CAN总线应用电路

合集下载

CAN总线简介(2024版)

CAN总线简介(2024版)
目前汽车上的网络连接方式主要采用2条CAN, 一条用于驱动系统的高速CAN,速率达到500kb/s; 另一条用于车身系统的低速CAN,速率是100kb/s。
驱动系统的高速CAN
• 驱动系统CAN主要连接对象是发动机控制器 (ECU)、ABS控制器、安全气囊控制器、 组合仪表等等,它们的基本特征相同,都是 控制与汽车行驶直接相关的系统。
倍。这种传统布线方法不能适应汽车的发展。CAN总线可有效减少线束,节省空间。
例如某车门-后视镜、摇窗机、门锁控制等的传统布线需要20-30 根,应用总线 CAN 则
只需要 2 根。(3)关联控制在一定事故下,需要对各ECU进行关联控制,而这是传统
汽车控制方法难以完成的表1 汽车部分电控单元数据发送、接受情况
• (5)直接通信距离最远可达10km(速率5Kbps以下)。
• (6)通信速率最高可达1MB/s(此时距离最长40m)。
• (7)节点数实际可达110个。
• (8)采用短帧结构,每一帧的有效字节数为8个。
• (9)每帧信息都有CRC校验及其他检错措施,数据出错 率极低。
• (10)通信介质可采用双绞线,同轴电缆和光导纤维,一 般采用廉价的双绞线即可,无特殊要求。
可靠性高:传输故障(不论是由内部还是外部引起 的)应能准确识别出来 使用方便:如果某一控制单元出现故障,其余系统 应尽可能保持原有功能,以便进行信息交换 数据密度大:所有控制单元在任一瞬时的信息状态 均相同,这样就使得两控制单元之间不会有数据偏 差。如果系统的某一处有故障,那么总线上所有连 接的元件都会得到通知。 数据传输快:连成网络的各元件之间的数据交换速 率必须很快,这样才能满足实时要求。
• (2)网络上的节点(信息)可分成不同的优先级,可以满 足不同的实时要求。

can通讯接口电路原理

can通讯接口电路原理

can通讯接口电路原理
CAN(Controller Area Network)通信接口电路原理是一种常
用的串行通信协议,用于在汽车电子系统以及其他工业控制领域中进行数据传输和通信。

其原理如下:
1. 差分信号传输:CAN通信使用差分信号传输,即同时传输
两个信号(CAN_L和CAN_H),分别代表0和1的状态。

这种差分信号传输可以有效地抵抗电磁干扰和噪声,提高通信的可靠性。

2. 线路结构:CAN通信采用双线结构,即CAN_H和CAN_L
两根线,分别用于数据传输和信号接收。

CAN总线上可以连
接多个节点,形成一个总线网络。

3. 帧格式:数据传输使用帧格式,每个帧包含一个标识符、数据、控制域和错误校验码。

标识符用于识别不同的数据包,数据用于传输实际的信息,控制域用于描述帧的类型和数据长度,错误校验码用于检测数据传输的正确性。

4. 碰撞检测:当多个节点同时发送数据时,可能发生碰撞,会导致数据传输错误。

CAN通信使用了非阻塞的仲裁机制,通
过在传输过程中不断检测总线上的信号来解决碰撞问题,高优先级的节点可以在传输过程中抢占总线。

5. 错误检测和纠正:CAN通信使用了CRC(循环冗余校验)
来检测和纠正错误。

每个节点在接收到数据后会进行CRC校验,如果数据错误,则会进行重传。

综上所述,CAN通信接口电路实现了差分信号传输、双线结构、帧格式、碰撞检测和仲裁机制以及错误检测和纠正功能,从而实现了可靠的数据传输和通信。

(完整)CAN总线及应用实例

(完整)CAN总线及应用实例

CAN总线及应用实例(1)CAN特点●CAN为多主方式工作,网络上任意智能节点均可在任意时刻主动向网络上其他节点发送信息,而不分主从,且无需站地址等节点信息,通信方式灵活。

利用这特点可方便地构成多机备份系统。

●CAN网络上の节点信息分成不同の优先级(报文有2032种优先权),可满足不同の实时要求,高优先级の数据最多可在134,us内得到传输。

●CAN采用非破坏性总线仲裁技术,当多个节点同时向总线发送信息时,优先级较低の节点会主动地退出发送,大大节省了总线冲突仲裁时间.●CAN只需通过报文滤波即可实现点对点、一点对多点及全局广播等几种方式收发数据,无需专门“调度”.●CANの直接通信距离最远可达l 0km(速率5kbp以下):通信速率最高可达Mbps(此时通信距离最长为40m)。

●CAN上の节点数主要取决于总线驱动电路,目前可达110个;报文标识符可达2032种(CAN2.0A),而扩展(CAN2.0B)の报文标识符几乎不受限制.(2)CAN总线协议CAN协议以国际标准化组织の开放性互连模型为参照,规定了物理层、传输层和对象层,实际上相当于ISO网络层次模型中の物理层和数据链路层。

图3.9 为CAN总线网络层次结构,发送过程中,数据、数据标识符及数据长度,加上必要の总线控制信号形成串行の数据流,发送到串行总线上,接收方再对数据流进行分析,从中提取有效の数据。

CAN协议の一个最大特点是废除了传统の站地址编码,而代之以对通信数据块进行编码,数据在网络上通过广播方式发送。

其优点是可使网络内の节点个数在理论上不受限制(实际中受网络硬件の电气特性限制),还可使同一个通信数据块同时被不同の节点接收,这在分布式控制系统中非常有用。

CAN 2。

0A版本规定标准CANの标识符长度为11位,同时在2.0 B版本中又补充规定了标识符长度为29位の扩展格式,因此理论上可以定义2の11次方或2の19次方种不同の数据块。

遵循CAN 2.0 B协议のCAN控制器可以发送和接收标准格式报文(11位标识符)或扩展格式报文(29位标识符),如果禁止CAN 2.0B 则CAN控制器只能发送和接收标准格式报文而忽略扩展格式の报文,但不会出现错误。

can 总线浪涌设计电路

can 总线浪涌设计电路

can 总线浪涌设计电路1.引言在撰写过程中,请注意确保文字流畅、逻辑清晰。

以下是对1.1 概述部分的内容进行编写的一种方式:总线浪涌是指在电子设备中,当电压或电流的突变引起的瞬态现象。

这种突变可以由许多原因引起,例如电源开关、电感自感或电容电压增加等。

总线浪涌的问题可能严重影响电子设备的性能和稳定性,并导致设备损坏或短时间内失效。

为了解决总线浪涌带来的问题,设计总线浪涌设计电路是至关重要的。

这些电路可以有效地抑制或限制总线浪涌的干扰,使系统在面临这种电压或电流突变时能够正常工作,并保证设备的可靠性和稳定性。

本文将从总线浪涌的定义和原因开始,探讨总线浪涌带来的问题,并重点介绍总线浪涌设计电路的重要性及其方法和建议。

通过分析总线浪涌设计电路的相关知识,读者将理解为什么需要采取相应的措施来应对总线浪涌,并了解如何设计一个高效可靠的总线浪涌设计电路。

在接下来的章节中,我们将逐步揭示总线浪涌的本质和机制,并深入分析总线浪涌设计电路面临的挑战和解决方案。

通过加深对总线浪涌设计电路的了解,读者将能够应用所学知识,提出并实施适用于不同场景的总线浪涌设计电路。

通过本文的阅读,希望读者能够深入理解总线浪涌设计电路的意义和重要性,并掌握相应的设计方法和建议。

最终,读者将能够为电子设备提供强大的保护,确保设备在总线浪涌的环境中依然能够可靠地运行。

1.2文章结构1.2 文章结构本文共分为三个部分:引言、正文和结论。

在引言部分,首先对总线浪涌设计电路的概述进行介绍。

接着,详细说明了本文的结构和目的。

正文部分包括两个小节。

首先,我们将定义和阐述总线浪涌的概念,并解释产生总线浪涌的原因。

其次,我们将讨论总线浪涌给系统带来的问题,包括其对设备的损坏和数据传输的故障等方面进行阐述。

在结论部分,我们将总结总线浪涌设计电路的重要性,强调了在电路设计中应重视总线浪涌的防护。

最后,我们将提出一些总线浪涌设计电路的方法和建议,以帮助读者更好地应对总线浪涌问题。

can总线接口电路设计

can总线接口电路设计

can总线接口电路设计Can总线是一种用于车辆电子系统中的通信接口,它在汽车电子技术中起着至关重要的作用。

本文将围绕Can总线接口电路的设计展开讨论。

Can总线是Controller Area Network的缩写,它是一种串行通信协议,旨在提供高可靠性、实时性和高带宽的数据通信。

Can总线接口电路的设计是为了实现Can总线与其他电子设备的连接和数据传输。

我们需要考虑Can总线的物理层接口电路。

Can总线使用差分信号传输,因此需要设计差分发送器和差分接收器。

差分发送器将逻辑高和逻辑低分别转换为正向和负向的差分信号,而差分接收器则将差分信号还原为逻辑高和逻辑低。

这样的设计可以提高信号的抗干扰能力,保证数据的可靠传输。

我们需要考虑Can总线的协议层接口电路。

Can总线采用帧格式进行数据传输,因此需要设计帧格式解析器和帧格式生成器。

帧格式解析器用于解析接收到的帧数据,提取出其中的控制信息和数据信息。

而帧格式生成器则用于生成符合Can总线协议的帧数据,并将其发送出去。

这样的设计可以保证数据的正确解析和生成,实现与其他设备的有效通信。

除了物理层和协议层接口电路,Can总线接口电路还需要考虑其他功能模块。

例如,需要设计时钟模块来提供时钟信号,以保证数据传输的同步性。

同时,还需要设计中断模块来处理Can总线接收到的中断信号,及时响应和处理来自其他设备的请求。

在Can总线接口电路的设计中,还需要考虑电路的功耗和成本。

可以采用低功耗的设计方案,选择低功耗的器件和电源管理电路,以降低整个系统的功耗。

同时,还需要根据实际的应用需求选择适当的元器件和电路结构,以降低系统成本。

Can总线接口电路的设计是为了实现Can总线与其他电子设备的连接和数据传输。

它涉及到物理层接口电路、协议层接口电路以及其他功能模块的设计。

在设计过程中,需要考虑信号的抗干扰能力、数据的可靠传输、接口的兼容性、功耗的控制以及成本的降低等因素。

通过合理的设计和选型,可以实现高可靠性、实时性和高带宽的数据通信,进而提升车辆电子系统的性能和功能。

CAN总线通信典型电路原理图

CAN总线通信典型电路原理图

CAN总线通信典型电路原理图(四款CAN总线通信电路原理图分享)CAN总线通信典型电路原理图(一)CAN总线通信硬件原理图(采用TJA1050T CAN总线驱动器)F040中内置CAN总线协议控制器,只要外接总线驱动芯片和适当的抗干扰电路就可以很方便地建立一个CAN总线智能测控节点。

本设计中采用PHILIP公司的TJA1050T CAN总线驱动器。

CAN总线通信硬件原理图如图3所示。

图中F040 的CAN信号接收引脚RX和发送引脚TX并不直接连接到TJA1050T的RXD和TXD端,而是经由高速光耦6N137进行连接,这样做的目的是为了实现CAN总线各节点的电气隔离。

为了实现真正意义上完全的电气隔离,光耦部分的VA和VB必须通过DC-DC模块或者是带有多个隔离输出的开关电源模块进行隔离。

为防止过流冲击,TJA1050T的CANH和CANL引脚各通过一个5的电阻连接到总线上。

并在CANH和CANL脚与地之间并联2个30P的电容,用于滤除总线上高频干扰。

而防雷击管D1和D2可以起到发生瞬变干扰时的保护作用。

TJA1050T的8脚连接到F040的一个端口用于模式选择,TJA1050T有两种工作模式用于选择,高速模式和静音模式。

TJA1050T正常工作在高速模式,而在静音模式下,TJA1050T的发送器被...CAN总线通信硬件原理图(采用TJA1050T CAN总线驱CAN总线通信硬件原理图(采用TJA1050T CAN总线驱动器) F040中内置CAN总线协议控制器,只要外接总线驱动芯片和适当的抗干扰电路就可以很方便地建立一个CAN总线智能测控节点。

本设计中采用PHILIP公司的TJA1050T CAN总线驱动器。

CAN总线通信硬件原理图如图3所示。

图中F040 的CAN信号接收引脚RX和发送引脚TX并不直接连接到TJA1050T的RXD和TXD端,而是经由高速光耦6N137进行连接,这样做的目的是为了实现CAN总线各节点的电气隔离。

can总线电路设计

can总线电路设计

can总线电路设计摘要:1.CAN 总线电路设计概述2.CAN 总线电路的组成部分3.CAN 总线电路的设计流程4.CAN 总线电路的常见问题及解决方法5.总结正文:一、CAN 总线电路设计概述CAN 总线(Controller Area Network)是一种常用于车辆和工业控制领域的通信协议,其主要特点是多主控制器、高可靠性、实时性、高抗干扰能力和低成本。

CAN 总线电路设计是指在硬件层面实现CAN 总线通信的过程,主要包括CAN 控制器、CAN 总线驱动器、CAN 总线收发器等组成部分。

二、CAN 总线电路的组成部分1.CAN 控制器:CAN 控制器是CAN 总线电路的核心部分,负责处理CAN 总线通信的逻辑和数据传输。

常见的CAN 控制器有Microchip 的MCP2510、STMicroelectronics 的STM32 等。

2.CAN 总线驱动器:CAN 总线驱动器负责将CAN 控制器输出的信号转换为适合在总线上传输的信号,同时也能将总线上的信号转换为CAN 控制器能识别的信号。

常见的CAN 总线驱动器有TJA1020、MCP2003 等。

3.CAN 总线收发器:CAN 总线收发器负责处理CAN 总线上的物理层通信,包括信号的放大、整形、滤波等功能。

常见的CAN 总线收发器有MCP2020、TJA1021 等。

三、CAN 总线电路的设计流程1.确定设计需求:根据实际应用需求,确定CAN 总线通信的节点数量、通信速率、传输距离等参数。

2.选择合适的CAN 控制器、驱动器和收发器:根据设计需求,选择性能、接口、封装等满足需求的CAN 控制器、驱动器和收发器。

3.电路设计:设计CAN 总线电路的电源、时钟、接地等部分,同时根据CAN 控制器、驱动器和收发器的接口,设计相应的连接线路。

4.程序设计:编写CAN 总线通信的软件程序,包括初始化CAN 控制器、发送和接收数据、错误检测和处理等功能。

can总线接口电路设计

can总线接口电路设计

can总线接口电路设计Can总线接口电路设计一、引言Can总线是一种常用的串行通信协议,广泛应用于汽车电子、工业自动化等领域。

Can总线接口电路的设计是实现Can总线通信的关键。

本文将从Can总线的基本原理、Can总线接口电路的设计要点以及常见的设计方案等方面进行探讨。

二、Can总线的基本原理Can总线是一种多主机、多节点的串行通信协议,采用差分信号传输方式。

其基本原理包括以下几个方面:1. 差分信号传输:Can总线采用两条线分别传输正负两个信号,通过差分电压来传递信息。

这种差分传输方式具有抗干扰能力强、传输距离远等优点。

2. 冲突检测与容错机制:Can总线采用冲突检测与容错机制,可以在多个节点同时发送数据时进行冲突检测,并通过优先级来解决冲突,确保数据传输的可靠性。

3. 高速传输:Can总线的通信速率可以达到几百kbps甚至几Mbps,能够满足高速数据传输的需求。

三、Can总线接口电路的设计要点Can总线接口电路的设计要考虑以下几个方面:1. 差分信号传输:Can总线的接口电路应保证正负两个信号的差分电压,一般通过差分放大器或差分驱动器来实现。

2. 抗干扰能力:Can总线在工业环境中应用广泛,接口电路应具备良好的抗干扰能力,包括抑制共模干扰、抑制电磁干扰等。

3. 高速传输:Can总线的通信速率较高,接口电路应具备足够的带宽和响应速度,以满足高速传输的需求。

4. 电源稳定性:Can总线接口电路对电源的稳定性要求较高,应采取合适的电源滤波和稳压措施,以确保电源的可靠性和稳定性。

5. 保护电路设计:Can总线接口电路应具备过压保护、过流保护等保护电路,以防止外部干扰对接口电路和总线的损坏。

四、常见的Can总线接口电路设计方案根据应用需求和成本考虑,常见的Can总线接口电路设计方案包括以下几种:1. 集成电路方案:使用Can总线收发器芯片,如TI的SN65HVD230等,通过将芯片与控制器进行连接,实现Can总线的收发功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

涡流量计CAN总线接口电路图
快速瓶劲识别-更好的负载测试方法
CAN总线是一种串行数据通信协议,在CAN总线通信接口中集成了CAN协议的物理层和数据链路层功能,可以完成对通信数据成帧处理。

涡流量计CAN总线接口的具体电路如图1所示。

笔者用SJA1000作为流量计的CAN控制器,与CPU(单片机)的I/O口直接相连,再通过PCA82C250组成CAN总线。

这种结构很容易实现CAN网络节点中的信息收发,从而实现对现场的控制。

SJA1000的AD0~AD7连接到MSP420F149的P0口,INT接到P1.0,/CS接到P1.1,/RD连接到P1.2,/WR连到P1.3,ALE连到P1.4,SJA1000的RX0与TX0分别通过两个高速光耦CNW137与PCA82C250相连后,连到CAN总线上。

PCA82C250为CAN总线收发器,是CAN控制器与CAN总线的接口器件,对CAN 总线差分方式发送,其RS引脚用于选择PCA82C250的工作方式:高速方式、斜率方式。

RS接地为高速,RS引脚串接一个电阻后再接地,用于控制上升和下降斜率,从而减小射频干扰。

RS引脚接高电平,PCA82C250处于等待状态。

此时,发送器关闭,接收器处于低电流工作,可以对CAN总线上的显性位做出反应,通知CPU。

实验数据表明15~200K 为较理想的取值范围,在这种情况下,可以使用平行线或双绞线作总线,本文中PCA82C250的斜率电阻为取30K。

CNW137为高速光耦,最高速度为10Mbps,用于保护CAN总控制器SJA1000。

CAN 总线的终端匹配电阻起相当重要的作用,不合适的电阻会使数据通信的抗干扰性及可靠性大大降低,甚至无法通信,范围为108~132Ω,本文使用的电阻为124Ω。

SJA1000的功能简介
CAN通信协议主要由CAN控制器完成。

SJA1000是适用于汽车和一般工业环境控制器局域网(CAN)的高集成度独立控制器,具有完成高性能通信协议所要求的全部必要特性,具有简单总线连接的SJA1000可完成物理层和数据链路层的所有功能,应用层功能可由微控制器完成,SJA1000为其提供了一个多用途的接口。

SJA1000是一个独立的CAN控制器,它是Philips公司另一个CAN控制器PCA82C200的后继产品,在软件和引脚上均与PCA82C200兼容。

但它不仅仅是PCA82C200的一个简单替代产品,它增加了许多新的功能,使得其性能更佳,尤其适用于对系统优化、诊断和维护要求比较高的场合。

SJA1000的功能框图如图2所示,由以下几部分构成:接口管理逻辑;发送缓冲器,能够存储1个完整的报文(扩展的或标准的);验收滤波器;接收FIFO;CAN核心模块。

82C250功能简介
SJA1000的一端与单片机相连,另一端与CAN总线相连。

但是,为了提高单片机对CAN总线的驱动能力,可以把82C250作为CAN控制器和物理总线间的接口,以提供对总线的差动发送能力和对CAN控制器的差动接收能力。

82C250的主要特性如下:·与ISO/DIS11898标准兼容;
·高速(最高可达1Mb/s);
·具有抗汽车环境下的瞬间干扰和保护总线能力;
·降低射频干扰的斜率控制;
·热保护;
·防护电池与地之间发生短路;
·低电流待机方式;
·某个节点掉电不会影响总线;
·可有110个节点相连接。

基于TMS320LF2407和SN65HVD230的CAN总线接口电路图
硬件设计使用了TI公司的TMS320LF2407的DSP芯片,其CAN总线接口的硬件电路如图1所示。

一般在CA N控制器和物理总线间采用82C250驱动芯片,提供对总线的差动发送和接收功能。

但是因为82C250为5V 供电,而F2407采用3.3V供电,两芯片间需要电平转换电路。

我们选用了只需3.3V供电的CAN总线收发
驱动芯片SN65HVD230。

相关文档
最新文档