天体质量的计算方法(万有引力理论的成就)

合集下载

【学霸笔记】物理必修二6.4万有引力理论的成就

【学霸笔记】物理必修二6.4万有引力理论的成就

第四节 万有引力理论的成就一、天体质量的求解1、思路一:“地上公式”法(亦称为自力更生法)已知中心天体的半径R 和中心天体的重力加速度g :;,G g R M mg RGMm 22== 2、思路二:“天上公式”法(亦称为借助外援法)①已知中心天体匀速圆周运动的周期T 、轨道半径r 、;,)、、(23222244:GTr M r T m r GMm R r T ππ== ②已知中心天体匀速圆周运动的线速度v 、轨道半径r 、;,)、、(Gr v M r v m r GMm R r v 222:== ③中心天体匀速圆周运动的线速度v 、公转周期T 、;,,)、、(GT v M T v r v m r GMm R T v ππ22:322=== 3、说明:①环绕天体的质量只能给出不能求出。

②要想求某天体的质量只能将其作为中心天体来研究。

③求中心天体质量的几种情景。

A 已知环绕天体的轨道半径、线速度、周期(线速度、频率)中的任意两个。

B 已知中心天体的重力加速度和半径。

二、天体密度的求解1、思路一:“地上公式”法已知中心天体的半径R 和中心天体的重力加速度g :GR g R V G g R M mg R GMm R g πρπ4334:322====,;,)、(2、思路二:“天上公式”法①已知中心天体匀速圆周运动的周期T 、轨道半径r 、天体半径为R323323222233444:R GT r R V GT r M r T m r GMm R r T πρπππ====,;,)、、( 特别注意:吐过卫星绕天体表面运行时,天体密度ρ=3πGT 2,即只要测出卫星环绕天体表面运动周期T ,就可算中心天体的密度。

②已知中心天体匀速圆周运动的线速度v 、轨道半径r 、天体半径为R3232224334:GR r v R V G r v M r v m r GMm R r v πρπ====,;,)、、( ③中心天体匀速圆周运动的线速度v 、公转周期T 、天体半径为R323322833422:GR T v R V G T v M T v r v m r GMm R T v πρπππ=====,;,,)、、(3、说明:①一般情况求中心天体的密度必须知道中心天体的半径。

万有引力理论的成就总结

万有引力理论的成就总结
返回
1.在某行星上,宇航员用弹簧秤称得质量为m的砝码重 力为F,乘宇宙飞船在靠近该星球表面空间飞行,测得 其环绕周期为T。根据这些数据求该星球的质量和密度。 解析:设行星的质量为 M,半径为 R,表面的重力加速 度为 g,由万有引力定律得 F=mg=GMRm2 。 飞船沿星球表面做匀速圆周运动由牛顿第二定律得 GMRm2′=m′4πT22R。
返回
3.常用的几个关系式
设质量为 m 的天体绕另一质量为 M 的中心天体做半径为
r 的匀速圆周运动。 (1)由 GMr2m=mvr2得 v=
GrM,r 越大,天体的 v 越小。
(2)由 GMr2m=mω2r 得 ω= GrM3 ,r 越大,天体的 ω 越小。 (3)由 GMr2m=m(2Tπ)2r 得 T=2π GrM3 ,r 越大,天体的 T
返回
[特别提醒] (1)在用万有引力等于向心力列式求天体的质量时,只 能求出中心天体的质量,而不能求出环绕天体的质量。 (2)要掌握日常知识中地球的公转周期、地球的自转周 期、月球的周期等,在估算天体质量时,往往作为隐含条 件加以利用。 (3)要注意R、r的区分。R指中心天体的半径,r指行星 或卫星的轨道半径。若绕近地轨道运行,则有R=r。
越大。
(4)由 GMr2m=man 得 an=GrM2 ,r 越大,天体的 an 越小。
返回
2.如图 6-4-1 所示,a、b 是两颗绕地球做
匀速圆周运动的人造卫星,它们距地面的
高度分别是 R 和 2R(R 为地球半径)。
下列说法中正确的是
()
图6-4-1
A.a、b 的线速度大小之比是 2∶1
B.a、b 的周期之比是 1∶2 2
ω= GrM3 可知,角速度 ω 变大,选项 D 错误。 答案:A

6.4《万有引力理论的成就》

6.4《万有引力理论的成就》

万有引力理论的成就教材分析:万有引力定律在天文学上应用广泛,它与牛顿第二定律、圆周运动的知识相结合,可用来求解天体的质量和密度,分析天体的运动规律.万有引力定律与实际问题、现代科技相联系,可以用来发现新问题,开拓新领域.把万有引力定律应用在天文学上的基本方法是:将天体的运动近似看作匀速圆周运动处理,运动天体所需要的向心力来自于天体间的万有引力.因此,处理本节问题时要注意把万有引力公式与匀速圆周运动的一系列向心力公式相结合,就可推导出适用于天体问题的公式,并且在应用这些公式时,一定要正确认识公式中各物理量的意义.具体应用时根据题目中所给的实际情况,选择适当公式进行分析和求解.三维目标知识与技能1.了解万有引力定律在天文学上的重要应用.2.会用万有引力定律计算天体的质量.过程与方法1.理解运用万有引力定律处理天体问题的思路、方法,体会科学定律的意义.2.了解万有引力定律在天文学上的重要应用,理解并运用万有引力定律处理天体问题的思路方法.情感态度与价值观1.通过测量天体的质量、预测未知天体的学习活动,体会科学研究方法对人类认识自然的重要作用,体会万有引力定律对人类探索和认识未知世界的作用.2.通过对天体运动规律的认识,了解科学发展的曲折性,感悟科学是人类进步不竭的动力.教学重点运用万有引力定律计算天体的质量.教学难点在具体的天体运动中应用万有引力定律解决问题.教学过程一、“科学真是迷人”教师:引导学生阅读教材“科学真是迷人”部分的内容,思考问题. 课件展示问题:1、卡文迪许在实验室里测量几个铅球之间的作用力,测出了引力常量G 的值,从而“称量”出了地球的质量.测出G 后,是怎样“称量”地球的质量的呢?2、设地面附近的重力加速度g=9.8 m/s 2,地球半径R=6.4×106 m ,引力常量G=6.67×10-11 N·m 2/kg 2,试估算地球的质量. 学生活动:阅读课文,推导出地球质量的表达式,在练习本上进行定量计算.教师活动:让学生回答上述三个问题,投影学生的推导、计算过程,归纳、总结问题的答案,对学生进行情感态度教育.总结:1.自然界中万物是有规律可循的,我们要敢于探索,大胆猜想,一旦发现一个规律,我们将有意想不到的收获. 2.在地球表面,mg=GgR M R GMm 22=⇒,只要测出G 来,便可“称量”地球的质量.3.M=112621067.6)104.6(8.9-⨯⨯⨯=GgR kg=6.0×1024 kg.通过用万有引力定律“称”出地球的质量,让学生体会到科学研究方法对人类认识自然的重要作用,体会万有引力定律对人类探索和认识未知世界的作用. 我们知道了地球的质量,自然也想知道其他天体的质量,下面我们探究太阳的质量.二、计算天体的质量引导学生阅读教材“天体质量的计算”部分的内容,同时考虑下列问题. 课件展示问题:1.应用万有引力定律求解天体的质量基本思路是什么?2.求解天体质量的方程依据是什么? 学生阅读课文,从课文中找出相应的答案. 1.应用万有引力求解天体质量的基本思路是:根据环绕天体的运动情况,求出向心加速度,然后根据万有引力充当心力,进而列方程求解.2.从前面的学习知道,天体之间存在着相互作用的万有引力,而行星(或卫星)都在绕恒星(或行星)做近似圆周的运动,而物体做圆周运动时合力充当向心力,这也是求解中心天体质量时列方程的根源所在.教师引导学生深入探究,结合课文知识以及前面所学匀速圆周运动的知识,加以讨论、综合,然后思考下列问题. 问题探究1.天体实际做什么运动?而我们通常可以认为做什么运动?2.描述匀速圆周运动的物理量有哪些?3.根据环绕天体的运动情况求解其向心加速度有几种求法?4.应用天体运动的动力学方程——万有引力充当向心力,求出的天体质量有几种表达式?各是什么?各有什么特点?5.应用此方法能否求出环绕天体的质量? 学生活动:分组讨论,得出答案.学生代表发言.1.天体实际是沿椭圆轨道运动的,而我们通常情况下可以把它的运动近似处理为圆形轨道,即认为天体在做匀速圆周运动.2.在研究匀速圆周运动时,为了描述其运动特征,我们引进了线速度v 、角速度ω、周期T 三个物理量.3.根据环绕天体的运动状况,求解向心加速度有三种求法,即 (1)a=rv2(2)a=ω2r (3)a=224Tπ·r4.应用天体运动的动力学方程——万有引力充当向心力,结合圆周运动向心加速度的三种表达方式可得三种形式的方程,即(以月球绕地球运行为例) (1)若已知月球绕地球做匀速圆周运动的周期为T ,半径为r,根据万有引力等于向心力,即22)2(Tr m rm GMπ月月地=∙,可求得地球质量M 地=2324GTr π.(2)若已知月球绕地球做匀速圆周运动的半径r 和月球运行的线速度v ,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得rvm rm MG 22月月地=∙.解得地球的质量为M 地=rv 2/G.(3)若已知月球运行的线速度v 和运行周期T ,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得2rm M G 月地∙=m 月·v·Tπ2.2rm M G月地∙=m 月v 2/r.以上两式消去r,解得M 地=v 3T/(2πG).5.从以上各式的推导过程可知,利用此法只能求出中心天体的质量,而不能求环绕天体的质量,因为环绕天体的质量同时出现在方程的两边,已被约掉. 师生互动:听取学生代表发言,一起点评.综上所述,应用万有引力计算某个天体的质量,有两种方法:一种是知道这个天体的表面的重力加速度,根据公式M=GgR 2求解;另一种方法必须知道这个天体的一颗行星(或卫星)运动的周期T 和半径r.利用公式M=2324GTr π求解.知识拓展天体的质量求出来了,能否求天体的平均密度?如何求?写出其计算表达式. 展示学生的求解过程,作出点评、总结: 1.利用天体表面的重力加速度来求天体的自身密度 由mg=2RMm G和M=334R π·ρ 得:ρ=GRg π43其中g 为天体表面重力加速度,R 为天体半径. 2.利用天体的卫星来求天体的密度.设卫星绕天体运动的轨道半径为r ,周期为T ,天体半径为R ,则可列出方程:r Tm rMm G 2224π= M=ρ·334R π得ρ=32332323334/434RGT rRGTr R M ππππ==当天体的卫星环绕天体表面运动时,其轨道半径r 等于天体半径R ,则天体密度为:ρ=23GTπ.例1 地球绕太阳公转的轨道半径为1.49×1011 m ,公转的周期是3.16×107 s ,太阳的质量是多少?解析:根据牛顿第二定律,可知:F 向=ma 向=m·(Tπ2)2r①又因为F 向是由万有引力提供的所以F 向=F 万=G·2rMm②所以由①②式联立可得 M=kgr 27113112232)1049.1(14.344⨯⨯⨯=-π=1.96×1030kg.答案:1.96×1030 kg说明:(1)同理,根据月球绕地球运行的轨道半径和周期,可以算出地球的质量是5.98×1024kg ,其他行星的质量也可以用此法计算.(2)有时题干不给出地球绕太阳的运动周期、月球绕地球运转的周期,但日常生活常识告诉我们:地球绕太阳一周为365天,月球绕地球一周为27.3天. 课堂训练三、发现未知天体让学生阅读课文“发现未知天体”部分的内容,考虑以下问题:课件展示问题:1.应用万有引力定律除可计算天体的质量外,在天文学上还有何应用?2.应用万有引力定律发现了哪个行星? 学生阅读课文,从课文中找出相应的答案. 1.应用万有引力定律还可以用来发现未知天体. 2.海王星就是应用万有引力定律发现的.小结:1.本节学习了万有引力定律在天文学上的成就,计算天体质量的方法是F 引=F 向.2.解题思路: (1)⎪⎪⎩⎪⎪⎨⎧=⇒=⇒===⇒=⇒=3222232323222243)(3344GR r v G r v M r v m R r GTR GT rGT rM T mr r GMm πρππρππ(2)GR g G gR M mg RGMm πρ4322=⇒=⇒=. 布置作业1.教材“问题与练习”第1、2、3、4题.2.查阅发现未知天体的有关资料.。

2024年高一物理寒假提升(人教版)第二十天:万有引力理论的成就(解析版)

2024年高一物理寒假提升(人教版)第二十天:万有引力理论的成就(解析版)

第二十天:万有引力理论的成就万有引力定律的内容的考点:1、预言彗星的回归,发现未知天体;2、根据已知量计算出天体的质量;3、计算中心天体的质量和密度;4、已知近地表运行周期求密度;5、已知地月/卫系统常识可以求出的物理量;6、不同纬度的重力加速度;7、其他星球表面的重力加速度;8、在地球上空距离地心r=R+h 处的重力加速度;9、天体自转对自身结构及表面g 的影响;10、不计自转,万有引力与地球表面的重力加速度。

知识点1:万有引力理论的成就一、“称量”地球的质量解决思路:若不考虑地球自转的影响,地球表面的物体的重力等于地球对物体的引力。

解决方法:mg =Gmm 地R 2。

得到的结论:m 地=gR 2G,只要知道g 、R 、G 的值,就可计算出地球的质量。

知道某星球表面的重力加速度和星球半径,可计算出该星球的质量。

二、计算天体的质量解决思路:质量为m 的行星绕阳做匀速圆周运动时,行星与太阳间的万有引力充当向心力。

解决方法:Gmm 太r 2=m 4π2T 2r 。

得到的结论:m 太=4π2r 3GT 2,只要知道引力常量G ,行星绕太阳运动的周期T 和轨道半径r 就可以计算出太阳的质量。

已知引力常量G ,卫星绕行星运动的周期和卫星与行星之间的距离,可计算出行星的质量。

运用万有引力定律,不仅可以计算太阳的质量,还可以计算其他天体的质量。

以地球质量,月球的已知量为例,介绍几种计算天体质量的方法。

已知量求解方法质量的求解公式月球绕地球做匀速圆周运动的周期为T,半径为r 根据万有引力等于向心力,得222GM mm rr T月地月2324rMGT地月球绕地球做匀速圆周运动的半径r和月球运行的线速度v 地球对月球的引力等于月球做匀速圆周运动的向心力,得22M m vG mr r月地月2/M rv G地月球运行的线速度v和运行周期T 地球对月球的引力等于月球做匀速圆周运动的向心力,得2M mG m vr T月地月和22/M mG m v rr月地月两式消去r,解得:3/(2)M v T G地地球的半径R和地球表面的重力加速度g 物体的重力近似等于地球对物体的引力,得2M mmg GR地2R gMG地三、天体密度的计算类型分析方法已知天体表面的重力加速度g和天体半径R。

万有引力理论的成就(解析版)-高一物理同步精品讲义(人教版)

万有引力理论的成就(解析版)-高一物理同步精品讲义(人教版)
(2)双星的特点
如图所示为质量分别是m1和m2的两颗相距较近的恒星。它们间的距离为L。此双星问题的特点是:
①两星的运行轨道为同心圆,圆心是它们之间连线上的某一点;
②两星的向心力大小相等,由它们间的万有引力提供;
③两星的运动周期、角速度相同;
④两星的运动半径之和等于它们间的距离,即r1+r2=L。
(3)双星问题的处理方法
故选B。
7.有a、b、c、d四颗地球卫星,a还未发射,在地球赤道上随地球表面一起转动,b处于地面附近近地轨道上正常运动,c是地球同步卫星,d是高空探测卫星,各卫星排列位置如图,则有()
Avb>vc>vd
C.d的运动周期有可能是20小时
D.c在4个小时内转过的圆心角是
A.月球表面的重力加速度g月=
B.月球的质量m月=
C.月球的自转周期T=
D.月球的平均密度ρ=
知识点二、天体运动的分析与计算
1.一般行星(或卫星)的运动可看成匀速圆周运动,所需向心力由中心天体对它的万有引力提供.
基本公式:G =man=m =mω2r=m r.
2.忽略自转时,mg=G ,整理可得:GM=gR2.在引力常量G和中心天体质量M未知时,可用gR2替换GM,GM=gR2被称为“黄金代换式”.
答案6×1024kg
知识点一、天体质量和密度的计算
1.计算中心天体质量的两种方法
(1)重力加速度法
①已知中心天体的半径R和中心天体表面的重力加速度g,根据物体的重力近似等于中心天体对物体的引力,有mg=G ,解得中心天体质量为M= .
②说明:g为天体表面重力加速度.
未知星球表面重力加速度通常这样给出:让小球做自由落体、平抛、上抛等运动,从而计算出该星球表面重力加速度.

6.4万有引力理论的成就

6.4万有引力理论的成就

F (2)设该星体表面的重力加速度为g,则F=mg,g= m , 忽略星体的自转,物体所受重力等于万有引力,mg= GMm gR2 FR2 M FR2 3F R2 .M= G = Gm ,ρ= V = 4 3=4πGmR. Gm·πR 3
答案 (1)k只与中心天体的质量有关,不同的天体k值不 3F 同 (2) 4πGmR
课时作业
1 1 1.火星的质量和半径分别约为地球的10和2,地球表面 的重力加速度为g,则火星表面的重力加速度约为 ( B ) A.0.2 g C.2.5 g
解析
B.0.4 g D.5 g
物体在星球表面的万有引力近似等于它所受的重 g火 M火R地2 GMm GM 力.由 R2 =mg 得 g= R2 ,所以 g = 2,得 g 火= M地R火 0.4g.
)
C.人造地球卫星在地面附近的绕行速度和运动周期 D.地球同步卫星离地条件,根据题中各选项给 2πr 出的条件可选用的公式有T= v ① v2 Mm G 2 =m ② r r v2 mg=m r ③
由①②两式可知,若地球绕太阳运行的周期为T,日、 4π2r3 地间距离为r,则能计算出太阳的质量,M= GT2 ,不能 得出地球的质量,故A选项错误;由①②两式可以算出 4π2r3 地球质量M= GT2 ,其中T为月球绕地球运行的周期,r Tv 为月、地间距离,故B选项正确;由①式得出r= 2π ,代 Tv3 入②式得出地球质量为M= 2πG ,其中v、T分别表示人 造地球卫星的绕行速度和运行周期,故C选项正确;对D 选项,只知道同步卫星离地面的高度,不知道地球半 径,不能求出地球质量,故D选项错误. 答案 BC
(2)当绕月极地轨道的平面与月球绕地球公转的轨道平面 垂直,也与地心到月心的连线垂直(如图1所示).此时探 月卫星向地球发送所拍摄的照片,此照片由探月卫星传 送到地球最少需要多长时间?(已知光速为c)

万有引力理论的成就说课稿

万有引力理论的成就说课稿

《万有引力理论的成就》说课稿说课人:李鑫锐课题:&6.4 万有引力理论的成就课型:新授课(1课时)尊敬的各位专家、评委,大家好!我叫李鑫锐,来自鹤岗市第三中学。

今天我说课的内容是《万有引力理论的成就》一、#二、教材分析《万有引力理论的成就》是人教版高中新教材必修2第六章第4节。

教材的第六章是万有引力与航天,高考重点考察查运用万有引力定律及向心力公式分析人造卫星的绕行速度,运行周期以及计算天体的质量、密度等。

第4节正是涉及计算天体质量和密度这一部分内容,是高考的重要考点。

该节承接第3节万有引力定律,通过卡文迪许测量G值进而得到地球质量这一说法,将学生引入并使之体会,理解万有引力理论的巨大作用和价值。

使学生掌握了万有引力充当向心力的研究方法同时,也为第5节学习人造卫星的知识做了铺垫。

三、学生分析学生在上一节当中已经学习了万有引力定律,并可以对两个物体之间的万有引力进行简单计算。

但学生对万有引力定律有什么价值,有哪些作用和影响还没能够有一个足够的认识。

对于公式的深刻理解以及灵活运用上还很欠缺。

另外,学生对于重力和万有引力之间的关系应该有一些困惑。

这节课的教学内容也就会针对这些方面展开,并在这一过程中渗透情感价值观教育。

四、教学目标根据课程要求和学生的认知结构,制定了以下的学习目标。

知识与技能:#1.万有引力与重力的关系2.利用万有引力计算地球和其他天体质量3.了解用万有引力知识发现未知天体的过程过程与方法:1.使学生了解为什么在地球表面重力近似等于万有引力,并依此计算出地球的质量2.了解万有引力定律在天文学上的重要应用,理解并运用万有引力定律处理天体问题的思路方法.情感态度与价值观:1.学习利用万有引力计算地球等天体的质量和密度的方法,让学生感受科学巨大的魅力。

、2.通过了解发现新行星的过程,使学生认识到科学发展过程的曲折和复杂,体会科学对人类发展的巨大作用。

四、重点与难点教学的重点在于运用万有引力计算天体质量和密度,难点在于如何让学生根据已知条件去选用恰当的方法解决天体问题。

万有引力定律计算天体

万有引力定律计算天体

02
天体的基本概念
BIG DATA EMPOWERS TO CREATE A NEW
ERA
天体的定义
总结词
天体是指宇宙空间中除地球和其大气层之外的物体。
详细描述
天体是宇宙中的物质和能量形式,包括恒星、行星、卫星、彗星、星云、星团等 。它们在宇宙中以各种形式存在,对宇宙的结构和演化起着重要作用。
天体的分类
多学科交叉融合
天体计算技术的发展将与物理学、数学、计算机科学等多个学科交 叉融合,形成更全面和深入的研究体系。
THANKS
感谢观看
BIG DATA EMPOWERS TO CREATE A NEW ERA
03
万有引力定律在天体计算中的应用
天体质量的计算
总结词
天体质量的计算是利用万有引力定律的一个重要应用,通过测量天体的轨道运动参数, 可以推算出天体的质量。
详细描述
天体的质量可以通过测量其绕行天体的轨道运动参数来计算。根据万有引力定律,两个 物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。通过测量绕行 天体的轨道半径和周期,可以推算出中心天体的质量。这种方法在天文学中广泛应用,
太空探测器的轨道计算
探测器轨道设计
太空探测器需要精确的轨道设计以实现科学 目标。利用万有引力定律,可以计算探测器 绕行星或卫星的轨道,并优化其科学观测路 径。
引力扰动分析
在深空探测中,天体之间的引力相互作用会 对探测器轨道产生扰动。通过精确计算和分 析这些扰动,可以预测探测器的轨道变化,
并采取相应措施进行修正和调整。
详细描述
万有引力定律的公式为 F=G(m1m2)/r^2,其中 F 是两个质点 之间的万有引力,G 是自然界的常量, m1 和 m2 是两个质点的质量,r 是两 个质点之间的距离。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万有引力理论的成就之天体的计算方法
一、计算天体的质量基本思路
1.地球质量的计算
利用地球表面的物体,若不考虑地球自转,质量为m 的物体的重力等于地球对物体的万有引
力,即mg =GMm R 2,则M =gR 2G
,由于g 、R 已经测出,因此可计算出地球的质量.
2.太阳质量的计算
利用某一行星:由于行星绕太阳的运动,可看做匀速圆周运动,行星与太阳间的万有引
力充当向心力,即G Mm r 2=mω2r ,而ω=2πT
,则可以通过测出行星绕太阳运转的周期和轨道半径,得到太阳质量M =4π2r 3GT 2. 3.其他行星质量的计算
利用绕行星运转的卫星,若测出该卫星绕行星运转的周期和轨道半径同样可得出行星的质量.
二、计算天体的质量具体方法
1.“称量”地球的质量
如果不考虑地球自转的影响,地球上的物体所受重力等于地球对它的万有引力.
由万有引力定律mg =GMm R 2 得M =gR 2G
,其中g 为地球表面的重力加速度,R 为地球半径,G 为万有引力常量. 从而得到地球质量M =5.96×1024 kg .
通过上面的过程我们可以计算地球的质量,通过其它的方法,或者说已知另外的一些条件能否测出地球质量.
2.天体质量计算的几种方法
(1)若已知月球绕地球做匀速圆周运动的周期为T ,半径为r ,根据万有引力等于向心力,
即GM 地·m 月r 2=m 月r ⎝ ⎛⎭
⎪⎫2πT 2,可求得地球质量M 地=4π2r 3GT 2. (2)若已知月球绕地球做匀速圆周运动的半径r 和月球运动的线速度v ,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得
G M 地·m 月r 2=m 月v 2r
. 解得地球的质量为M 地=rv 2/G.
(3)若已知月球运行的线速度v 和运行周期T ,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得
G M 地·m 月r 2=m 月·v·2πT
. G M 地·m 月r 2=m 月v 2r
. 以上两式消去r ,解得
M 地=v 3T/(2πG).
(4)若已知地球的半径R 和地球表面的重力加速度g ,根据物体的重力近似等于地球对物体的引力,得
mg =G M 地·m R 2, 解得地球质量为M 地=R 2g G
. 由以上论述可知,在万有引力定律这一章中,求天体质量的方法主要有两种:一种方法
是根据天体表面的重力加速度来求天体质量,即g =G M R 2,则M =gR 2G
,另一种方法是根据天体的圆周运动,即根据天体做匀速圆周运动的向心力由万有引力提供,列出方程:
G Mm r 2=m 4π2T 2r =m v 2r =mω2r 来求得质量M =4π2r 3GT 2=v 2r G =ω2r 3G
用第二种方法只能求出圆心处天体质量(即中心天体).
3.天体密度的计算
(1)利用天体表面的重力加速度来求天体的自身密度.
由mg =GMm R 2和M =ρ·43
πR 3, 得ρ=3g 4πGR
. 其中g 为天体表面重力加速度,R 为天体半径.
(2)利用天体的卫星来求天体的密度.
设卫星绕天体运动的轨道半径为r ,周期为T ,天体半径为R ,则可列出方程:
G Mm r 2=m 4π2T 2r ,M =ρ·43
πR 3, 得ρ=M 43πR 3=4π2r 3/GT 243
πR 3=3πr 3GT 2R 3. 当天体的卫星环绕天体表面运动时,其轨道半径r 等于天体半径R ,则天体密度为:
ρ=3πGT 2. 名师点拨:在已知重力加速度求天体质量或密度时,通常可以利用重力等于万有引力,重力就是环绕天体运动的向心力以及圆周运动的规律求解.
名师点拨:在行星表面的物体的重力等于行星对它的万有引力,在行星附近飞行的飞船,由万有引力提供其做圆周运动的向心力.。

相关文档
最新文档