位相同,使继电器内有电流流过。

但实际上由于变压器的励磁涌流、接线方式及电流互感器误差等因素的影响,继电器中存在不平衡电流,变压器差动保护需解决这些问题,方法有:·靠整定值躲过不平衡电流·采用比例制动差动保护。

·采用二次谐波制动。

·采用间歇角原理。

·采用速饱和变流器。

本设计采用较经济的BCH-1型带有速饱和变流器的继电器,以提高保护装置的励磁涌流的能力。

3 短路电流计算用标幺值计算短路电流参数,确定短路计算点,计算短路电流值。

3.1 画出短路等值电路如图3.1所示:图3.1 短路等值电路图计算各元件电抗参数,取基准容量MVA S d 100=,基准电压为kV U d 5.101=,kV U d 372=;基准电流为: A I d 55005.1031010031=⨯⨯=,A I d 15603731010032=⨯⨯=(1) 计算电源系统基准电抗的标幺值。

1.01000100max.min .===k d s S S X ,2.0500100min.max .===k d s S S X (2) 变压器各侧阻抗标幺值。

()75.106175.1021001=-+=k U ,()25.06175.1021002-=+-=k U()25.66175.1021003=++-=k U ,3413.05.3110010075.10100001.=⨯==TN d k HT S S U X 007937.05.3110010025.0100002.-=⨯-==TN d k MT S S U X 1984.05.3110010025.6100003.=⨯==TN d k LT S S U X (3) 线路的基准电抗标幺值。

442.55.10100154.02221121=⨯⨯===d d l l U S l X X X 023.137100154.02233142=⨯⨯===d d l l U S l X X X 3.2 短路电流计算由主接线分析可知,变压器的主保护为一台变压器单独运行为保护的计算方式,保护时,变压器后备保护作保护线路的远后备保护时,要校验k3、k4两点的灵敏系数,因此,除需要计算k1、k2两点最大、最小运行方式短路电流外,还需计算k3、k4两点的最小短路电流。

(1)求k1点短路电流计算A X I I k d k 85971984.03413.01.05500min ).1(1)3(max .1=++==∑A X I I k d k 74357397.055001984.03413.02.05500max).1(1)3(min .1==++==∑()A I I k k 64397435866.0233min .1)2(min .1=⨯==(2)求k2点短路电流A X I I k d k 35994334.015600079.03413.01.01560min).2(2)3(max .2==-+==∑()A I I k k 25335334.013510079.03413.02.01560866.0233min .2)2(min .1==-+⨯==(3)求k3点短路电流A X I I k d k 8685564.1866.01560023.10079.034.02.0866.01560866.0max ).3(2)2(min .3=⨯=+-+⨯==∑(4)求k4点短路电流A X I I k d k 783082.64763442.56397.0866.05500866.0max ).4(1)2(min .4==+⨯==∑3.3 保护装置的配置(表3.2)4 各保护装置的整定计算4.1 纵差保护的整定计算(1)计算变压器差动臂中电流,由表4.1计算可知,110kV 侧差动臂中的电流最大,故110kV 侧为计算的基本侧。

表4.1 计 算 结 果(2)确定制动绕组的接线方式,制动绕组接入38.5kV 侧,因为,该侧的外部发生故障时,穿越变压器的短路电流很大。

(3)计算差动保护的一侧动作电流。

1)按躲过110kV 外部故障的最大不平衡电流整定,即()()'3max .kl err st rel op I m U K K K I ∆+∆+==()A 255785325.078505.01.01.013.1=⨯=⨯++⨯()()A K I I av kl kl 78595.1085975.101158597'3max .'3max .====2)按躲过变压器励磁涌流计算,即 A I K I H TN rel op 2481655.1.=⨯== 3)按躲过电流互感器二次回路断线,即 A I K I H TN rel op 5.2141653.1.=⨯==4)取上述各条件中最大的作为基本侧一次动作电流即A I op 255=,差动继电器基本侧动作电流为 A K I K I HTA op con r op 36.7602553..=⨯== 确定差动绕组匝数 15.836.7460.=±==r op op I AN W 匝 取整定匝数8.=set op W 匝,则继电器动作电流为5.7860.==r op I A ,保护装置实际动作电流为A I op 8.2596035.7=⨯=。

相关文档
最新文档