脱硫塔计算

脱硫塔计算
脱硫塔计算

脱硫设计计算

4.2废气处理工艺选择 综上比较可知,几种主要的湿法除硫的比较可知:双碱法不仅脱硫效率高(>95%),吸收剂利用率高(>90%)、能适应高浓度SO2烟气条件、钙硫比低(一般<1.05)、采用的吸收剂价廉易得、管理方便、能耗低、运行成本低,不产生二次污染,所以本次设计采用双碱法进行脱硫。 4.2.2 工艺说明 脱硫工艺原理: 干燥塔废气经洗涤塔进行降温后,进入旋风除尘器除尘,然后进入双碱法脱硫除尘系统,双碱法脱硫除尘系统采用NaOH作为脱硫吸收剂,将脱硫剂经泵打入脱硫塔与烟气充分接触,使烟气中的二氧化硫与脱硫剂中的NaOH进行反应生成Na2SO3,从脱硫塔排出的脱硫废水主要成分是Na2SO3溶液,Na2SO3溶液与石灰反应,生成CaSO3和NaOH,CaSO3经过氧化,生成CaSO4沉渣,经过沉淀池沉淀,沉淀池内清液送入上清池,沉渣经板框压滤机进一步浓缩、脱水后制成泥饼送至煤灰场,滤液回收至上清池,返回到脱硫塔/收集池重新利用,脱硫效率可达95%以上。 工艺过程分为三个部分: 1石灰熟化工艺: 生石灰干粉由罐车直接运送到厂内,送入粉仓。在粉仓下部经给料机直接供熟化池。为便于粉仓内的生石灰粉给料通畅,在粉仓底部设有气化风装置和螺旋输送机,均匀地将生石灰送入熟化池内,同时按一定比例加水并搅拌配制成一定浓度的Ca(OH)2浆液,送入置换池。 配制浆液和溶液量通过浓度计检测。 2吸收、再生工艺: 脱硫塔内循环池中的NaOH溶液经过循环泵,从脱硫塔的上部喷下,以雾状液滴与烟气中的SO2充分反应,生成Na2SO3溶液,在塔内循环,当PH值降低到一定程度时,将循环液打入收集池,在置换池内与Ca(OH)2反应,生成CaSO3浆液。将浆液送入氧化池氧化,生成CaSO4沉渣,送入沉淀池。向置换池中加Ca(OH)2和NaOH都是通过PH 计测定PH值后加入碱液,脱硫工艺要求的PH值为9~11。 3废液处理系统:

脱硫塔设计

目录 1.设计任务书 (2) 1.1 设计题目 (2) 1.2 设计内容 (2) 1.3 主要设计参数 (3) 2.脱硫工艺的选择与工艺流程简介 (3) 2.1 脱硫工艺的选择 (3) 2.2 工艺流程简介 (4) 3. 工艺流程中主要发生的化学反应 (5) 4. 脱硫塔设计 (6) 4.1 物料衡算 (6) 4.1.1 入塔的煤气质量 (6) 4.1.2 出塔煤气的变化量 (8) 4.1.3 m3的计算 (12) 4.1.4 m4的计算 (12) 4.1.5 脱硫塔的液气比 (12) 4.2 热量衡算 (12) 4.2.1 入塔脱硫煤气带入的热量 (12) 4.2.2 出脱硫塔的煤气带走的热量 (13) 4.2.3 脱硫过程中发生的熔解热和反应热 (14) 4.2.4 总的热量衡算 (15) 4.3 设备计算 (15) 4.3.1 选择填料 (15) 4.3.2 塔径的计算 (16) 4.3.3 传质面积和填料高度 (17) 5.脱硫塔工艺设计结果表 (18) 5.1 总表 (18) 5.2 煤气入塔物质汇总表 (19) 5.3 出塔物质汇总表 (20) 5.4 其他数据 (20) 6.设计小结 (20) 7.参考文献 (23)

1. 设计任务书 1.1 设计题目 干煤气量为 40000Nm 3/h 的炼焦煤气的脱硫的工艺计算。 入口煤气 出口煤气 温度/℃ 34 36 压力(表压)/Pa 17000 15000 煤气中S H 2含量/g/Nm 3 99.5 1.0 入口煤气中杂质的含量: 组分 焦油 苯 S H 2 HCN 3NH 萘 水汽 含量/g/Nm 3 微量 28.45 5.99 1.57 8.37 0.4 23.97 剩余氨水:12470Kg/h ,t=75℃,P=0.45MPa ,氨的质量分数10%。 1.2 设计内容 (1)脱硫工艺的选择与工艺流程介绍; (2)脱硫塔的物料衡算; (3)脱硫塔的工艺尺寸计算; 3NH S H 2 2CO HCN 挥发氨 24Kg/h 97%3NH 0.18g/L 1.3g/L 0.04g/L 固定氨 18Kg/h 90%3NH

双碱法烟气脱硫计算

双碱法计算过程 标态:h Nm Q /4000030= 65℃:h m Q /4952340000273 6527331=?+= 还有约5%的水份 如果在引风机后脱硫,脱硫塔进口压力约800Pa ,出口压力约-200Pa ,如果精度高一点,考虑以上两个因素。 1、脱硫塔 ⑴ 塔径及底面积计算: 塔内流速:取s m v /2.3= m v Q r r v vs Q 17.12 .314.33600/49532121=?==???==ππ D=2r=2.35m 即塔径为2.35米。底面积S=∏r 2=4.3m 2 塔径设定为一个整数,如2.5m ⑵ 脱硫塔高度计算: 液气比取L/G= 4,烟气中水气含量设为8% SO 2如果1400mg/m3,液气比2.5即可,当SO2在4000mg/m3时,选4 ① 循环水泵流量:h m m l HG Q G L Q /1821000)08.01(495324) /(100033=-??=??= 取每台循环泵流量=Q 91m 。选100LZ A -360型渣浆泵,流量94m 3/h ,扬程22.8米, 功率30KW ,2台 ② 计算循环浆液区的高度: 取循环泵8min 的流量,则H 1=24.26÷4.3=5.65m 如此小炉子,不建议采用塔内循环,塔内循环自控要求高,还要测液位等,投资相应大一点。 采用塔外循环,泵的杨程选35m ,管道采用碳钢即可。 ③ 计算洗涤反应区高度

停留时间取3秒,则洗涤反应区高度H2=3.2×3=9.6m ④除雾区高度取6米 H3=6m ⑤脱硫塔总高度:H=H1+H2+H3=5.65+9.6+6=21.3m 塔体直径和高度可综合考虑,直径大一点,高度可矮一点,从施工的方便程度、场地情况,周围建筑物配套情况综合考虑,可适当进行小的修正。如采用塔内循环,底部不考虑持液槽,进口管路中心线高度可设在2.5m,塔排出口设为溢流槽,自流到循环水池。塔的高度可设定在16~18m 2、物料恒算 每小时消耗99%的NaOH 1.075Kg。每小时消耗85%的CaO 60.585Kg。石灰浆液浓度:含固量15%,可得石灰浆液密度1.093。按半小时配置一次石灰浆液计算,每次配置石灰浆液的体积是185m3。 浆液区的体积是24.26 m3。 石灰浆液按浆液区体积的10% 的流量(即石灰浆液泵的流量为 2.4 m3/h)不间断往塔内输送浆液。石膏浆液排出泵按浆液区体积的20% 的流量(即石膏浆液排出泵的流量为4.8 m3/h)不间断往塔外输出石膏浆液。由计算可得每小时产石膏干重0.129吨。 蒸发水分量2.16 m3/h。除雾器及管道冲洗水量约为3 m3/h。补充碱液量按按浆液区体积的10% 的流量(即碱液泵的流量为 2.4 m3/h)不间断往塔内输送碱液进塔部分:石灰浆液2.4 m3/h + 除雾器及管道冲洗水量3 m3/h + 补充碱液量2.4 m3/h 出塔部分:石膏浆液4.8m3/h +蒸发水分量2.16 m3/h 若氧化还原池按两塔5小时排出浆液量计算,则容积应为3.6×2×5=36 m3 如果采用塔外循环,循环水池也即再生、沉淀、碱水池可设定容量为250m3,有效容积200m3,池高度≤4m(便于抽沉淀),循环水停留时间设定为1小时。石灰采用人工加料,沉淀用离心渣泵或潜水渣泵抽出,采用卧式离心机脱水。

脱硫塔的设计

目录 1 处理烟气量计算 (3) 2 烟气道设计 (3) 3吸收塔塔径设计 (3) 4 吸收塔塔高设计 (3) 5 浆液浓度的确定 (5) 6 喷淋区的设计 (5) 7 除雾器的设计 (7) 8 氧化风机与氧化空气喷管 (9) 9 塔内浆液搅拌设备 (9) 10 排污口及防溢流管 (9) 11 附属物设计 (10) 12 防腐 (10)

脱硫塔的结构设计,包括储浆段、烟气入口、喷淋层、烟气出口、喷淋层间距、喷淋层与除雾器和脱硫塔入口的距离、喷喷嘴特性(角度、流量、粒径分布等)、喷嘴数量和喷嘴方位的设计 烟道设计 塔体设计: 脱硫塔上主要的人孔、安装孔管道孔:除雾器安装孔,每级至少一个;喷淋浆液管道安装孔,至少一个;脱硫塔底部清渣孔,至少一个;烟气入口烟道设置一人孔,以便大修时清理烟道可能的积垢。 脱硫塔上主要的管孔:循环泵浆液管道入口,一般为3个;液位计接口,一般为2~3个,石膏浆液排出口1~2个;排污口1个;溢流口1个;滤液返回口1个;事故罐浆液返回口1个;地坑浆液返回1个;搅拌机接口2~6个;差压计接口2~4个。 储液区:一般塔底液面高度h1=6m~15m; 喷淋区:最低喷淋层距入口顶端高度h2=1.2~4m;最高喷淋层距入口顶端高度h3≥vt,v为空塔速度,m/s,t为时间,s,一般取t≥1.0s;喷淋层之间的间距h4≥1.5~2.5m; 除雾区:除雾器离最近(最高层)喷淋层距离应≥1.2m,当最高层喷淋层采用双向喷嘴时,该距离应≥3m;除雾器离塔出口烟道下沿距离应≥1m; 喷淋泵 喷淋头 曝气泵

1 处理烟气量计算 得到锅炉烟气量,根据实际的气体温度转化成当时的处理烟气量。根据燃料的属性计算出烟气中SO2的含量,并根据国家相关环保标准以及甲方的要求确定烟气排放SO2的含量,并计算脱硫效率 2 烟气道设计 进气烟道中的气速一般为13m/s,排气烟道中的气速一般为11m/s,由此算出截面积,烟道截面一般为矩形,自行选取长宽。 3吸收塔塔径设计 直径由工艺处理烟气量及其流速而定。根据国内外多年的运行经验,石灰法烟气脱硫的典型操作条件下,吸收塔内烟气的流速应控制在u<4.0m/s为宜。(一般配30万kW机组直径为Φ13m~Φ14m,5万kW机组直径约为Φ6m~Φ7m)。 喷淋塔塔径D: 则喷淋塔截面面积 将D代入反算出实际气流速度u`: 4 吸收塔塔高设计 4.1 浆液高(h1) 由工艺专业根据液气比需要的浆液循环量及吸收SO2后的浆液在池内逐步氧化反应成石膏浆液所需停留时间而定,一个是停留时间大于4.5min 4.2 烟气进口底部至浆液面距离(c) 一般定为800mm~1200mm范围为宜。考虑浆液鼓入氧化空气和搅拌时液位有所波动;入口烟气温度较高、浆液温度较低可对进口管底部有些降温影响;加之该区间需接进料接管, 4.3 烟气进出口高度

(完整word版)烟气脱硫设计计算..docx

烟气脱硫设计计算 1130t/h 循环流化床锅炉烟气脱硫方案 主要参数:燃煤含 S 量1.5% 工况满负荷烟气量285000m3/h 引风机量 1台,压力满足 FGD 系统需求 要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程) 出口 SO2含量200mg/Nm 3 第一章方案选择 1、氧化镁法脱硫法的原理 锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应, 氧化镁法脱硫法 脱去烟气中的硫份。吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。净烟气 经过除雾器降低烟气中的水分后排入烟囱。粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。 吸收过程 吸收过程发生的主要反应如下: Mg(OH)2 + SO2→ MgSO3 + H2O MgSO3 + SO2 + H2O→ Mg(HSO3)2 Mg(HSO3)2 + Mg(OH)2→ 2MgSO3 + 2H2O 吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程 由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3 氧化成 MgSO4 。这个阶段化学反应如下: MgSO3 + 1/2O2→ MgSO4 Mg(HSO3)2 + 1/2O2→ MgSO4 + H2SO3 H2SO3 + Mg(OH)2→ MgSO3 + 2H2O MgSO3 + 1/2O2 → MgSO4 循环过程 是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。塔底吸收液pH 由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。当塔底浆液pH 低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀, 至 pH 达到设定值时停止补充氢氧化镁浆液。20 %氢氧化镁溶液由氧化镁粉加热水熟化产 生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底 部产生沉淀。 镁法脱硫优点 技术成熟 氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有 非常多的应用业绩,其中在日本已经应用了100 多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。 原料来源充足 在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160 亿吨 ,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的84.7%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃 肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。 脱硫效率高

柳钢烧结烟气脱硫塔湿烟囱高度的计算

柳钢烧结烟气脱硫塔湿烟囱高度的计算 2010年第2期冶金环境保护 柳钢烧结烟气脱硫塔湿烟囱高度的计算 易慧王责明钟威 (柳钢技术中心,广西柳州545002) 摘要本文采用P值法对柳钢烧结机头烟气脱硫系统湿烟囱的高度进行计算,并分析了不同建设高度对周围区域环境影响的程度,为今后烧结机头烟气脱硫系统烟囱的高度设计提供借鉴. 关键词烧结烟气氨法脱硫烟囱高度设计 1前言 广西柳州钢铁(集团)公司(以下简称柳 钢)2×83m烧结机头烟气脱硫工程是国内 首例钢铁企业成功实施运行的烧结烟气氨法 脱硫工程.该项目针对冶金工业烧结机头烟 气特点,采用自主研发的,具有自主知识产权 的”氨一硫铵烧结烟气深度脱硫工艺”技术 和”双循环三段式脱硫塔”装置,利用焦炉煤 气中的废氨作为脱硫剂吸附烟气中的二氧化 硫.该项目的实施,不仅填补了国内烧结机 头烟气脱硫空白,而且二氧化硫脱除效率 >95%以上,实现了烧结烟气深度脱硫,污 染物减排的目的;所产生的硫铵副产品为优 质的化工产品,具有较好的市场前景.该项 目的实施,使企业真正实现了”以废治废,循 环发展”.2008年2月,该项目在科技成果 鉴定中被中国金属学会认定为达到国际先进 水平;同年9月,被中国环保产业协会确定为 “国家重点环境保护实用技术示范工程”. 本工程采用氨法脱硫,烧结机机头的烟 气通过增压风机升压后进入脱硫塔,在脱硫 塔中先经过降温除尘段,然后进入吸收段,在 吸收段与脱硫塔上部喷晒而至的吸收液(亚 硫酸铵和氨水的混合液)逆向接触并发生化 学反应,生成亚硫酸铵经过滤,氧化,蒸发结 晶最终得到硫铵副产品,去除SO,的烟气经 由除雾器除去水雾后,由布置于脱硫塔顶部 的烟囱排人大气.烟囱设在脱硫塔顶,采用 塔基湿烟囱,原设计总高63米,经实际运行, 外排烟气含水量较大,在南风,低气压等极端 天气下,尾气下沉,形成浅雾,影响感官,同 时,烟气中所含NO也影响烧结办公楼,综

脱硫计算公式比较全

湿法脱硫系统物料平衡 一、计算基础数据 (1)待处理烟气 烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry) 烟气温度:114℃ 烟气中SO2浓度:3600mg/Nm3 烟气组成: 组分分子量V ol% mg/Nm3 SO264.06 0.113 3600(6%O2) O232 7.56(dry) H2O 18.02 4.66 CO244.01 12.28(dry) N228.02 80.01(dry) 飞灰200 石灰石浓度:96.05% 二、平衡计算 (1)原烟气组成计算 组分V ol%(wet) mg/Nm3kg/h Kmol/h SO20.108 3226 (7.56%O2) 3797 59.33 O27.208 127116 3972.38 H2O 4.66 46214 2564.59 CO211.708 283909 6452.48 N276.283 1177145 42042.89 飞灰200(dry)235 合计1638416 55091.67 平均分子量(0.108×64.06+7.208×32+4.66×18.02+11.708×44.01+76.283×2 8.02)/100=29.74 平均密度 1.327kg/m3

(2)烟气量计算 1、①→②(增压风机出口→ GGH出口): 取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h×(1-0.5%)=1228324Nm3/h=1629634kg/h 泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。 温度为70℃。 组分V ol%(wet) mg/Nm3kg/h Kmol/h SO20.108 3226 (7.56%O2) 3778 59.03 O27.208 126480 3952.52 H2O 4.66 45983 2551.78 CO211.708 282489 6420.22 N276.283 1171259 41832.68 飞灰200 234 合计1630224 54816.21 2、⑥→⑦(氧化空气): 假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。 取O/S=4 需空气量=56.43×4/2/0.21=537.14kmol/h×28.86(空气分子量)=15499.60kg/h,约12000Nm3/h。 其中氧气量为537.14 kmol/h×0.21=112.80 kmol/h×32=3609.58kg/h 氮气量为537.14 kmol/h×0.79=424.34 kmol/h×28.02=11890.02kg/h。 氧化空气进口温度为20℃,进塔温度为80℃。 3、②→③(GGH出口→脱硫塔出口): 烟气蒸发水量计算: 1)假设烟气进塔温度为70℃,在塔内得到充分换热,出口温度为40℃。由物性数据及烟气中的组分,可计算出进口烟气的比热约为0.2536kcal/kg.℃,Cp (40℃) =0.2520 kcal/kg.℃。 Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃ 氧化空气进口温度为80℃,其比热约为0.2452 kcal/kg.℃,Cp(40℃)

烟气脱硫设计计算

烟气脱硫设计计算 1?130t/h循环流化床锅炉烟气脱硫方案 主要参数:燃煤含S量1.5% 工况满负荷烟气量285000m3/h 引风机量1台,压力满足FGD系统需求 要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程) 出口SO2含量?200mg/Nm3 第一章方案选择 1、氧化镁法脱硫法的原理 锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应, 氧化镁法脱硫法 脱去烟气中的硫份。吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。净烟气经过除雾器降低烟气中的水分后排入烟囱。粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。 吸收过程 吸收过程发生的主要反应如下: Mg(OH)2 + SO2 → MgSO3 + H2O MgSO3 + SO2 + H2O → Mg(HS O3)2 Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O 吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程 由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。这个阶段化学反应如下: MgSO3 + 1/2O2 → MgSO4 Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3 H2SO3 + Mg(OH)2 → MgSO3 + 2H2O MgSO3 + 1/2O2 → MgSO4 循环过程 是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。 镁法脱硫优点 技术成熟 氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有非常多的应用业绩,其中在日本已经应用了100多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。 原料来源充足 在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160亿吨,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的84.7%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。 脱硫效率高

脱硫塔设计

1、 筒体壁厚计算(所选材料为Q235B )。 筒体承受内压 []c t c p D p i -?=φσδ2 式中 δ:计算厚度 mm c p :计算压力 157.6a MP φ:焊接接头系数 φ=0.85 []t σ:设计温度下的材料许用应力157.6a MP ,在工作压力下材料的许用应力为 157.6a MP i D :筒体内径 3000mm 工作压力Pw=1010.353毫米汞柱=1010.353×13.6×9.8=0.135MPa ,所以设计压力P=1.1Pw=0.1485MPa ,Pc=P=0.1485MPa []mm p D p c t c i 07.2.148505.806.157230001485.02=-???=-?=φσδ 由《塔器设计技术规定》中有关规定,mm 6.51000/22800m in =?=δ,所以 mm 6.5=δ。 负偏差 mm C 8.01= 腐蚀裕量 mm C 22= 名义厚度为mm C C n 4.821=++=δδ,做塔设备时综合考虑取mm n 12=δ. 2、塔顶处封头壁厚计算(所选材料为Q235B ) 选用半顶角为α=45°的折边锥型封头,由公式 []αcos 12c c t c p D p -=φσδ 式中 Dc —锥壳计算内直径,mm δ—锥壳计算厚度,mm α—锥壳半顶角,(°)。 mm 03.245cos 1 1485.05.806.15723000 1485.0=??-???=δ 因mm 6.5m in =δ,所以mm 6.5=δ。

名义厚度为mm C C n 4.821=++=δδ,选取锥形封头壁厚与筒体的壁厚相同, mm n 12=δ,由《化工设备机械基础》表8-30查得,公称直径为2800mm 的折边锥形封头, H=0.562×2800=1573.6mm ,直边高度为mm h 25=。 3、各管管径的计算 1)半水煤气进口 u :半水煤气流速,取u =14 m/s Vs :半水煤气流量,Vs=16866.57 m 3/h m u d i 65.01414.3360057 .1686643600Vs 4=???=???==∴π 管子规格:φ720×8mm 管法兰:HG20592-97 法兰 PLDN700-0.6 RF 2)半水煤气出口 u :半水煤气流速,取u =13 m/s Vs :半水煤气流量,Vs=16866.57 m 3/h m u d i 68.01314.3360057 .1686643600Vs 4=???=???==∴π 管子规格:φ720×8mm 管法兰:HG20592-97 法兰 PLDN700-0.6 RF 3)人孔的设计 由《化工设备设计全书》中关于人孔的有关规定,选取人孔公称直径DN=500mm ,公称压力PN=1.0 外伸接管规格:φ530×8mm 管法兰:HG20592-97 法兰 PLDN500-1.0 RF 人孔手柄:选用φ20mm 圆钢 4)脱硫液进口 u :脱硫液流速,取u =1m/s V h :脱硫液流量,V h =333m 3/h m u d i 343.0114.33600333 43600Vh 4=???=???==∴π 管子规格:φ400×4mm 管法兰:HG20592-97 法兰 PLDN400-0.6 RF 5)脱硫液出口 u :脱硫液流速,取u =1 m/s

脱硫塔倒装方案与计算

脱硫塔倒装方案 1概述 脱硫塔是火力发电厂锅炉尾部烟气脱硫系统的主要设备,一般由底部环板、底板、壁板、内部装置、塔帽、塔体加强环板及塔体上的附件等组成。各部件均为分片或分瓣加工,现场组对安装。 2脱硫塔倒装的特点 脱硫塔正装需组装平台,并配备大型吊车吊装,随着安装高度的增加组装焊接均在高空作业,需要大量的架杆架板和安全防护设施,高空作业危险因素也随之增加,这不但使安装效率降低,成本也较高。因此,脱硫塔采用倒装可以克服上述缺点,不需要组合平台,在脱硫塔基础上布置立柱采用倒链即可实现起吊;施工人员在地面作业,减少了高空作业,降低了危险因素;只需1台小型吊车即可满足脱硫塔的安装,提高了施工效率,节约了费用。 3脱硫塔倒装工艺原理 倒装法原理:先从上部组装开始,依次从上到下进行提升安装,施工的顺序是:底环板组对安装,顶部第一层壁板组对,一层提升二层组对,塔顶组对安装,二层提升第三层壁板板组对安装,然后逐层组对提升安装,下层组对安装与环板连接。在组对提升安装过程中逐层将能装部件同时进行组对安装。 图一倒装法施工工艺图示

由于选择的是抱杆式顶升装置,因此起升时需要相应的提升装置进行塔体的吊装,本次采用倒链吊装。抱杆采用无缝钢管16个,均匀分布在底板四周,在其上焊接吊耳。安装时,在塔体内侧焊接吊耳,采用手拉葫芦将组合好的塔体提起,以便于下一层的塔体的安装。 4脱硫塔倒装程序 4.1 底板边缘环板安装 检查基础,预安装底环板,就位位置与基础中心距离误差±2mm。通过垫铁调整至正确的标高,允许误差±3mm。连接底环板与地脚螺栓。完成各环板之间的焊接。底环板由弧段组成,单件制造时应对扭曲度加以限制,尺寸误差采用预组装后与大样对比的检测方式,允许误差为±3mm(半径),组装后平面度允许误差不大于±3mm。 4.2 底板安装 脱硫塔底板的铺设前应对其下表面涂刷防腐涂料,每块底板边缘50mm不刷。脱硫塔底板在铺设前必须严格控制变形,将底板按照编号依次摆放在基础底梁上,相邻两底板的间隙在4~10mm,摆放时应注意底板的下面不要将防腐漆划伤。中心底板铺好后,将基础上表面的十字中心线反至底板表面,找出中心,并做出明显标志。铺板时,应保证设计要求的搭接宽度,在边缘扇形板与环板重叠处,应将上层底板切角或打磨。在铺板过程中,先将板端短缝点焊。 底板组装过程中,各板件的应力不能太大;校平工作,特别在焊接接头附近,不能造成材料的损坏。安装时不得在产品表面直接用铁棰尖端锤击,确需锤击时,应加相应的垫板。底板安装完后,应进行贴合检查,其方法是用木棰敲打,听到密实回声即为合格,密实度必须达到75%以上。 为了减少变形,焊接应从底板四周向中心施焊,先焊短缝,再隔条点焊长缝,然后焊接。无论是焊接短缝还是长缝,均采用分段退焊的方法,焊工均匀分布,同时施焊。在满焊前,每块底板需用重的钢梁或其它重物与支撑结构压紧。 4.3 顶层壁板安装 倒装法施工,首先安装顶层壁板。在吊车的配合下,按照排板依次将壁板吊装就位,一边吊装,一边点焊纵缝(留出有安装余量的一道纵缝不点焊)。对口间隙应符合设计要求,待该层壁板全部吊装组对完成以后,在内侧沿焊缝自上而

烟气脱硫塔设计

烟气脱硫塔设计 一、塔的总体布置 烟气量按220000m3/h,进口SO2为3000mg/m3,脱硫后≤200mg/m3 1、塔径确定: 对于逆流型喷淋塔,烟气流速为3-4.5m/s,按3.5m/s计算 脱硫塔内操作温度为50度,烟气流量校正为: 220000*(273+50)/(273+20)=242525.6m3/h 塔径为 (242525.6/3600/3.5/0.785)1/2=4.95m 塔径取:5m 烟气流速校正为:3.43m/s 2、吸收区高度 吸收区高度h1一般指烟气进口水平中心线到喷淋层中心线的距离。 容积吸收率的定义为:含有二氧化硫的烟气通过喷淋塔,塔内喷淋浆液将烟气中的SO2浓度降低到符合排放标准的程度,将此过程中塔内总的二氧化硫吸收量平均计算到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷—平均容积吸收率。 经验值:容积吸收率为5.6-6.5 kg/(m3.h),取6 吸收区高度: h=1.5*220000*0.003/(5*5*0.785)/6=8.4m 取:m 在吸收区,喷淋层布置一般为2-6层,层间距0.8-2m。 本设计方案喷淋层设为4层,层间距2m。 3、烟气进口高度: 根据工艺要求,进出口流速(一般为12m/s-30m/s)确定进出口面积,一般希望进气在塔内能够分布均匀,且烟道呈正方形 进口流速取:15m/s 进口烟气温度按130°,烟气流量校正: 220000*(273+130)/(273+20)=302594m3/h 烟气进出口宽度占塔内径的60%~90%。本设计取入口宽度为内径的60%, L=5000*0.6=3000 进口高度: 302594/3600/15/3=2m 4、烟气出口直径: 出口流速取:15m/s 出口烟气温度按50°,烟气流量校正:242525.6m3/h 出口直径: (242525.6/3600/15/0.785)1/2=2.4m 5、塔底储浆量、高度确定

脱硫吸收塔壁厚的计算

烟气脱硫吸收塔壁厚的计算 由于操作压力不大,假设计算壁厚小于16毫米,Q235B 钢板在操作温度下的许用应力为t ][σ=113Mpa 。 对于浆液池部分由于浆液会对塔壁产生压力,因此计算时还要这部分压力考虑在内,同时假设塔内的计算压力取0.202 MPa (2个标准大气压)P C ’=0.202+gh ρ(ρ为浆液密度1257kg/m 3,g=9.81m/s 2,h 浆液池高度9.00m ) 所以P C ’=0.202+gh ρ=0.202610?+1257×9.81×9.00=0.313×106Pa=0.313MPa 吸收塔(喷淋塔)的计算壁厚公式为: S=c t i c P D P -Φ][2σ (mm) 其中: P c 计算压力,对于浆液池以上部分取二倍大气压,0.202 MPa P C ’=0.313MPa D i 圆筒或者球壳内径,为5900mm Φ 焊接接头系数,取Φ=1; C 壁厚附加量,取 C=1.00mm C 2 腐蚀裕量,mm ; C 1 钢板厚度负偏差,mm 对于喷淋塔顶部以下浆液池以上的部分(简称上部分) S=c t i c P D P -Φ][2σ=mm 27.58 .2251191.8202.0111325900202.0==-??? 根据取腐蚀裕量C 2=1.00mm, C 1=0.6mm 则 C 1 + C 2=0.8+1=1.6mm

5.27+C=5.27+1.6= 6.87mm 圆整后取S n = 7.00mm 因此脱硫塔上部分应该选用的壁厚为7.00mm 的Q235B 钢材,与上面的假设相符7.00mm 〈16.00mm 对于喷淋塔浆液池部分(简称下部分) S ’=mm P D P c t i c 18.8225.7 1846.7313.0111325900313.0][2''==-???=-Φσ 根据取腐蚀裕量C 2=1.00mm,C 1=0.75mm 则 C 1+ C 2=0.75+1=1.75mm 8.18+C=8.18+1.75=9.93mm 圆整后取S n ’=10mm 由计算得出,塔底部壁厚应选择10mm ,上部壁厚应选择7mm ,考虑到自然灾害(地震、强风等)影响,以及增加保险系数,脱硫塔壁厚做相应增加,底部钢板厚度选择14mm ,顶部钢板厚度选择8mm ,中部选择10~12mm 厚钢板作为过渡。

毕业设计--脱硫塔设计说明书

本科毕业设计说明书 题目:脱硫塔设计 学生姓名: 学院:化工学院 系别:过控系 专业:过程装备与控制工程 班级: 指导教师: 二〇一一年六月

摘要 脱硫塔是化工设备中的重要设备,是对工业废气进行脱硫处理的设备。是一种脱硫效率高,压力损失较低兼能除尘的脱硫设备,脱硫塔是运用旋流技术、射流技术、压力雾化技术和文丘里管技术,以碱性液为载体,将烟气中的尘、二氧化硫、碳氢化合物等有害物质从烟气中分离出来,吸收沉降,最后达到净化烟气的目的。 该脱硫塔选用填料塔作为其塔型,填料塔的基本特点是结构简单,压降降小,传质效率高,便于采用耐腐蚀材料制造等。其内部基本结构有除沫器、液体分布器、液体再分布器、漩涡喷头、支承板及填料压板。 该脱硫塔在设计的过程中参考《GB150-1998钢制压力容器》、《化工容器及设备简明设计手册》、《JBT4710-2005钢制塔式容器》等标准。该脱硫塔的设计包括塔内件的选取、设计方案、设计计算等内容,在过程中,通过查资料、数据的计算等一系列方法,整合设计所需资料及数据。经过老师的不断指点与自己的不断修改完善,最终形成本次设计。 关键词:脱硫塔填料塔

Abstract Desulfurization tower is an important equipment chemical equipment, is the industrial waste gas desulfurization process equipment.Is a high desulfurization efficiency, lower pressure loss and to dust desulfurization equipment, desulfurization tower is the use of hydrocyclone technology, jet technology, pressure atomization technology and Venturi tube technology to alkaline solution as the carrier, the flue gas of dust, sulfur dioxide, hydrocarbons and other harmful substances separated from the flue gas to absorb the settlement, the final purpose of purifying the flue gas. The desulfurization tower used as tower packing tower, packed tower of the basic features of simple structure, drop down a small, mass transfer efficiency, ease of use of corrosion-resistant materials and so o .The basic structure of the internal demister, liquid distributors, liquid re-distributor, the vortex nozzle, bearing plates and filler plate. The desulfurization tower in the design process of reference "GB150-1998 steel pressure vessel", "chemical containers and equipment Concise Design Manual", "JBT4710-2005 steel tower container" and other standards.The desulfurization tower design includes the selection of tower parts, design, design calculations, etc., in the process, through the information search, data calculation and a series of methods to integrate information and data required for the design.The teacher's constantly pointing with their constantly revised and improved, culminating in this design. Keywords: desulfurization tower packing tower

脱硫计算公式比较全

脱硫计算公式比较全

湿法脱硫系统物料平衡 一、计算基础数据 (1)待处理烟气 烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry) 烟气温度:114℃ 烟气中SO2浓度:3600mg/Nm3 烟气组成: 组分分子量Vol% mg/Nm3 SO264.06 0.113 3600(6%O2) O232 7.56(dry) H2O 18.02 4.66 CO244.01 12.28(dry) N228.02 80.01(dry) 飞灰200 石灰石浓度:96.05% 二、平衡计算 (1)原烟气组成计算 组分Vol%(wet) mg/Nm3kg/h Kmol/h SO20.108 3226 (7.56%O2) 3797 59.33 O27.208 127116 3972.38 H2O 4.66 46214 2564.59 CO211.708 283909 6452.48 N276.283 1177145 42042.89 飞灰200(dry)235 合计1638416 55091.67 平均分子量(0.108×64.06+7.208×32+4.66×18.02+11.708×44.01+76.283×2 8.02)/100=29.74 平均密度 1.327kg/m3

(2)烟气量计算 1、①→②(增压风机出口→ GGH出口): 取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h× (1-0.5%)=1228324Nm3/h=1629634kg/h 泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。 温度为70℃。 组分Vol%(wet) mg/Nm3kg/h Kmol/h SO20.108 3226 (7.56%O2) 3778 59.03 O27.208 126480 3952.52 H2O 4.66 45983 2551.78 CO211.708 282489 6420.22 N276.283 1171259 41832.68 飞灰200 234 合计1630224 54816.21 2、⑥→⑦(氧化空气): 假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。 取O/S=4 需空气量=56.43×4/2/0.21=537.14kmol/h×28.86(空气分子量)=15499.60kg/h,约12000Nm3/h。 其中氧气量为537.14 kmol/h×0.21=112.80 kmol/h×32=3609.58kg/h 氮气量为537.14 kmol/h×0.79=424.34 kmol/h×28.02=11890.02kg/h。 氧化空气进口温度为20℃,进塔温度为80℃。 3、②→③(GGH出口→脱硫塔出口): 烟气蒸发水量计算: 1)假设烟气进塔温度为70℃,在塔内得到充分换热,出口温度为40℃。由物性数据及烟气中的组分,可计算出进口烟气的比热约为0.2536kcal/kg.℃,Cp (40℃) =0.2520 kcal/kg.℃。 Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃

烟气脱硫塔结构设计

烟气脱硫塔结构设计 现代化管理第29卷2011年第2期(总第152期) 烟气脱硫塔结构设计 郭晓峰张金浩 (鞍钢集团工程技术有限公司鞍山114021) 摘要烧结机脱硫塔是圆形特殊钢结构形式.设计通过有限元分析软件对结构进行 整体建模,进行强度 和稳定分析,并对多种方案进行优化对比,而后进行优化设计. 关键词钢结构脱硫塔有限元稳定分析 1工程概况 鞍钢西区烧结机烟气脱硫工程是为适应国家减排要求增设的脱硫装置,属环保项目.脱硫塔是整个项目的核心.塔体总高55m,直径18.8m, 是国内最大规模的烟气脱硫塔. 抗震设防烈度7度,设计基本地震加速度值为 0.1Og,地震分组为第一组,场地类型为?类,基本雪压0.4kN/m,基本风压0.5kN/m. 旋挖灌注桩基础;塔体底部8根钢管混凝土柱围成圆形支架;中部钢结构圆柱形塔体;上部由16 根柱围成钢结构圆形检修间.由于工艺的特殊性,塔内温度180~C,最大内压7.5kPa,塔内灰仓荷载7600kN,塔壁挂灰荷载1000kN,结构设计计算上有较大难度. 2设计过程 根据工艺要求,参考国外建成项目的结构形式,脱硫塔主要分为底部支架,本体和上部结构三部分(见图1). 图1脱硫塔结构示意

(1)底部支架的钢柱采用~b630mm×12mm钢管混凝土(C40)结构,支撑采用H型钢. (2)脱硫塔本体结构比较复杂,外部是圆柱和圆锥组合,内部是碟形结构.本体结构均采用钢板和水平型钢加强环. (3)塔体上部圆形厂房采用H型钢围成的圆形柱撑体系,圆锥形钢架屋面. (4)计算过程如下,?通过有限元计算分析软件,对结构的强度,整体和局部稳定进行计算.? 将荷载进行线性组合,对模型进行特征值屈曲分析.?依据地震设防烈度7度(0.1g)对三类场地的地面加速度峰值进行调整,施加到模型底部结点进行动力时程分析. (5)结果分析,脱硫塔分析主要包括塔体等效应力(积分内力),杆件内力,整体屈曲模态,荷载因子和地震时程分析的峰值响应等.根据振型分析,整体结构振型均匀,结构刚度及质量分布均匀,抗震性能良好.依据工况组合作用的有限元分析,所有杆件的双轴弯曲稳定性演算均可以通过.通过事故工况组合控制杆件的稳定性演算和结构特征值屈曲分析,前六个模态荷载因子范围为1.644,2.475.事故工况及正常使用工况作用的几何非线性分析所得位移值较小.底部框架顶部最大水平位移Ux=16.015mm,塔本体顶部的最大水平位移Ux=20.02ram,上部的圆形厂房顶部最大水平位移Ux=23.409mm. 另外,底部支架用PKPM软件建模计算,与有限元软件的计算结果相近,说明计算结果可靠. (6)结构构件的设计,?钢管混凝土柱的设计原先曾考虑采用钢柱,经比较H形钢柱的用钢量较大,且两轴方向材料的利用不均衡;采用圆钢柱的用钢量也较大,柱直径需增大,柱顶节点不好处理,在充分考虑钢材和混凝土材料特点情况下最后决定采用钢管混凝土柱.塔体建成后外观感觉比较匀称美观.?脱硫塔本体以12mm 厚钢板围成的塔壁为主要受力构件,由于与上下柱连接部一 31—

相关文档
最新文档