自旋电子学(翟宏如等编著)思维导图

合集下载

原子的精细结构电子的自旋PPT课件演示

原子的精细结构电子的自旋PPT课件演示

量子表达
第三章:原子的精细结构:电子的自旋
为方磁向矩 上方看向是的线单偏此位振矢光外量。,三个量子数(n ,l ,ml )表示一个
状态,正好与经典物理中用(x 第三章:原子的精细结构:电子的自旋
第三章:原子的精细结构:电子的自旋
,y
,z)描
述一个质点的状态相对应。 上一章原子态表示为nL;
由上面的分析我们看到:新能级裂距的大小△E 与 及 成反比。
目录 结束
第三章:原子的精细结构:电子的自旋
第二节:史特恩—盖拉赫实验
在磁场区域 x 方向: d v t1
(1)
Y
方向: z1
1 2
Fz m
t12(2)
t时1 刻,原子沿z方向的速度为
实验装置 理论推导
vz
at1
Fz m
d v
back
next 目录 结束
第三章:原子的精细结构:电子的自旋
在 Z 方向的投影表达式为
lz rLz 2em hml (3)
通常令 B
eh 2m
,称之为玻尔磁子。
前言
经典表达 式
量子表达 式
角动量取 向量子化
back
next 目录 结束
第三章:原子的精细结构:电子的自旋
第二节:史特恩—盖拉赫实验
实验装置 理论推导
back
next 目录 结束
第三章:原子的精细结构:电子的自旋
Automic Physics 原子物理学
第三章:原子的精细结构: 电子的自旋
第一节 原子中电子轨道运动磁矩
第二节 史特恩—盖拉赫实验 第三节 电子自旋的假设
第四节 碱金属双线
第五节 塞曼效应
结束

电子自旋--理论物理导论

电子自旋--理论物理导论
35
Energy Levels
3s 3px 3p
y
3pz
E
2s
2px
2p
2pz
C
1s
y
1s22s22p2
36
Energy Levels
3s 3px 3p
y
3pz
E
2s
2px
2p
2pz
N
1s
y
1s22s22p3
37
Energy Levels
3s 3px 3p
y
3pz
E
2s
2px
2p
2pz
O
1s
y
1s22s22p4
38
Energy Levels
3s 3px 3p
y
3pz
E
2s
2px
2p
2pz
F
1s
y
1s22s22p5
39
Energy Levels
3s 3px 3p
y
3pzEຫໍສະໝຸດ 2s2px2p
2pz
Ne
1s
y
1s22s22p6
40
Energy Levels
3s 3px 3p
y
3pz
E
2s
2px
由于粒子为全同粒子,粒子位置互换对整个空间的粒子分 布几率密度无影响:
( xx t ) ( x xt)
2
2
19
故波函数必满足以下条件之一:
(1) (2)
( xxt ) ( x xt) ( xxt ) ( xxt)
满足条件(1)的微观粒子称玻色子,其波函数为粒子 的对称函数。 如光子、基态氢原子、粒子等。其自旋 角动量为0或的整数倍。

§1819电子自旋new资料

§1819电子自旋new资料

1. 原子的磁矩
μ半经i 典S计算给e出Sn 0 T
e 2 r / v
r
2
n
0
e 2me
me
v
rn
0
e 2me
L
原子中电子轨道运动产生磁矩示ห้องสมุดไป่ตู้图
即 μ L 其中 e
2me
量子力学的计算给出相同的结果
电磁学中磁矩概念的复习
M ISn
矩形线圈在均匀磁场中 所受的力矩
F Idl B
第四章 原子的精细结构: 电子自旋
张劭光
物理学与信息技术学院
一、引言
通过对原子的磁偶极矩的测定来间接测量原子的轨道角动量。考虑这些实验结果 时,我们将发现一个重要的实验事实,即电子不仅具有轨道角动量及与之相对应的磁 偶极矩,还具有一种内禀磁矩,与该磁矩相对应,电子具有一种称为自旋的内禀角动 量。而且磁矩(因而角动量)的空间取向都是量子化的。
类似地 pˆ y p (r )=py p (r ), pˆ z p (r )=pz p (r )
量子力学中如何描述角动量 尝试定义角动量算符(momentum operator): Lˆ = rˆ pˆ 可导出其对易关系(the commutation relations)为:
[Lˆx , Lˆy ] i Lˆz,[Lˆy , Lˆz ] i Lˆx, [Lˆz , Lˆx ] i Lˆy. Then the following relations can be verified: [Lˆ, Lˆ2 ] 0, 即 [Lˆx , Lˆ2 ] 0, [Lˆy , Lˆ2 ] 0, [Lˆz , Lˆ2 ] 0. 选取Lˆ2 , 和 Lˆz 为力学量完备集,求解Lˆ2 , 和 Lˆz的本征值方程, 可得其共同本征态为Ylm

第4章 原子的精细结构:电子自旋 ppt课件

第4章  原子的精细结构:电子自旋  ppt课件

0
即角动量矢量在

空间有三个取向
v 轨道角动量的大小 L及其z分量Lz的取值是量子化的, 而 Lz取值的量子化意味着角动量在空间取向是量子化 的,因为对于每一个l值有2l+1个ml值,即 L在z 轴上应 有2l+1个分量,因而 L有2l+1个取向。
12
PPT课件
与l =1情况相同,我们有l =2时有5个取向, l =3时有 7个取向
Z
L 6 2
L 2(2 1) 6,(l 2) ml 00,1,2,(l 2) Lz 0,,2
2
l2
即,角动量量子数为l 时,其在空间有2l+1个取向,
它对应有2l+1个投影值ml
13
PPT课件
§4.2 史特恩-盖拉赫实验
通过第一节的学习,我们知道不仅原子中电子 轨道的大小、形状和电子运动的角动量、原子内 部的能量都是量子化的,而且在外部磁场中角动 量的空间取向也是量子化的。
所以在l z方向的投影 为l ,z:
l,z

Lz
mlLeabharlann e 2me ml B
ml 0,1,2, ,l
(18 - 5)
可以看出μB 是轨道磁矩的最小单元
10
PPT课件
另外,因为
原子的磁偶 极矩的量度
第一玻尔
半径
B

e 2me

1 2
e2 c
2 me e 2
e

1 2
0.5788104 ev T1
为玻尔磁子,是轨 道磁矩的最小单元。 是原子物理学中的 一个重要常数。
9
PPT课件
又因为量子力学中角动量 L 在z方向的投影大小为:

量子力学第六章自旋和对称性

量子力学第六章自旋和对称性

自旋角动量与电子的坐标和动量无关,它是电子内 秉状态的表征,是描写电子状态的第四个自由度 ˆ (第四个变量)。 记为:
S
自旋角动量 比较: 同是角动量,满足同样的角动量对易关系 轨道角动量 ˆ 自旋与坐标、动量无关,不适用 r p
轨道角动量 ˆ L ˆ ˆ ˆ L L iL ˆ ˆ ˆ [ Lx , L y ] iLz ˆ ˆ ˆ [ L y , Lz ] iLx ˆ ˆ ˆ [ Lz , Lx ] iL y

1 (r , 2) 2 2 d [| 1 | | 2 | ]d 1 2 (r , 2)

(2)几率密度
(r , t ) | 1 |2 | 2 |2 1 (r , t ) 2 (r , t )
(三)自旋算符的矩阵表示与 Pauli 矩阵
电子自旋算符(如SZ)是作用与电子自旋波函数上的,既 然电子波函数是两分量波函数,表示成了2×1 的列矩阵, 那末,电子自旋算符的矩阵表示应该是 2×2 矩阵。
(1) SZ的矩阵形式
sz Sz sz sz 2 | sz | 2 | 2 | 2 1 2 0 0 1
0 i Sy i 0 2
1 0 Sz 0 1 2
(四)含自旋波函数的归一化和几率密度
(1)归一化 电子波函数
1 (r , ) 2 2 (r , 2 )

d 1* 2*

| c |2 1
0 e i x i e 0
求σy 的矩阵形式

电子自旋

电子自旋

ˆ 则 S zΨ1 = Ψ1 2
ˆ S zΨ 2 = − Ψ 2 2
ˆ S z 的本征态只有 Ψ1 ,Ψ。 2
把两个分量排成一个二行一列的矩阵为:
⎛Ψ1 ( x, y, z, t ) ⎞ Ψ =⎜ ⎟ ⎜Ψ ( x, y, z, t )⎟ ⎠ ⎝ 2
规定列矩阵 第一行对应于Sz = /2, 第二行对应于Sz = - /2。
Ψ = Ψ ( x, y, z, S z , t )
⎧ ⎪Ψ 1 ( x , y , z , t ) = Ψ ( x , y , z , + 2 , t ) ⎪ ⎨ ⎪Ψ ( x , y , z , t ) = Ψ ( x , y , z , − , t ) ⎪ 2 2 ⎩
由于 SZ 只取 ± /2 两个值,所以上式可 写为两个分量:
0 ⎞ ⎛ ⎛ 0⎞ ⎟ =Ψ 2 ( x, y, z , t )⎜ ⎟ ⎜ =⎜ ⎜1⎟ Ψ 2 ( x, y , z , t ) ⎟ ⎝ ⎠ ⎠ ⎝
⎛1⎞ χ 1 (S z ) = ⎜ ⎟ ⎜0⎟ ⎝ ⎠ 2
ˆ Sz χ 1 =
2
2
χ1
2
Ψ −1/ 2
⎛0⎞ χ 1 (S z ) = ⎜ ⎟ ⎜1⎟ − ⎝ ⎠ 2
ˆ ˆ ˆ ˆ ⎧σ x σ y + σ y σ x = 0 ⎪ ˆ ˆ ˆ ˆ ⎨σ y σ z + σ z σ y = 0 ⎪ˆ ˆ ˆ ˆ ⎩σ z σ x + σ x σ z = 0
从 反 对 易 关 系 式 出 发
证明(法一):(以第一个式子为例)
ˆ ˆ ˆ ˆ σ xσ y + σ yσ x
说明:
1. 若已知电子处于 S z =
2

量子力学(第八章自旋)解读

量子力学(第八章自旋)解读

乌仑贝克(Uhlenbeck)和哥德斯密脱 (Goudsmit)为了解释这些现象,于1925年
左右提出了电子自旋的假设:
(1)每个电子都具有一个自旋角动量
Sz
s
,它
在空间任何方向上的投影只能取两个数值: (2)每个电子具有自旋磁矩 s 它与自旋角动

2
(若将空间任意方向取为z方向) 的关系是
ms 称为自旋磁量子数。由

2
S S S S
2 2
2 2 x
^2
(13)
2
3 故 S 的本征值是 S S S S 4
2 y 2 z
[ S , S z ] [ S , S y ] [ S , S x ] 0 (14)
2
若将任何角动量平方算符的本征值记为
J j ( j 1)
0 1 (Sz ) 2 1
(7)
与 构成电子自旋态空间的一组正交完备基,
任何一个自旋态式(4),均可用它们来展开, 表示为 a (8) ( S z ) a b
(9)
b 而计及空间坐标的波函数式(1),可以表示为
(r , Sz ) (r , 2) (r , 2)
^
^
^
^
^
(24)
z x x z i y

^
^
^
^
^
i
式(21)和(24)和 数性质。


概括了Pauli算符的全代
特例: 在量子力学中凡与自旋有关的力学量常 ˆ 算符表示。 ˆ 在任意方向n 的分量算符 ˆn 以
或表示为
[ i , j ] 2iijk k

颜老师课件自旋电子学2014

颜老师课件自旋电子学2014

Dilute ferromagnetic oxides; TC > RT
材料 GaN TiO2 掺杂元素 Mn 9% Co 7% Fe 2% SnO2 Fe 5% Co 5% 磁
Fe (001) MgO(001)2nm Fe (001) MgO(001)基片
3x12m2
室温:TMR=88%
超过Al2O3非晶势垒 (TMR~70%)
磁性隧道结的应用—磁记录头,MRAM
Motorola MTJ MRAM structure
位线
位线
BL
写线 写线
MTJ
字线
读出
字线
写入
CMOS
Fe Fe
↑↑ ↑↑ ↑↑
↑↓
↑↓
Al2O3
Fe/Al2O3/Fe电阻隧磁场变化
↓↓ ↓↑
Fe
↓↑
Al2O3 Fe
↓↓
J.Magn.Magn.Mater.139(1995)L231----151(1995)403
Fe/Al2O3/Fe磁滞回线
隧穿磁电阻的解释 (Fe/Al2O3/Fe)
↑↑ 电阻RP小 ↑↓ 电阻RAP大
FLASH
MRAM
MRAM与现行各存储器的比较(F为特征尺寸)
>256 GB
>500 MHz 2 F2/bit <2 ns <10 ns <10 ns 无穷 无穷 <1 V
无穷 0.6-0.5 V
<50 mV
5. 高自旋极化率材料:半金属材料和稀磁半导体

混合价钙钛矿CMR
稀 磁 半 导 体

稀 磁 半 导 体
电子
自 旋
电荷 电子 自旋
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档