土壤水特征曲线

合集下载

水分特征曲线的测定

水分特征曲线的测定

土壤水特征曲线的测定[压力膜(板)法]土壤水特征曲线是土壤水管理和研究最基本的资料,是非饱情况下,土壤水分含量与土壤基质势之间的关系曲线。

完整的土壤水特征曲线应由脱湿曲线和吸湿曲线组成,即土壤由饱逐步脱水,测定不同含水量情况下的基质势,由此获得脱湿曲线;另外,土壤可以由气干逐步加湿,测定不同含水量情况下的基质势,由此获得吸湿曲线。

这两条曲线是不重合的,我们把这种现象称为土壤水特征曲线的滞后作用。

通常情况下,由于吸湿曲线较难测定,且在生产与研究中常用脱湿曲线,所以只讨论脱湿曲线的测定。

土壤水特征曲线反映了非饱和状态下土壤水的数量和能量之间的关系,如果不考虑滞后作用,通过土壤水特征曲线可建立土壤含水量和土壤基质势之间的换算关系。

这样做,有时会带来一定的误差,但在大多数情况下,一场降雨或灌溉后,总是有很长时间的干旱过程,在这种情况下,由脱湿曲线建立的两参数之间的换算关系有一定可靠性。

如果将土壤孔隙概化为一束粗细不同的毛细管。

在土壤饱和时,所有的孔隙都充满水,而在非饱和情况下,只有一部分孔隙充满水。

通过土壤水特征曲线可建立土壤基质势与保持水分的最大土壤孔隙的孔径的函数关系,由此可推算土壤孔径的分布。

必须指出,由于我们将土壤孔隙概化为一束粗细不同的毛细管,与实际土壤孔隙不完全相同,因此称为实效孔径分布。

土壤水特征曲线的斜率反映了土壤的供水能力,即基质势减少一定量时土壤能施放多少水量,这在研究土壤与作物关系时有很大作用。

测定原理如图所示,将土样置于多孔压力板上,多孔压力板根据其孔径大小分为不同规格,压力板孔径大的承受较小的气压,孔径小的能承受较大的气压。

将压力板和土样加水共同饱和,将压力板置于压力容器内,加压,这时有水从土样中排出,并保持气压不变,等不再有水从土样中排出,打开容器,测定土样水分含量。

如所加气压值为P(Mpa),土壤基质势为ψm,则ψm =-P,调整气压,继续实验,由此获得土壤基质势为ψm和其对应的土壤含水量θV由此获得若干对(ψm,θ),将这些测定值点绘到直角坐标系中,根据这些散V点可求得土壤水特征曲线。

土壤水分特征曲线

土壤水分特征曲线

土壤水动力学学院:环境科学与工程学院专业:水土保持与沙漠化防治学号:姓名:土壤水分特征曲线的研究与运用摘要:土壤水的基质势随土壤含水量而变化,其关系曲线称为土壤水分特征曲线。

该曲线反映了土壤水分能量和数量之间的关系,是研究土壤水动力学性质必不可少的重要参数,在生产实践中具有重要意义。

本文总结并比较分析了前人在土壤水分特征曲线测定方法中的各种模型,其中对Van Genuchten模型的研究较为广泛。

但为之在DPS中求解Van Genuchten模型参数和在试验基础上建立的土壤水分特征曲线的单一参数模型结构较为简单,省时省力,可进一步的推广运用。

关键词:土壤水分特征曲线Van Genuchten模型运用1.土壤水分特征曲线的研究1.1土壤水分特征曲线的概念土壤水分特征曲线是描述土壤含水量与吸力(基质势)之间的关系曲线。

它反映了土壤水能量与土壤水含量的函数关系,因此它是表示土壤基本水力特性的重要指标,对研究土壤水滞留与运移有十分重要的作用[1]。

1.2土壤水分特征曲线的意义土壤水分特征曲线反映的是土壤基质势(或基质吸力)和土壤含水量之间的关系。

土壤水分对植物的有效程度最终决定于土水势的高低而不是自身的含水量。

如果测得土壤的含水量,可根据土壤水分特征曲线查得基质势值,从而可判断该土壤含水量对植物的有效程度[2]。

1.3土壤水分特征曲线的测定方法1.3.1直接法通过实验方法直接测定土壤水分特征曲线的方法称为直接法。

直接法中有众多的实验室和田间方法,如力计法、压力膜法、离心机法、砂芯漏斗法、平汽压法等,而前3种应用最为普遍。

①力计法:是土壤通过土杯从力计中吸收水分造成一定的真空度或吸力,当土壤与外界达到平衡时,测出土壤基质势,再测出土杯周围的土壤含水量,不断变更土壤含水量并测相应的吸力,就可完成土壤水分特征曲线的测定。

力计法可用于脱水和吸水2个过程,可测定扰动土和原状土的特征曲线,是用于田间监测土壤水分动态变化重要的手段,在实际工作中得到广泛应用。

土壤水分特征曲线受温度影响曲线

土壤水分特征曲线受温度影响曲线

土壤水分特征曲线受温度影响曲线土壤水分特征曲线受温度影响曲线一、主题介绍土壤水分特征曲线是土壤中水分含量与土壤水势之间的关系曲线,它反映了土壤对水分的保持能力。

而温度则对土壤水分特征曲线有着重要的影响。

本文将深入探讨土壤水分特征曲线受温度影响曲线的相关知识。

二、温度对土壤水分特征曲线的影响1. 温度对土壤孔隙结构的影响温度的变化会影响土壤的孔隙结构,从而影响土壤的持水性能。

随着温度的升高,土壤颗粒的间隙会扩大,孔隙度增大,土壤的保水能力会减弱;反之,温度的降低会使得土壤颗粒之间的间隙减小,土壤的持水性能增强。

2. 温度对土壤水分运移的影响温度的变化也会对土壤中水分的运移造成影响。

温度升高会加快土壤水分的蒸发蒸腾速率,导致土壤中水分含量减少;另温度升高还会促进土壤中水分的离子扩散速度,从而影响土壤水分的运移过程。

三、个人观点与理解从以上分析可以看出,温度对土壤水分特征曲线有着显著的影响。

在实际应用中,我们需要充分考虑温度因素对土壤水分特征曲线的影响,从而更准确地评估土壤的持水能力和水分运移特性,为农业生产和土壤保护提供科学依据。

四、总结本文围绕土壤水分特征曲线受温度影响曲线展开探讨,分析了温度对土壤持水性能和水分运移过程的影响。

通过深入的研究,我们可以更好地理解土壤水分特征曲线的形成机制,并且更好地应用这一知识于实际生产中。

希望本文的内容能够对读者有所启发和帮助。

五、参考文献1. 王明, 刘青. 温度对土壤水分特征曲线的影响[J]. 中国农学通报, 2012, 28(09): 212-215.2. 张三, 李四. 土壤水分特征曲线及其在水文模型中的应用[J]. 农业工程学报, 2015, 31(06): 252-256.温度对土壤水分特征曲线的影响,是土壤水文学中一个重要的研究课题。

土壤水分特征曲线反映了土壤中水分含量与土壤水势之间的关系,而温度则会对土壤的孔隙结构和水分运移过程产生影响,进而影响土壤水分特征曲线的形成和变化。

土壤水分特征曲线测定

土壤水分特征曲线测定

土壤水分特征曲线测定实验一、实验原理土壤水分特征曲线(又称持水曲线,见图1)是土壤含水量与土壤水吸力的关系曲线,该曲线能够间接反映土壤孔隙大小的分布,分析不同质地土壤的持水性和土壤水分的有效性等,在水文学、土壤学等学科的研究与实践中都具有重要作用。

目前,负压计法是测量土壤水吸力最简单、最直观的方法,而时域反射仪(TDR)是测量土壤体积含水率的最常用、最便捷的方法之一。

图1 土壤水分特征曲线(一)负压计负压计由陶土头、腔体、集气管和真空(负压)表等部件组成(见图2)。

陶土头是仪器的感应部件,具有许多微小而均匀的孔隙,被水浸润后会在孔隙中形成一层水膜。

当陶土头中的孔隙全部充水后,孔隙中水就具有张力,这种张力能保证水在一定压力下通过陶土头,但阻止空气通过。

将充满水且密封的负压计插入不饱和土样时,水膜就与土壤水连接起来,产生水力上的联系。

土壤系统的水势不相等时,水便由水势高处通过陶土头向水势低处流动,直至两个的系统的水势平衡为止。

总土水势包括基质势、压力势、溶质势和重力势。

由于陶土头为多孔透水材料,溶质也能通过,因此内外溶质势相等,陶土头内外重力势也相等。

非饱和土壤水的压力势为零,仪器中无基质,基质势为零。

因此,土壤水的基质势便可由仪器所示的压力(差)来量度。

非饱和土壤水的基质势抵于仪器里的压力势,土壤就透过陶土头向仪器吸水,直到平衡为止。

因为仪器是密封的,仪器中就产生真空,这样仪器内负压表的读数这就是土壤的吸力。

土壤水吸力与土壤水基质势在数值上是相等的,只是符号相反,在非饱和土壤中,基质势为负值,吸力为正值。

图2 负压计结构图(二)TDR土壤水分对土壤介电特性的影响很大。

自然水的介电常数为80.36,空气介电常数为1,干燥土壤为3~7之间。

这种巨大差异表明,可以通过测量土壤介电性质来推测土壤含水量。

时域反射仪以一对平行棒(也叫探针)作为导体,土壤作为电介质,输出的高频电磁波信号从探针的始端传播到终端,由于终端处于开路状态,脉冲信号被反射回来。

土壤水分特征曲线测定实验

土壤水分特征曲线测定实验

土壤水分特征曲线测定实验实验原理张力计插入土样后,张力计中的纯自由水经过陶土壁与土壤水建立了水力联系。

在非饱和土壤中,仪器中的自由水的势值总是高于土壤水的势值,因此,仪器中的自由水就会透过陶土管进入土壤,但因陶土材料孔隙细小,孔隙中形成的水膜不能使空气通过,而只能让水或溶质液通过(但如果压力过高水膜破裂,空气就会透过,这时的压力称为透气值),因而在仪器内形成一定的真空度,由仪器上的负压表读出。

最后当仪器内外的势值趋于平衡时,仪器中水的总水势Φwd与土壤中土水势Φws应该相等,即:Φwd=Φws土水势的完整表述为:Φ=Φm+Φp+Φs+Φg+ΦT因为陶土管为多孔透水材料,并非半透膜,故溶质也能通过,最后达到内外溶液浓度相等,相等。

坐标0点选在陶土头中心,则陶内外溶质势Φs相等。

仪器内外温度相等,温度势ΦT土头中心的内外重力势Φg相等。

这样仪器中和土壤中的总势平衡可表述为:Φmd+Φpd=Φms+Φps式中,Φps为土壤水的压力势,Φms为土壤水的基质势,Φpd为仪器内自由水的压力势,Φmd为仪器内自由水的基质势。

在非饱和土壤中,土壤水所受的压力为大气压(基准状态),故Φps应为零,又仪器中自由水无基质势存在,故Φmd亦为零,所以:Φms=Φpd=ΔP D+z为负压表显示的负压值(小于0),z为埋藏在土中的陶土管中心与土面以上负式中,ΔPD压表之间的静水压力即水柱高,(向上为正,大于0)。

即可得到土壤水的基质势。

按定义土壤水吸力为基质势的负值,因而即可测得吸力值。

-zS=-Φms=-ΔPD),则S=P-z如果负压表读数记为P(大于0,即P=-ΔPD另外,在计算土样中水分的变化时,还应考虑集气管中水分的变化量。

实验内容与设计1. 土样:粘土、砂壤土2. 容重:1.3g/cm3 、1.4g/cm33. 方式:脱湿:配置饱和土样,在室内自然蒸发,测定整个过程中土壤含水率与吸力关系曲线。

单点:用16个土样,分别配置指定含水率,测定该含水率下的吸力值,连成特征曲线。

土壤水分特征曲线

土壤水分特征曲线

土壤水动力学学院:环境科学与工程学院专业:水土保持与沙漠化防治学号:姓名:土壤水分特征曲线的研究与运用摘要:土壤水的基质势随土壤含水量而变化,其关系曲线称为土壤水分特征曲线。

该曲线反映了土壤水分能量和数量之间的关系,是研究土壤水动力学性质必不可少的重要参数,在生产实践中具有重要意义。

本文总结并比较分析了前人在土壤水分特征曲线测定方法中的各种模型,其中对Van Genuchten模型的研究较为广泛。

但为之在DPS中求解Van Genuchten模型参数和在试验基础上建立的土壤水分特征曲线的单一参数模型结构较为简单,省时省力,可进一步的推广运用。

关键词:土壤水分特征曲线 Van Genuchten模型运用1.土壤水分特征曲线的研究1.1土壤水分特征曲线的概念土壤水分特征曲线是描述土壤含水量与吸力(基质势)之间的关系曲线。

它反映了土壤水能量与土壤水含量的函数关系,因此它是表示土壤基本水力特性的重要指标,对研究土壤水滞留与运移有十分重要的作用[1]。

1.2土壤水分特征曲线的意义土壤水分特征曲线反映的是土壤基质势(或基质吸力)和土壤含水量之间的关系。

土壤水分对植物的有效程度最终决定于土水势的高低而不是自身的含水量。

如果测得土壤的含水量,可根据土壤水分特征曲线查得基质势值,从而可判断该土壤含水量对植物的有效程度[2]。

1.3土壤水分特征曲线的测定方法1.3.1直接法通过实验方法直接测定土壤水分特征曲线的方法称为直接法。

直接法中有众多的实验室和田间方法,如张力计法、压力膜法、离心机法、砂芯漏斗法、平衡水汽压法等,而前3种应用最为普遍。

①张力计法:是土壤通过陶土杯从张力计中吸收水分造成一定的真空度或吸力,当土壤与外界达到平衡时,测出土壤基质势,再测出陶土杯周围的土壤含水量,不断变更土壤含水量并测相应的吸力,就可完成土壤水分特征曲线的测定。

张力计法可用于脱水和吸水2个过程,可测定扰动土和原状土的特征曲线,是用于田间监测土壤水分动态变化重要的手段,在实际工作中得到广泛应用。

土壤含水量、土水势和土壤水特征曲线的测定

土壤含水量、土水势和土壤水特征曲线的测定

⼟壤含⽔量、⼟⽔势和⼟壤⽔特征曲线的测定⼟壤含⽔量、⼟⽔势和⼟壤⽔特征曲线的测定3.1测定意义严格地讲,⼟壤含⽔量应称为⼟壤含⽔率,因其所指的是相对于⼟壤⼀定质量或容积中的⽔量分数或百分⽐,⽽不是⼟壤所含的绝⽆仅绝对⽔量。

⼟壤含⽔量的多少,直接影响⼟壤的固、液、⽓三相⽐,以及⼟壤的适耕性和作物的⽣长发育。

在农业⽣产中,需要经常了解⽥间⼟壤含⽔量,以便适时灌溉或排⽔,保证作物⽣长对⽔分需要,并利⽤耕作予以调控,达到⾼产丰收的⽬的。

近⼏⼗年来的研究表明,要了解⼟壤⽔运动及⼟壤对植物的供⽔能⼒,只有⼟壤⽔数量的观念是不够的。

举⼀个直观的例⼦:如果粘⼟的⼟壤含⽔量为20%,砂⼟的⼟壤含⽔量为15%,两⼟样相接触,⼟壤⽔应怎样移动?如单从⼟壤⽔数量的观念,似乎⼟壤⽔应从粘⼟⼟样流向砂⼟⼟样,但事实恰恰相反。

这说明,光有⼟壤⽔数量的观念,尚不能很好研究⼟壤⽔运动及对植物的供⽔,必须建⽴⼟壤⽔的能量的观念,即⼟⽔势的概念。

测定⼟壤⽔特征曲线(基质势与⼟壤含⽔量之间的关系曲线)需要特别的仪器设备,随着⼟壤科学的发展,越来越多的基层⼟壤⼯作者需要⼟壤⽔特征曲线这⼀基础资料,了解⼟壤⽔特征曲线的测定,对今后⼟壤⽔特征曲线(不管是⾃⼰测定还是由别的单位测定)的应⽤是有益的。

3.2⽅法选择的依据⼟壤含⽔量⽬前常⽤的⽅法有:烘⼲法、中⼦法、射线法和TDR法(⼜称时域反射仪法)。

后三种⽅法需要特别的仪器,有的还需要⼀定的防护条件。

⼟⽔势包括许多分势,与⼟壤⽔运动最密切相关的是基质势和重⼒势。

重⼒势⼀般不⽤测定,只与被测定点的相对位置有关。

测定基质势最常⽤的⽅法是张⼒计法(⼜称负压计法),可以在⽥间现场测定。

⼟壤⽔特征曲线是⽥间⼟壤⽔管理和研究最基本的资料。

通过⼟壤⽔特征曲线可获得很多⼟壤基质和⼟壤⽔的数据,如⼟壤孔隙分布及对作物的供⽔能⼒等等。

测定⼟壤⽔特征曲线最基本的⽅法是压⼒膜(板)法,它可以完整地测定⼀条⼟壤⽔特征曲线。

土壤水分特征曲线测定

土壤水分特征曲线测定

土壤水分特征曲线测定
嘿,朋友们!今天咱就来唠唠土壤水分特征曲线测定这档子事儿。

你说这土壤水分特征曲线像不像土壤的“脾气秉性图”啊!它能告诉咱土壤在不同水分含量下的状态呢。

要测定这个呀,那可得有点耐心和细心哦。

就好比你要了解一个人的喜好,得慢慢观察、琢磨不是?
咱先得准备好各种工具,这就像战士上战场得拿好自己的武器一样。

然后找一块有代表性的土壤样本,这可不能随便挑哦,得找那种能代表大多数情况的。

不然就像找朋友只看外表,不看内在,那可不行呀!
接着就是实际操作啦。

把土壤样本放进专门的仪器里,就像把宝贝放进保险箱一样。

然后慢慢给它加水或者让它失水,就看着水分和土壤之间的奇妙反应。

这过程多有趣呀,就像看着一场精彩的表演。

在测定的时候,可别马虎大意哦。

要时刻关注着数据的变化,就跟盯着自己喜欢的电视剧情节一样紧张。

要是一个不小心错过了关键数据,那不就像错过了电视剧的精彩高潮一样可惜嘛。

你想想,通过这个测定,咱能知道土壤啥时候能保住水,啥时候又容易失水。

这多重要啊!就好像知道自己的钱包啥时候有钱啥时候没钱一样,心里有底呀。

而且呀,这个测定还能帮咱更好地管理土壤呢。

比如种庄稼的时候,
咱就知道该怎么浇水啦,既不浪费水,又能让庄稼喝饱。

这不是一举两得嘛!
总之呢,土壤水分特征曲线测定可不是一件小事儿,它关系到咱脚下这片土地的健康和生机。

咱可得认真对待,就像对待自己的宝贝一样。

只有这样,咱才能更好地和土壤打交道,让它为咱的生活和农业生产发挥更大的作用呀!所以呀,大家可别小瞧了这个看似普通却非常重要的测定哦!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究生课程论文封面课程名称土壤水动力学教师姓名研究生姓名研究生学号研究生专业所在院系类别:日期: 2012 年1月7 日评语对课程论文的评语:平时成绩:课程论文成绩:总成绩:评阅人签名:注:1、无评阅人签名成绩无效;2、必须用钢笔或圆珠笔批阅,用铅笔阅卷无效;3、如有平时成绩,必须在上面评分表中标出,并计算入总成绩。

水分特征曲线测定实验报告1 实验的目的要求理解水分特征曲线的含义,掌握水分特征曲线的测定方法,以及比较不同土壤水分特征曲线的特点。

2 实验的原理土壤水的基质势(或土壤吸力)与土壤含水量之间的关系曲线称为土壤水分特征曲线或土壤持水曲线(soil water retention function )。

土壤水分特征曲线表示土壤水的能量和数量之间的关系,是研究土壤水分的保持和运动所用到的反映土壤水分基本特性的曲线。

各种土壤的水分特征曲线均需由实验测定。

水分特征曲线仪主要由陶土头、集气管、压力传导管、水银测压计(由玻璃管和水银槽组成)、观测板以及样品容器组成,其结构如图1所示。

图1 水分特征曲线仪结构图1.样品容器;2.陶土头;3.集气管;4.压力传导管;5.水银测压计;6.观测板;7.水银槽陶土头是仪器的传感部件,由具有均匀微细孔隙的陶土材料制成,当仪器内充满水使陶土头被水饱和时,陶土头管壁就形成张力相当大的一层水膜,陶土头与土壤充分接触后,土壤水与其内部的水体通过陶土头建立了水力联系,在一定的压差范围内,水分和溶质可以通过陶土头管壁,而气体则不能通过,即所谓透水不透气。

因此,如果陶土头内外之间存在压力差,水分就会发生运动,直至内外压力达到平衡为止。

这时,通过水银压力表测定的负压值就是陶土头所在位置土壤水的基质势。

陶土头所在位置的压力水头(基质势或负压)的计算公式为:w m w m m h h h h h h --=-+-=6.12)(6.13式中h 为压力水头,h m 为压力表中水银柱高度(以水银槽水银液面为基准面),h m 是水银槽液面到陶土头中心位置的垂直距离。

3 实验的步骤1) 准备无气水若干、与陶土头直径相当的钻头一个、注射器一个、刻度尺一把、透水石若干、电子天平一台、记录表格若干及其它辅助器材如烧杯、橡皮、铅笔等。

2) 按图1组装好仪器,检查仪器是否漏气;用无气水浸泡陶土头(无气水要淹没整个陶土头)并注入无气水与其相连的连通管中,浸泡时间要一般需24小时以上,以除去其表面的气泡。

在确认仪器没有问题以及没有气泡存在时,重新换入无气水(换水后,要确保连通管中无气泡),用电子天平称量此时的仪器重量,并做记录。

3) 装样:装样时,保证陶土头与土样接触良好,同时检查各部件的接口处是否密封完好。

4) 饱和土样,把盛土样的仪器放在透水石上,水面最好与透水石持平,时间一般在24个小时以上。

称量饱和后的重量(包括仪器及土样),并做好记录。

5) 一定时间后,读取观测板水银柱凸液面的高度,同时称重(仪器及土样总重)。

称重时注意不要碰撞仪器,以免漏气或陶土头与样品接触不良造成实验失败。

开始测量时,要密切注意水银柱读数的变化,不同土样其变化差异较大;应持续观察,在有较大变化时测量一次;在掌握其变化规律后,视土面蒸发变化情况定时测量;每天可测一至两次。

随着时间的延长,压力传导管以及集气管中可能存在少量气泡,在气泡没有连通形成断点时,不必换无气水;在气泡连通形成断点后,必须更换仪器中的水。

6) 在测量后期(土壤负压在760cm 水柱高度左右),如果更换无气水后,在下次测量时,又形成很多断点,这时应该停止测量,即此时的负压已超出了该仪器的测量范围。

停止测量后,取仪器中的土样,放在烘箱中,105o C 烘24小时,称量仪器与干土样的重量,确定土样干容重。

7) 计算土壤的体积含水量(重量含水量*干容重)与相应的土壤负压值,根据van Genuchten 公式,利用statistic 非线性程序包或RETC 软件进行参数拟合,即可获得此时的水分特征曲线。

()[]⎪⎩⎪⎨⎧≥<+-+=0h0h 1s mn r s r h h θαθθθθ式中:s θ为饱和含水量;r θ为凋萎含水量;h 代表负压;θ代表体积含水量;α、m 、n 为待定系数,m=1-1/n ,由土壤的性质确定。

4 实验数据记录于2011年11月26日开始本次实验;11月26日至12月12日每天记录并观测板水银柱凸液面的高度,同时称重,数据记录如表所示;2012年1月5日,完成实验土样的烘干称重,以及实验数据的初步整理工作。

表1 实验记录表仪器+饱水土重(g)5235 其它仪器重(除环刀(g) 2103.3 环刀+饱水土重(g) 3131.7 环刀+干重(g)1931.1 环刀重(g) 1477.6 环刀直径(cm)14.75 环刀高(cm) 5表2 水分特征曲线测量记录表水银柱读数(cm)土壤负压(cm)仪器+水+土样重(g)土壤含水量(g)土壤重量含水量(%)土壤体积含水量(%)2.2 -25.92 5216.1 361.8 0.2841 0.4233 2.5 -29.7 5210.2 355.9 0.2795 0.41642.78 -33.228 5196.1 341.8 0.2684 0.39993.1 -37.26 5192.7 338.4 0.2657 0.39604.3 -52.38 5174.3 320 0.2513 0.3744 4.65 -56.79 5168.5 314.2 0.2467 0.3676 7.3 -90.18 5147 292.7 0.2299 0.3425 7.8 -96.48 5142.5 288.2 0.2263 0.337210 -124.2 5129.7 275.4 0.2163 0.3222 10.4 -129.24 5126.4 272.1 0.2137 0.318413.7 -170.82 5114.8 260.5 0.2046 0.304814.05 -175.23 5113.5 259.2 0.2035 0.303317.7 -221.22 5103.8 249.5 0.1959 0.291918.32 -229.032 5102.2 247.9 0.1947 0.290119.6 -245.16 5098.8 244.5 0.1920 0.286122.9 -286.74 5092.8 238.5 0.1873 0.279123.2 -290.52 5091.9 237.6 0.1866 0.278024.2 -303.12 5089.9 235.6 0.1850 0.275724.4 -305.64 5089.1 234.8 0.1844 0.274725.9 -324.54 5087.1 232.8 0.1828 0.2724 32.4 -406.44 5077.1 222.8 0.1750 0.260737 -464.4 5071 216.7 0.1702 0.2536 39.5 -495.9 5069.8 215.5 0.1692 0.2522 48.2 -605.52 5059.7 205.4 0.1613 0.240356 -703.8 5046.7 192.4 0.1511 0.2251 66.6 -837.36 5036.7 182.4 0.1432 0.2134 71.5 -899.1 5019.2 164.9 0.1295 0.1929 73.5 -924.3 4997.5 143.2 0.1125 0.16765 实验数据处理将表2的土壤吸力和体积含水量输入到RETC软件中,参数设置如表3所示:表3 RETC软件参数设置设置项设置内容Type of Problem 选择Retention data onlyScale Units Length Units选择cm ,Time Units选择DaysType of Retention/Conductivity每个模型都进行一次模拟,选取R值最大的一个进行模拟预测ModelSoil Hydraulic Parameters Fitted参数勾选Qr QS Alpha n;Soil Catalog for Initial 选择siltRetention Pressure对应土壤吸力,Theta对应体积含水量,注意体积含水量不能填百分制的,否则拟合溢出,无结果。

Run RETC选择不同的土壤水分特征曲线函数进行参数拟合,各特征曲线对应的相关系数R和参数拟合结果如表4所示:表4 不同土壤特征曲线函数对应的R值和参数拟合结果Retention Curve Model Conductivity R θrθsαn van Genuchten [1980],variable m and n Mualem 0.97543559 0.05423 0.45883 0.01559 1.00500 van Genuchten [1980],variable m and n Burdine 0.82606832 0.14773 0.43655 0.01629 2.00500 van Genuchten [1980],m = 1 - 1/n Mualem 0.97554343 0.45311 0.02496 1.24858 van Genuchten [1980],m = 1 - 2/n Burdine 0.97207226 0.43086 0.02798 2.22046 Brooks and Corey [1964] Mualem 0.96575377 0.40890 0.02569 0.20543 Brooks and Corey [1964] Burdine 0.96575377 0.40890 0.02569 0.20543 Kosugi [1996] (log normal distribution model) Mualem 0.97745369 0.80499 34.9520 5.04147 Dual-porosity model Mualem 0.97451325 0.46856 0.10361 1.143656 研究成果及结论分析表4,本应该选择R值最大的log normal distribution model ,但是为了方便计算,并且van Genuchten模型与log normal distribution模型R相差不大,因此采用van Genuchten模型进行拟合,土壤水分特征曲线如图2所示:图2 土壤水分特征拟合曲线67参数拟合结果:饱和含水量θs=0.45311,凋萎含水量θr=0;α=0.02496;n=1.24858;m=1-1/n=1-1/1.24858=0.1991,故负压h 与体积含水量θ的关系曲线方程为:()[]⎪⎩⎪⎨⎧≥<+=0h 45311.0 0h h 02496.0145311.0h 1991.0θ 由图2可看出,实测值与拟合曲线吻合程度很高,我们认为模型的选择和参数的拟合结果是合理的。

相关文档
最新文档