恒定总流的动量方程详解

合集下载

水力学恒定总流的动量方程

水力学恒定总流的动量方程
水力学恒定总流的动量方程
5.7 恒定总流的动量方程
对复杂的水流运动分析,特别是涉及分析水流和其固 体边界之间的作用力问题,应用动量方程进行分析和 计算更简便,直接.
如:求动水总压力,求水流作用于管道弯头上的动 水压力及射流冲击力等.
5.7 恒定总流的动量方程
一、恒定总流动量方程的推导
推导的原理: 动量定律
5.7 恒定总流的动量方程
一、恒定总流动量方程的推导
元流的动量: ρu1∆tdA1u1
所 以:
M11 A1 u1tdA1 u1 t A1 u1u1dA1 t Q u1dQ
用断面平均流速v代u,所产
生的误差用动量修正系数
α'修正.
于是
5.7 恒定总流的动量方程
一、恒定总流动量方程的推导
A1 1 1 1
(如c):作求1用动于水脱总离压体力内,求水水体流上作的用重于力管. 道弯头上的动水压力及射流冲击力等.
Qtv Qtv v v A 为动2解计量:恒算 定 因定方律弯总便:管流,单水动将位平量动时放方量间置程方内,的程物故1应写体此用成动弯三量管坐的液标变体轴化所上等受的于重投作力影1用在式于平该面物内体投上影的分1所量1有等外于1力零的,总沿和管轴线取基准面,则:
动量方程的应用条件及注意事项: 动量方程的应用条件与能量方程的应用条件相同: (1)必须是恒定流,且为不可压缩的均质流体.
(2)作用于流体上的质量力只有重力,所研究的流 体边界是静止的.
(3)所取的两个过流断面必须是均匀流断面或渐 变流断面,但两个断面之间可以不是渐变流. (4)一般地,所取两个断面间没有流量的汇入和分 出;也无能量的输入和输出.
(c5)作动用量于方脱程离只体能内求水解体一上个的未重知力数.,两个以上时,要与连续性方程以及能量方程联合求解.

恒定总流的动量方程

恒定总流的动量方程

恒定总流的动量方程利用前面介绍的连续性方程和能量方程,已经能够解决许多实际水力学问题,但对于某些较复杂的水流运动问题,尤其是涉及到计算水流与固体边界间的相互作用力问题,如水流作用于闸门的动水总压力,以及水流经过弯管时,对管壁产生的作用力等计算问题,用连续性方程和能量方程则无法求解,而必须建立动量方程来解决这些问题。

动量方程实际上就是物理学中的动量定理在水力学中的具体体现,它反映了水流运动时动量变化与作用力间的相互关系,其特点是可避开计算急变流范围内水头损失这一复杂的问题,使急变流中的水流与边界面之间的相互作用力问题较方便地得以解决。

一、动量方程式的推导及适用条件(一)动量方程式的推导由物理学可知,物体的质量m 与速度υ的乘积称为物体的动量。

动量是矢量,其方向与流速方向相同。

物体在外力作用下,速度会发生改变,同时动量也随之变化。

动量定理可表述为:运动物体单位时间内动量的变化等于物体所受外力的合力。

现将动量定理用于恒定流中,推导恒定流的动量方程。

图3-29在不可压缩的恒定流中,任取一渐变流微小流束段1—2(图3-29)。

设1—1断面和2—2断面的过水断面面积和流速分别为21、dA dA 和1u 、2u ,经过dt 时段后,微小流束由原来的1—2位置运动到了新的位置21'-'处,从而发生了变化。

设其动量的变化为dk ,它应等于流段21'-'与流段1—2内的动量之差。

因为水流为不可压缩的恒定流,所以对于公共部分21-'段来讲,虽存在着质点的流动的替换现象,但它的形状、位置以衣液体的质量、流速等均不随时间发生变化,故动量也不随时间发生改变。

这样,在dt 时段内,21'-'段的水流动量与1—2段的动量之差实际上即为22'-段的动量与11'-段的动量之差。

在dt 时段内,通过11'-段的水体质量为11dtdA u ρ,通过22'-段的水体质量为22dtdA u ρ,对于不可压缩液体,根据连续性方程,可知dQdt dtdA u dtdA u ρρρ==2211,则微小流束段的动量变化为)(12u u dQdt k d -=ρ设总流两个过水断面的面积分别为21A A 与,将上述微小流束的动量变化k d 沿相应的总流过水断面进行积分,即可得到总流在dt 时段内动量的变化量为)()()(121112221212a dA u u dA u u dt u dQdt u dQdt u u dQdt k d A A QQ Q ⎰⎰⎰∑⎰⎰-=-=-=ρρρρ 由于实际液体过水断面上的流速分布均匀,且不易求得,故考虑用断面平均流速υ来代替断面上不均匀分布的流速u ,以便计算总流的动量。

恒定流动量方程

恒定流动量方程
流速
流体在过流断面上的平均流速,用v表示,单位为 m/s。
过流断面面积
流体流过管道或明渠的横截面积,用A表示,单位为 m²。
02
恒定流动量方程建立过程
质量守恒定律在流体中应用
80%
质量守恒定律
在任何物理或化学过程中,系统 的质量始终保持不变。
100%
在流体中的应用
对于流动的流体,流入和流出的 质量必须相等,以保持质量守恒 。
方式对能量守恒的影响。
03
恒定流动量方程求解方法
解析法求解步骤及技巧
01
02
03
04
设定未知数并建立方程
根据实际问题,设定未知数, 并根据物理定律建立恒定流动 量方程。
方程化简与整理
通过数学变换和化简技巧,将 方程转化为更易于求解的形式 。
求解方程
运用数学方法(如代数法、分 离变量法等)求解方程,得到 未知数的解。
的影响。
06
总结与展望
恒定流动量方程研究意义和价值
揭示流体运动规律
恒定流动量方程是描述流体在管道中稳定流 动时各物理量之间关系的方程,对于揭示流 体运动规律具有重要意义。
工程应用广泛
恒定流动量方程在水利工程、市政工程、环境工程 等领域有着广泛的应用,为工程设计提供了重要的 理论依据。
推动相关学科发展
案例二
复杂管网流动问题。由于问题复杂性增加,解析法难以直接 应用。采用数值法进行求解,通过调整迭代参数和网格密度 ,得到较为准确的计算结果。这表明数值法在复杂问题求解 中具有优势。
04
恒定流动量方程在工程中应用
水利工程中水流计算
流量计算
通过恒定流动量方程计算水库、 河流等水域的流量,为水利工程 设计提供基础数据。

恒定总流的动量方程详解课件

恒定总流的动量方程详解课件
在推导动量方程时,需要用到质量守恒定律来表达流体微元 的动量变化率与外力和内力的关系。具体来说,质量守恒定 律可以表达为:ρvdρ/dt=0,其中ρ为流体的密度,v为流体 的速度,t为时间。
动量方程的推导
根据牛顿第二定律和质量守恒定律,可以推导出动量方程。 将牛顿第二定律的表达式F=dp/dt和质量守恒定律的表达 式ρvdρ/dt=0代入动量方程中,得到:ρv(dv/dt)=F,其 中v为流体的速度,t为时间。
流体在弯管处的流动
总结词
当流体流经弯管时,动量方程可以帮助我们理解流体的速度和压力变化,以及弯管对流 体流动的影响。
详细描述
弯管是流体输送和分配系统中常见的元件,它可以改变流体的流动方向。动量方程可以 帮助我们预测流体在弯管处的速度和压力分布,以及弯管对流体流动的影响。此外,通 过分析动量方程,我们可以优化弯管的几何形状和操作条件,以实现更好的流体控制效
描述物质运动变化过程的物理量,单 位为秒(s)。在动量方程中,时间表 示流体微团运动状态随时间的变化。

改变物体运动状态的作用量,单位为 牛顿(N)。在流体动力学中,力主 要指流体受到的外部作用力,如重力、 压力等。
动量方程在流体动力学中的应用
流体动力学基本方程 动量方程是流体动力学的基本方程之一,用于描述流体运 动规律。通过求解动量方程,可以了解流体在不同外力作 用下的运动状态和变化趋势。
在恒定总流中,由于流体的速度和密度不随时间变化,因此惯性力为零。因此, 流体微元的运动方程可以简化为:F=dp/dt,其中F为外力,p为流体微元的动量, t为时间。
质量守恒定律的应用
质量守恒定律是流体动力学的基本定律之一,它指出在封闭 系统中,质量不随时间变化。在恒定总流中,流体的质量不 随时间变化,因此可以忽略质量的变化。

流体力学3-5动量方程

流体力学3-5动量方程
5
❖动量方程的解题步骤
1. 选控制体 根据问题的要求,将所研究的两个渐
变流断面之间的水体取为控制体;
2. 选坐标系 选定坐标轴 的方向,确定各作用力及
流速的投影的大小和方向;
3. 作计算简图 分析控制体受力情况,并在控制体
上标出全部作用力的方向;
4. 列动量方程解题 将各作用力及流速在坐标轴
上的投影代入动量方程求解。计算压力时,压强 采用相对压强计算。 注意与能量方程及连续性方程的联合使用。
重力G在xOy面无分量; 弯管对水流的作用力R‘ 列总流动量方程的投影式
Fx Q(2v2x 1v1x )
Fy Q(2v2 y 1v1y ) 7
P1 P2 cos 60o Rx ' Q(2v2 cos 60o 1v1)
P2
r
r
rr
dt2v2 A2 v2 dt1v1A1v1 dtQ(2 v2 1v1)
2
❖动量修正系数β
修正以断面平均速度计算的动量与实际动量的差异而引入
Au3dA 3A
Au2dA 2A
β值取决于过流断面上的速度分布, 速度分布较均匀的流动β =1.02~1.05, 通常取β=1.0


Fz Q(2v2z 1v1z )
❖物理意义:作用于控制体内流体上的外力,等
于单位时间控制体流出动量与流入动量之差
4
❖应用条件:
恒定流 过流断面为渐变流断面 不可压缩流体

❖合外力: F
作用在该控制体内所有流体质点的质量力; 作用在该控制体面上的所有表面力 四周边界对水流的总作用力
sin
60o
Ry'Fra bibliotekQ(2v2

恒定总流动量方程

恒定总流动量方程

恒定总流动量⽅程恒定总流动量⽅程1.流体为恒定流,且流体是不可压缩的。

2.流体运动符合连续原理;3.所取的两个断⾯为渐变流流动,但在两个断⾯之间可以不是渐变流。

4.两个断⾯之间的流体没有外界能量的加⼊或内部能量的取出。

5.能量⽅程在推导过程中流量是沿程不变的,前后两个断⾯是指同⼀股液流。

§2-4-2 应⽤伯努利⽅程应注意的问题1. 分析流动,选取好过⽔断⾯;2. 选择好计算点和基准⾯;3. 压强⼀般以相对压强表⽰,单位要⼀致;4. 全⾯分析和考虑所取两过流断⾯之间的能量损失。

§2-4-3 伯努利⽅程的应⽤1.毕托管测流速图3-28①驻压强:流动流体中加⼀障碍物后,驻点处增⾼的压强,即动能转化⽽来的压强②动压强:流动流体中不受流速影响的某点的压强③总压强:运动流体动压强与驻压强之和,即驻点处的压强。

③总压强:运动流体动压强与驻压强之和,即驻点处的压强。

④单孔测速管制作原理:当⽔流受到迎⾯物体的阻碍,被迫向四周分流时,在物体表明上受⽔流顶冲的A点流速等于零,称为⽔流滞⽌点(驻点)。

驻点处的动能全部转化为压能,单孔测速管和毕托管就是根据这⼀原理制成的⼀种测速仪。

如图,1管测的是动压强,2管测的是总压强,则驻压强测得理论流速:实际流速:( µ:修正系数,H:为两管⽔头差。

)2. ⽂丘⾥流量计(Venturi Meter)如图,主管路直径为,喉管直径;在定流条件下,测压管⽔头差为,推导管路中实际⽔流量的计算式。

对过⽔断⾯1-1、2-2列能量⽅程运⽤连续⽅程有:得主管流速理想情况下的流量实际流量式中——流量系数,主要与管材、尺⼨、加⼯精度、安装质量、流体的粘性及其运动速度等有关,——结构常数. ⼀般⽔⼒计算问题【例3-3】⼀虹吸管,已知a=1.8m,b=3.6m,,由⽔池引⽔⾄C端流⼊⼤⽓,若不计损失,设⼤⽓压为10m⽔柱,求:(1)管中流速,及B点之绝对压强。

(2)若B点绝对压强下降到0.24m⽔柱以下,将发⽣汽化,设C端保持不动,问欲不发⽣汽化,a不能超过多少?解:引⽔时,⽔池中⽔⾯可认为⼀过流截⾯,流体经吸⽔⼝进⼊虹吸管(1)以C端为基准⾯,对A、C截⾯写伯诺⾥⽅程,A截⾯流速很⼩,可忽略,则有:(a)V=8.4m/s对AB截⾯应⽤伯诺⾥⽅程,以A为基准⾯:(b)(⽔柱)(2)为不发⽣汽化,必须(⽔柱),将此关系代⼊(b)得:(⽔柱)例4 如图所⽰⽔泵管路系统,已知:流量Q=101m3/h,管径d=150mm,管路的总⽔头损失hw1-2=25.4m,⽔泵效率η=75.5%,试求:(1)⽔泵的扬程Hp(2)⽔泵的功率Np解:(1) 计算⽔泵的扬程Hp以吸⽔池⽔⾯为基准写1-1,2-2断⾯的能量⽅程即∴(2)计算⽔泵的功率Np此题主要说明在⽔流中有能量输⼊或输出时能量⽅程的应⽤。

动量方程

动量方程
力; ② 周界表面对脱离体的作用力,即水流 对周界表面的动水总作用力R'的反作用力R, 包括作用于周界表面上的动水总压力和水流 对该表面作用的摩擦切力; ③ 作用于该脱离体上的重力。
8.动量方程应用注意事项:
(1) 作好“三步”:
(a)控制体的选取:--总流 一般选取总流边界为控制体边界, 横向边界一般取过水断面;
9.动量方程的应用
•求解固体边界的水流作用力 •求解射流冲击力
•求解水跃
恒定总流动量方程式应用举例
一、弯管内水流对管壁的作用力
弯管中水流为急变流,动水压强分布规律和静水 压强不同,因此不能用静水压力的计算方法来计算弯 管中液体对管壁的作用力。
取如图所示控制体,作用 于控制体上的力包括两端 断面上的 动水压力,还有 管壁对水流的反作用力。
Fp1 -Fp2cos α + R x =ρ Q (v2cosα -v1)
α R x= α -v1) -Fp1+Fp2 cos ρ Q (v 2cos
= -1983 N(方向与图示相反)
y方向的动量方程:
-F p2sin α + R y=ρ Q (v 2 sinα -0)
R y =ρ Q v 2 sinα +Fp2sinα
(b)绘计算简图:正确标示流速和作 用在水体上的力,注意各流速和 力矢量的投影方向及其正负号; (c)动量方程是矢量方程,建立坐标 系; (2)流出动量减去流入动量,未知力 的方向可以假设;
(3)∑F包括作用在控制体上的全部
外力,不能遗漏,也不能多选。当 未知力的方向不能事先确定时,可
以先假设其方向进行求解。如果求
水轮机: -HP= Pg/(γ Q ηg) (出力)
小 结:

恒定总流的动量方程详解

恒定总流的动量方程详解
3 流体动力学理论基础
3.1
描述液体运动的两种方法
3.2 3.3
3.4 3.5
流体运动的基本概念 恒定总流的连续方程
恒定总流的能量方程 恒定总流的动量方程
3.5 实际液体恒定总流的动量方程 3.5.1 动量方程的推导
3.5.2 动量方程的意义 3.5.3 解题要点
3.5.4 动量方程的应用
3.5 实际液体恒定总流的动量方程 3.5.1 动量方程的推导
A1
K 2- 2' dt u2 u2dA2 Q2 2 v 2dt Q 2 v 2dt
A1
K
dt uudA Q vdt
A
1
A1
u u dA
1 1
1
for a gradually varied flow
v1Q
A2

A1
u u dA
1 1
1
v1Q
dt 时间内水流动量变化Δ K
1’
1
2
2’
1’
K K 1'-2 ' K 1-2 K 1'-2 ' K 1'-2 K 2-2 ' K 1-2 K 1-1' K 1'-2
2
2’
1
K K 1'-2 ' K 1-2 = K 2-2 ' K 1'-2 K 1-1' K 1'-2= K 2-2 ' K 1-1'
3.5.2 动量方程的意义 3.5.3 解题要点
3.5.4 动量方程的应用
θ 水利工程中经常遇到求解作用力的问题, 如平面弯管要求知道制作镇墩的作用力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Hale Waihona Puke 1’ 1t+dt2
2’
t
uur uur uur
uur uur uur uur uur uur
K K 1'-2' K 1-2 = K 2-2' K 1'-2 K 1-1' K 1'-2= K 2-2' K 1-1'
dt 时间内水流动量变化ΔK
1’ 1
2 2’
1’
uur uur uur K K 1'-2' K 1-2
2 1
2
1
在恒定总流中,取一流段
进行研究,如图所示,分析
其运动的变化。把这块流体
加以放大,便于分析。
1 1
2 2
A1 1
u1
dA1
1
A2 2
u2 2 dA2
1 1
2 2
1’ 1
2 2’
1’ 1
2
2’
经过时间Δt 后,流体从1-2运动至1’- 2’
1’ 1
2 2’
1’ 1
2
2’
经过时间Δt 后,流体从1-2运动至1’- 2’
1
for auKurs1'-t2e' auKdury2-2f'louKwur1':-2
t+dt
K 1'uKur21-(2tuKurd1-t1')uKur1K'-2 1'2 (t )
2
2’
t
uur uur uur
uur uur uur uur uur uur
K K 1'-2' K 1-2 = K 2-2' K 1'-2 K 1-1' K 1'-2= K 2-2' K 1-1'
3.5 实际液体恒定总流的动量方程
3.5.1 动量方程的推导 3.5.2 动量方程的意义 3.5.3 解题要点 3.5.4 动量方程的应用
θ
水利工程中经常遇到求解作用力的问题, 如平面弯管要求知道制作镇墩的作用力
1 z
1 Δz
2 立面弯管要求知道 固定弯管的作用力 O
2 x
1
h
v1
Q
1
2
Q
v2 ht
dt 时间内水流动量变化ΔK
1’ 1
2 2’
uur uur uur K K 1'-2' K 1-2
uur uur uur K 1'-2' K 1'-2 K 2-2' uur uur uur K 1-2 K 1-1' K 1'-2
1’ 1
2
2’
uur uur uur
uur uur uur uur uur uur
dQ d t u
1’ 1
u1dt
udAdt u
uudAdt
2 2’ A2
u2
2 2’
u2dt dA2
dt 时间内水流动量的变化
1’ 1
A1
u1
1’
dA1
1
for an entirebody :
u1dt
K uudAdt dt uudA
A
A
2 2’ A2
u2
2 2’
u2dt dA2
u2dt dA2
uur
uur
uur
K 11' u1u1dtdA1 dt u1u1dA1
A1
A1
uur
uur
uur
K 22' u2u2dtdA2 dt u2u2 d A2
A2
A2
因为断面上的流速分布一般 不知道,所以上述积分不能完成。 如何解决这个积分问题?
用断面平均流速代替 点流速分布,造成的误差 用一个动量修正系数 (常 系数)修正,则
dt 时间内水流动量的变化
1’ 1
A1
u1
1’
dA1
1
K K 22' K 1‘1
uur
uur
uur u1dt
K 11' u1u1dtdA1 dt u1u1dA1
uur
A1 uur
A1 uur
K 22' u2u2dtdA2 dt u2u2dA2
A2
A2
2 2’ A2
u2
2 2’
dt 时间内水流动量的变化
1’
1
A1
u1
2 2’
A2
u2
1’
2 2’
dA1
1
uur uur uur K K 1'-2' K 1-2
uur uur uur K 1'-2' K 2-2' K 1'-2 uur uur uur K 1-2 K 1-1' K 1'-2
u1dt
u2dt
dA2
uur uur uur
3 流体动力学理论基础
3.1 描述液体运动的两种方法 3.2 流体运动的基本概念 3.3 恒定总流的连续方程 3.4 恒定总流的能量方程 3.5 恒定总流的动量方程
3.5 实际液体恒定总流的动量方程
3.5.1 动量方程的推导 3.5.2 动量方程的意义 3.5.3 解题要点 3.5.4 动量方程的应用
uur uur uur uur uur uur
K K 1'-2' K 1-2 = K 2-2' K 1'-2 K 1-1' K = 1'-2 K 2-2' K 1-1'
dt 时间内水流动量的变化
1’ 1
A1
u1
for an infinitelysmall body :
K mu
dA1 V u
A1
K dt uudA Q vdt
A
u1u1dA1
1 A1
v1Q
for a gradually variedflow
u1u1dA1
A1
v1Q
u2u2dA2
2 A2
for a gradually variedflow
u2u2dA2
A2
ur
uur
ur
ur
K 1-1' dt u1u1dA1 Q11v1dt Q1v1dt
2
溢流坝要进行稳定性校核
y O
v
1
1
0
R
x
v0
0 射流对墙壁的作用力
2
2
v
作用力与物理学上什么定律有关呢?
由物理学、理论力学可知质点系的动量定律: 质点系的动量在某个方向的变化,等于作用在质 点系上所有外力的冲量在同一方向投影的代数和。
依据这个原理,推求液体 运动的动量变化规律。
在恒定总流中,取一流段进 行研究,如下图所示,分析其 运动的变化。
K 1-1' dt u1u1dA1
A1
dt (1v1 )u1dA1
A1
dt1 v1 u1dA1
A1
dt1 v1Q1
Q11 v1dt
in thesameway :
K 1-1' dt u1u1dA1 Q11 v1dt Q1 v1dt
A1
K 2-2' dt u2u2dA2 Q2 2 v2dt Q 2 v2dt
K K 1'-2' K 1-2 = K 2-2' K 1'-2 K 1-1' K = 1'-2 K 2-2' K 1-1'
dt 时间内水流动量变化ΔK
1’ 1
2 2’
uur uur uur K K 1'-2' K 1-2
uur uur uur K 1'-2' K 2-2' K 1'-2 uur uur uur K 1-2 K 1-1' K 1'-2
相关文档
最新文档