14224考研数学三经济学应用考点分析190402

合集下载

数学三考研知识点总结

数学三考研知识点总结

数学三考研知识点总结一、数学分析1. 集合与映射集合的基本概念,包括子集、并集、交集、补集等;映射的定义和性质,包括单射、满射、双射等。

2. 数列与级数数列的概念,包括常数数列、等差数列、等比数列等;级数的概念,包括收敛级数、发散级数等。

3. 函数与极限函数的定义和性质,包括连续函数、可导函数等;极限的概念,包括极限存在的条件、极限运算法则等。

4. 一元函数微分学导数的定义和性质,包括高阶导数、隐函数求导等;微分的概念和应用,包括微分中值定理、泰勒公式等。

5. 一元函数积分学不定积分的计算方法,包括分部积分、换元积分等;定积分的计算方法,包括定积分的几何意义、定积分的性质等。

6. 定积分的应用定积分在几何、物理等领域的应用,包括求曲线长度、曲线面积、体积等问题。

7. 多元函数微分学偏导数的概念和性质,包括高阶偏导数、全微分等;多元函数的极值和条件极值的判定。

8. 重积分重积分的定义和性质,包括累次积分、极坐标系下的重积分等;重积分的应用,包括质量、质心、转动惯量等问题。

9. 曲线积分与曲面积分曲线积分的概念和计算方法,包括第一类曲线积分和第二类曲线积分;曲面积分的概念和计算方法,包括第一类曲面积分和第二类曲面积分。

10. 常微分方程常微分方程的基本概念,包括初值问题、兼切性、自由度等;常微分方程的解法,包括特征方程法、常数变易法、常系数高阶线性齐次微分方程的特解法等。

11. 泛函分析线性空间和内积空间的定义和性质,包括线性子空间、正交投影等;巴拿赫空间和希尔伯特空间的概念和性质。

12. 牛顿-莱布尼茨公式牛顿-莱布尼茨公式的推导和应用,包括用它来求定积分、用它来求极限等。

二、代数与数论1. 线性代数线性代数的基本概念,包括向量空间、线性变换、矩阵等;线性方程组的解法,包括高斯消元法、矩阵的秩等。

2. 群论群的定义和性质,包括子群、正规子群、循环群等;群的同态映射和同构定理。

3. 环论环的定义和性质,包括理想、素理想、商环等;整环、域的概念和性质。

考研数三经济部分

考研数三经济部分

第十三章 微积分在经济学中的经济应用 (数三)《考试要求》1. 掌握导数的经济意义(含边际与弹性的概念)。

2. 了解差分与差分方程及其通解与特解等概念。

3. 掌握一阶常系数线性差分方程的求解方法。

4. 会应用一阶差分方程、极限、级数等知识求解简单的经济应用问题。

一、.极限及级数在经济学中的应用(一)复利:设某银行年利率为r ,初始存款为0A 元,(1)一年支付一次利息(称为年复利),则t 年后在银行的存款余额为()t 01tA A r =+; (2)若一年支付n 次,则t 年后在银行的存款余额为0(1)rnt A A t n =+;(3)由于lim [(1)]nrrt rt r e n n +=→∞,所以当每年支付次数趋于无穷时,t 年后得到的存款余额为0rtt A A e =,称为t 年后按连续复利计算得到的存款余额。

(二)将来值与现值:上述结论中,称t A 是0A 的将来值,而0A 是t A 的现值。

现值与将来值的关系为:0(1)t t A A r =+ ⇔0(1)t t A A r -=+ 或 0(1)t t A A r =+ ⇔0(1)tt A A r -=+例 1 现购买一栋别墅价值300万元, 若首付50万元, 以后分期付款, 每年付款数目相同, 10年付清,年利率 为6%, 按连续复利计算, 问每年应付款多少?r ,并依年复利计算,某基金会希望通过存款例2(08)设银行存款的年利率为0.05A万元,实现第一年提取19万元,第二年提取28万元,…,第n年提取(10+9n)万元,并能按此规律一直提取下去,问A至少应为多少万元?、二. 经济学中的常用函数需求函数:()Q Q P =, 通常()Q Q P =是P 的减函数; 供给函数:()Q Q P =, 通常()Q Q P =是P 的增函数;成本函数:01()()C Q C C Q =+, 其中0(0)C C =为固定成本, 1()C Q 为可变成本; 收益函数:R PQ =;利润函数:()()()L Q R Q C Q =-.例 1 某厂家生产的一种产品同时在两个市场销售, 售价分别为1p 和2p , 销售量分别为1q 和2q , 需求函数分别为112402q p =-, 22100.05q p =-, 总成本函数为123540()C q q =++, 试问:厂家如何确定两个市场的售价, 能使其获得的总利润最大?最大的总利润为多少?例 2(99)设生产某种产品必须投入两种要素, 1x 和2x 分别为两种要素的投入量, Q 为产出量;若生产函数为122Q x x αβ=, 其中,αβ为正常数, 且1αβ+=, 假设两种要素的价格分别为1p 和2p 试问:当产出量为12时, 两要素各投入多少可以使得投入总费用最小?解 需要在产出量12212x x αβ=的条件下, 求总费用1122p x p x +的最小值, 为此作拉格朗日函数12112212(,,)(122)F x x p x p x x x αβλλ=++-.11121121221220,(1)20,(2)1220.(3)F p x x x F p x x x F x x αβαβαβλαλβλ--∂⎧=-=⎪∂⎪∂⎪=-=⎨∂⎪⎪∂=-=⎪∂⎩ 由(1)和(2), 得 1221216(),()p p x x p p αββααβ==;因驻点唯一, 且实际问题存在最小值, 故当211212(),6()p p x x p p βααββα==时, 投入总费用最小.三. 利用导数求解经济应用问题(一)、边际量:当某经济量()y y x =的自变量x 增加一个单位时经济量的改变量称为该经济量的边际量, 如边际成本、边际收益、边际利润等, 由于(1)()()y x y x y x '+-≈, 且对于大数而言, 一个单位可以看成是微小的, 习惯上将()y x '视为()y y x =的边际量.1、 定义 : 设()y f x =或(),y f x t =,则称dy dx 或y x∂∂为y 关于x 的边际函数。

2024年考研数学三大纲重点解析

2024年考研数学三大纲重点解析

2024年考研数学三大纲重点解析考研数学三作为经济管理类专业研究生入学考试的重要科目之一,对于考生的数学素养和解题能力有着较高的要求。

2024 年的考研数学三大纲在延续以往基本框架的基础上,也有一些重点的调整和变化。

为了帮助广大考生更好地把握复习方向,提高复习效率,下面对 2024 年考研数学三大纲的重点进行详细解析。

一、微积分微积分部分一直是考研数学三的重点和难点,占据了较大的分值比例。

(一)函数、极限、连续函数的概念和性质,包括定义域、值域、单调性、奇偶性等,仍然是基础中的基础。

极限的计算方法,如四则运算、等价无穷小替换、洛必达法则等,需要熟练掌握。

连续的概念以及间断点的类型判断也是常见的考点。

(二)一元函数微分学导数的定义、几何意义以及基本初等函数的导数公式要牢记于心。

导数的应用,如函数的单调性和极值、凹凸性和拐点,是重点考查的内容。

此外,中值定理也是一个难点,包括罗尔定理、拉格朗日中值定理和柯西中值定理,需要理解其定理的条件和结论,并能够熟练运用。

(三)一元函数积分学不定积分和定积分的计算是必考的知识点,要掌握换元积分法和分部积分法。

定积分的应用,如求平面图形的面积、旋转体的体积、弧长等,需要结合几何图形进行分析和计算。

(四)多元函数微积分学多元函数的偏导数和全微分的计算,复合函数和隐函数的求导法则要熟练掌握。

多元函数极值和条件极值的求法,以及二重积分的计算方法,都是重点考查的内容。

二、线性代数线性代数部分在考研数学三中的分值比例相对稳定。

(一)行列式行列式的性质和计算方法是基础,要能够熟练计算二阶和三阶行列式,以及利用行列式的性质化简行列式。

(二)矩阵矩阵的运算,包括加法、乘法、数乘和转置,要熟练掌握。

矩阵的秩的概念和求法,以及逆矩阵的存在条件和求法,是重点内容。

此外,分块矩阵的运算和应用也是一个考点。

(三)向量向量组的线性相关性和线性表示是重点,要能够判断向量组的线性相关性,并求出向量组的极大线性无关组。

2024数三考研大纲

2024数三考研大纲

2024数三考研大纲
2024年考研数学三大纲包括实变函数、多元函数微积分学、常微分方程等
内容。

以下是相关知识点的大致描述:
实变函数:这部分主要涉及实数系、收敛性、连续性、可微性以及积分学的基本定理等。

多元函数微积分学:这包括多元函数的微分学、积分学,以及曲线与曲面积分、向量场及其应用等内容。

常微分方程:这涉及常微分方程的基础理论,如一阶线性微分方程的解法等。

概率论与数理统计:这部分要求理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等。

具体来说,数三的考试难度是相当高的,对知识点的深度和广度要求都很高。

为了有效地准备数学三的考试,建议考生系统地学习和掌握大纲中列出的知识点,同时进行大量的练习和模拟考试,以提高解题能力和应试技巧。

以上信息仅供参考,具体考试内容和难度可能会因地区和院校的不同而有所差异。

建议考生在备考过程中,仔细阅读考试大纲,了解考试要求和内容,制定合理的备考计划。

考研数学三知识点整理

考研数学三知识点整理

考研数学三知识点整理一、数学分析1.极限与连续-无穷小量与无穷大量-函数极限的定义和性质-极限运算的基本法则-函数连续的定义和性质-邻域及其性质-间断点的分类-初等函数的连续性2.一元函数微分学-导数的定义和性质-导数的几何意义-凹凸性与拐点-微分中值定理-泰勒公式及其应用-常用高阶导数的计算3.一元函数积分学-普通函数的不定积分-定积分与不定积分的关系-牛顿—莱布尼茨公式-反常积分的概念和性质-反常积分的审敛法-定积分的应用4.多元函数微分学-多元函数的极限与连续-偏导数的定义和性质-方向导数和梯度-隐函数的求导-全微分和全导数-多元函数的泰勒公式5.曲线积分与曲面积分-第一类曲线积分-第二类曲线积分-曲面积分的概念和性质-曲面积分的计算方法-散度和旋度的概念及计算二、高等代数1.行列式与矩阵-行列式的定义和性质-行列式的计算方法-矩阵的概念和运算-矩阵的秩和逆-矩阵的特征值和特征向量-对称矩阵和正定矩阵2.线性方程组与向量空间-线性方程组的解的结构-线性方程组的常用解法-向量空间的概念和性质-线性相关性和线性无关性-线性方程组与矩阵的关系-矩阵的秩与线性方程组的解3.线性变换与矩阵的相似-线性变换的概念和性质-线性变换的矩阵表示和标准形-矩阵的相似和对角化-幂零矩阵和对角化的条件-线性变换的特征值和特征子空间-正交矩阵和对称矩阵4.线性空间与线性变换-线性空间的定义和性质-基与维数-有限维线性空间的同构-线性变换的矩阵表示-基变换和坐标变换矩阵-初等变换和矩阵的相似5.内积空间-内积与内积空间的定义和性质-正交与正交补-角和长度的内积表示-柯西—施瓦茨不等式和三角不等式-格拉姆—斯密特正交化方法-正交投影和最小二乘逼近三、概率论1.随机事件与概率-随机事件和样本空间-随机事件的运算和性质-概率的定义和性质-条件概率与乘法定理-全概率公式与贝叶斯公式2.随机变量与概率分布-随机变量的概念和分类-分布函数和概率密度函数-离散型随机变量与连续型随机变量-随机变量函数的概率分布-重要离散型和连续型分布-数学期望和方差的定义和性质3.多维随机变量及其分布-多维随机变量的联合分布-边缘分布和条件分布-随机变量的独立性-随机变量函数的分布-重要的二维和多维分布-列联表和卡方检验4.随机变量的数字特征-几个重要的数字特征-方差和标准差-协方差和相关系数-强大数定律与中心极限定理-大数定律和极限定理-泊松定理和辛钦定理5.数理统计基础-总体和样本的概念-统计量及其分布-正态总体的统计推断-点估计和区间估计-参数估计的评价准则-假设检验和拒绝域以上是对考研数学三知识点的整理,内容包括数学分析、高等代数和概率论三个方面的主要知识点。

考研数学三知识点总结

考研数学三知识点总结

考研数学三知识点总结数学是考研数学教材的一种。

该教材的撰写者都是各大高校的著名数学教师,他们根据多年的教学经验,结合考研数学的特点和难点,编写了这套优秀的教材。

本教材的主要特点是明确、详尽、系统、准确。

接下来我将针对数学三的重点知识点进行总结。

一、导数与微分1.导数的定义及其性质导数的定义:设函数f(x)在x0的某邻域内有定义,若极限lim(x→x0) (f(x)-f(x0))/(x-x0)存在,则称该极限为函数f(x)在点x0处的导数。

记作f'(x0)或dy/dx|_(x=x0) 或df(x)/dx|_(x=x0),称导数的值为函数在该点处的导数值。

导数的性质:(1)可导性与连续性的关系:若函数f(x)在点x0处可导,则在x0处连续;(2)和的导数等于导数的和: (u(x)+v(x))' = u'(x)+v'(x)(3)积的导数等于导数的积: (u(x)v(x))' = u'(x)v(x)+u(x)v'(x)(4)商的导数等于导数的商: (u(x)/v(x))' = [u'(x)v(x)-u(x)v'(x)]/v^2(x)(5)复合函数的导数:(u(v))' = u'(v)v'(x)(6)反函数的导数:(y(x))'=1/(x(y))'2.微分与微分公式微分的定义:设函数f(x)在点x0处有导数,那么函数在这一点的微分为df(x) = f'(x0)dx微分公式:(1)常数微分公式:d(u) = 0(2)幂函数微分公式:d(x^n)=nx^(n-1)dx(3)指数函数微分公式:d(e^x) = e^xdx(4)对数函数微分公式:d(log_a(x)) = (1/ln(a))*1/x dx(5)三角函数微分公式:d(sin(x)) = cos(x)dx, d(cos(x)) = -sin(x)dx, d(tan(x)) = sec^2(x)dx(6)反三角函数微分公式:d(arcsin(x)) = dx/sqrt(1-x^2),d(arccos(x)) = -dx/sqrt(1-x^2), d(arctan(x)) = dx/(1+x^2)(7)反函数的微分:若y=f(x)是可导函数,x=g(y)是其反函数,且在x0处可导,则有dx/dy = 1/dy/dx二、积分与不定积分1.不定积分的概念与性质不定积分的定义:设函数F(x)在区间[a,b]上有原函数f(x),则F(x)是f(x)在区间[a,b]上的不定积分,记作F(x) = ∫ f(x)dx不定积分的性质:(1)线性性质:∫(k*f(x)+g(x))dx = k*∫f(x)dx+∫g(x)dx(2)积分与导数的关系:若f(x)在[a,b]上连续,则∫f(x)dx在[a,b]上可导,且其导函数为f(x)(3)换元积分法:设F'(x) = f(u(x))u'(x),则∫f(u(x))u'(x)dx =∫F'(x)dx = F(x)+C(4)分部积分法:∫(u(x)v'(x))dx = u(x)v(x)-∫(u'(x)v(x))dx2.定积分与其性质定积分的定义:设函数f(x)在区间[a,b]上有界,将区间[a,b]平分成n个小区间,每个小区间长度为Δx = (b-a)/n,设ξ_i为第i个小区间中任意一点,则定积分的极限值为∫_[a]^[b] f(x)dx = lim(n→∞) ∑_[i=1]^n f(ξ_i)Δx定积分的性质:(1)定积分的线性性质:∫_[a]^[b] (k*f(x)+g(x))dx = k*∫_[a]^[b] f(x)dx + ∫_[a]^[b] g(x)dx(2)定积分的保号性:若f(x)在[a,b]上非负,则∫_[a]^[b] f(x)dx ≥ 0(3)定积分的区间可加性:∫_[a]^[b] f(x)dx + ∫_[b]^[c] f(x)dx =∫_[a]^[c] f(x)dx(4)换元积分法:∫_[a]^[b] f(u(x))u'(x)dx = ∫_[u(a)]^[u(b)] f(u)du(5)分部积分法:∫_[a]^[b] u(x)v'(x)dx = [u(x)v(x)]_[a]^[b] -∫_[a]^[b] u'(x)v(x)dx三、级数1.数项级数与部分和数项级数的定义:将给定的数列的各项按一定顺序加起来,得到的和S_n=∑_[n=1]^∞ a_n 称为数项级数的部分和。

数学3 考研经济应用题(导数和微分在经济学中的简单运用)

数学3 考研经济应用题(导数和微分在经济学中的简单运用)

导数与微分在经济中的简单应用一、边际和弹性(一)边际与边际分析边际概念是经济学中的一个重要概念,通常指经济变量的变化率,即经济函数的导数称为边际。

而利用导数研究经济变量的边际变化的方法,就是边际分析方法。

1、总成本、平均成本、边际成本总成本是生产一定量的产品所需要的成本总额,通常由固定成本和可变成本两部分构成。

用c(x)表示,其中x 表示产品的产量,c(x)表示当产量为x 时的总成本。

不生产时,x=0,这时c(x)=c(o),c(o)就是固定成本。

平均成本是平均每个单位产品的成本,若产量由x 0变化到x x ∆+0,则:xx c x x c ∆-∆+)()(00称为c(x)在)(00x x x ∆+,内的平均成本,它表示总成本函数c(x)在)(00x x x ∆+,内的平均变化率。

而x x c /)(称为平均成本函数,表示在产量为x 时平均每单位产品的成本。

例1,设有某种商品的成本函数为:x x x c 30135000)(++=其中x 表示产量(单位:吨),c(x)表示产量为x 吨时的总成本(单位:元),当产量为400吨时的总成本及平均成本分别为:(元)1080040030400135000)(400=⨯+⨯+==x x c 吨)(元/2740010800)(400===x xx c 如果产量由400吨增加到450吨,即产量增加x ∆=50吨时,相应地总成本增加量为:4.686108004.11468)400()450()(=-=-=∆c c x c 728.13504.686)()(500400==∆∆+=∆∆=∆=x x xx x c x x c 这表示产量由400吨增加到450吨时,总成本的平均变化率,即产量由400吨增加到450吨时,平均每吨增加成本13.728元。

类似地计算可得:当产量为400吨时再增加1吨,即x ∆=1时,总成本的变化为:7495.13)400()401()(=-=∆c c x c7495.1317495.13)(1400=∆∆=∆=x x x x c表示在产量为400吨时,再增加1吨产量所增加的成本。

考研数学三

考研数学三

考研数学三导论考研数学三又称为高等数学,是考研数学科目中的重要组成部分。

高等数学是基础学科,内容广泛,涉及到了微积分、数列、级数、多元函数、概率统计等多个方面。

掌握高等数学的核心概念和解题方法,对于考研数学的整体复习和解题能力提升至关重要。

本文将围绕考研数学三的主要知识点展开,解析其中的难点和重点,帮助考生在考试中取得高分。

微积分微积分是高等数学的重要内容,是研究变化中的数量的数学分支。

在考研数学三中,微积分占据了相当大的比重,主要包括导数、积分和微分方程。

导数导数是微积分中的核心概念之一,它描述了函数在某一点上的变化率。

考生在学习导数时,需要注意以下几点:•导数的定义及其基本性质:导数的定义是极限的应用,掌握导数的定义并理解其几何意义对于后续的学习至关重要。

同时,考生还需要熟练掌握导数的基本性质,如导数的四则运算和链式法则等。

•导数的几何意义:导数可以反映函数曲线的变化趋势,考生需要通过函数图像来理解导数的几何意义,如导数为正表示函数递增,导数为零表示函数的极值等。

•高阶导数:高阶导数是导数的推广,考生需要了解高阶导数的定义和计算方法,并能够应用高阶导数解决实际问题。

积分积分是微积分的另一个重要概念,它是导数的逆运算。

在考研数学三中,常见的积分包括定积分和不定积分。

•定积分:定积分是求曲线下面的面积,符号为∫,常用于求解函数的累积变化量。

考生在学习定积分时,需要熟练掌握定积分的计算方法,如换元积分法、分部积分法等,并能够应用定积分解决实际问题。

•不定积分:不定积分是求解函数的原函数,常用于解决微分方程和求函数的反函数等问题。

考生在学习不定积分时,需要熟练掌握不定积分的基本公式和计算方法,并能够灵活运用不定积分解决实际问题。

微分方程微分方程是微积分的重要应用,用于描述自然界中的变化规律。

在考研数学三中,微分方程是一个重点且难点,主要包括一阶微分方程和二阶线性常系数齐次微分方程。

•一阶微分方程:一阶微分方程是形如 dy/dx = f(x) 的方程,考生需要掌握一阶微分方程的基本概念和解法,如可分离变量方程、一阶齐次线性微分方程等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数学三经济学应用考点分析
对于全国硕士研究生数学三的考试来说,经济学应用是一个高频考点,在历年的数学三真题中经常出现,如:2001年第一(1)题,2004年第18题,2007年第5题,2009年第12题,2010年第11题,2013年第18题,2014年第9题,2015年第17题,这些经济学应用问题主要涉及到两个重要概念,一个是边际概念,一个是弹性概念,下面文都网校的数学蔡老师对这两个概念及2016年的相关真题做些分析说明,供各位考研的同学和朋友参考。

一、边际概念和弹性概念
1、边际概念:边际指经济变量的变化率(导数)。

若经济变量()y f x =,则称()f x '为边际函数;如:边际成本()C x '、边际收入()R x '和边际利润()L x '(x 为产量),分别表示增加一个单位产量时所增加的成本、收入和利润,其中(),(),()C x R x L x 分别为企业生产某种产品的成本、收入和利润。

2、弹性概念:弹性指一个经济变量变动1%时会使另一个经济变量变动百分之几。

变量y 对x 的弹性为y x y
x y y E x y x x
∧∆∆==⋅∆∆,令0x ∆→,得()y x x dy x E y x y dx y
'=⋅=.需求弹性:Q p p dQ E Q dp
=-⋅,p 为产品价格,()Q p 为市场需求量。

收入弹性:R p p dR E R dp
=
⋅,()R p 为收入(()R pQ p =).二、真题分析设某商品的最大需求量为1200件,该商品的需求函数()Q Q p =,需求弹性为(0)120p p
ηη=>-,p 为单价(万元)。

(Ⅰ)求需求函数的表达式;
(Ⅱ)求100p =万元时的边际收益,并说明其经济意义.
注:这是2016年考研数学(三)第(16)题(本题满分10分)
解:(I)需求弹性为p dQ Q dp -
,根据题意得120p dQ p Q dp p -=-,分离变量得11120dQ dp Q p -
=-,两边积分得()120Q C p =-(0C >),由于Q 是p 的单调减函数,所以当0p =时,Q 取最大值,因此()01200Q =,10C =,
所以需求函数为()()10120Q p p =-;
(II)收益函数为()()210120101200R p pQ p p p p ==-=-+,
边际收益函数为()'201200R p p =-+,
当100p =时,边际收益为(100)800R '=-万元,
经济意义为:当价格为100万元时,若再提高价格1万元,则收益会减少约800万元。

上面真题中同时考查了边际概念和弹性概念,这就要求大家一方面要理解其概念,另一方面要会进行相应的分析和计算;关于这两个概念的区别再跟大家说明一下:边际是绝对变化率(绝对变化量y x ∆∆与之比的极限),而弹性是相对变化率(相对变化量y x y x
∆∆与之比的极限),弹性测算因变量变化率对自变量变化率的反应的敏感程度,希望2017年的各位考生能理解这一点。

关键词:考研数学经济学应用边际和弹性。

相关文档
最新文档