脱硫塔设计计算

合集下载

双碱法烟气脱硫计算

双碱法烟气脱硫计算

双碱法计算过程标态:h Nm Q /4000030=65℃:h m Q /49523400002736527331=⨯+= 还有约5%的水份如果在引风机后脱硫,脱硫塔进口压力约800Pa ,出口压力约-200Pa ,如果精度高一点,考虑以上两个因素。

1、脱硫塔⑴ 塔径及底面积计算:塔内流速:取s m v /2.3=m v Q r r v vs Q 17.12.314.33600/49532121=⨯==⇒⋅⋅==ππ D=2r=2.35m 即塔径为2.35米。

底面积S=∏r 2=4.3m 2塔径设定为一个整数,如2.5m⑵ 脱硫塔高度计算:液气比取L/G= 4,烟气中水气含量设为8%SO 2如果1400mg/m3,液气比2.5即可,当SO2在4000mg/m3时,选4① 循环水泵流量:h m m l HG Q G L Q /1821000)08.01(495324)/(100033=-⨯⨯=⨯⨯= 取每台循环泵流量=Q 91m 。

选100LZ A -360型渣浆泵,流量94m 3/h ,扬程22.8米, 功率30KW ,2台② 计算循环浆液区的高度:取循环泵8min 的流量,则H 1=24.26÷4.3=5.65m如此小炉子,不建议采用塔内循环,塔内循环自控要求高,还要测液位等,投资相应大一点。

采用塔外循环,泵的杨程选35m ,管道采用碳钢即可。

③ 计算洗涤反应区高度停留时间取3秒,则洗涤反应区高度H2=3.2×3=9.6m④除雾区高度取6米H3=6m⑤脱硫塔总高度:H=H1+H2+H3=5.65+9.6+6=21.3m塔体直径和高度可综合考虑,直径大一点,高度可矮一点,从施工的方便程度、场地情况,周围建筑物配套情况综合考虑,可适当进行小的修正。

如采用塔内循环,底部不考虑持液槽,进口管路中心线高度可设在2.5m,塔排出口设为溢流槽,自流到循环水池。

塔的高度可设定在16~18m2、物料恒算每小时消耗99%的NaOH 1.075Kg。

湿法脱硫设备计算[1]

湿法脱硫设备计算[1]

一、工艺流程二、设计计算定额1.煤气处理量7000Nm3/h2.脱硫塔前煤气硫化氢含量0.8g/Nm33.脱硫塔后煤气硫化氢含量20mg/Nm34.脱硫效率98%5.脱硫塔煤气进口温度35℃6.脱硫塔煤气进口压力11000Pa7.脱硫塔煤气出口压力10000Pa三、设备计算1.脱硫塔:(见图一)进脱硫塔湿煤气体积为V=7000×[(273+35)/273]×[(1.01325×105)/(1.01325×105+11000-5720)]=7506m3/h (式中5720为35℃时饱和水蒸气压力Pa)脱硫塔进口吸收推动力为△p1=*11000/101325+1+×0.8×(22.4/34)×(1/1000)×101325=59.2PαH2S物质的量脱硫塔出口吸收推动力为△p2=*10000/101325+1+×0.02×(22.4/34)×(1/1000)×101325=1.5Pα硫化氢的吸收量为G=7000×[(800-20)/(1000×1000)]=5.46kg/h脱硫塔的传质系数K取为17×10-5kg/(m2·h·Pa),则需用传质面积为F=5.46/(17×10-5×15.7)=2046m2选用多孔组合洗涤环ZHΦ240,比表面90m2/m3,空隙率0.75m3/m3,需填料体积V1=2046/90=22.73m3。

取每层填料层高1.8m,则共需N=22.73/(1.8×0.785×22)=4.02,共设四层。

取脱硫吸收液的硫容量为0.20kg/m3,则溶液循环量(即脱硫塔顶的喷淋量)为L=5.46/0.20=27.3m3/h 喷淋密度校核:脱硫塔的喷淋密度为l=27.3/(0.785×22)=8.69m3/(m2·h);按喷淋密度27.5m3/(m2·h)计算得到的喷淋量为27.5×0.785×22=86.4m3;脱硫塔的液气比为(86.4×1000)/7506=11.5L/m3,符合脱硫塔的液气比要求。

半干法脱硫塔设计计算

半干法脱硫塔设计计算

半干法脱硫塔设计计算1. 引言随着环境保护要求的不断提高,脱硫技术在大气污染控制中扮演着重要的角色。

半干法脱硫塔是一种常用的脱硫设备,广泛应用于火电厂、钢铁厂等工业领域。

本文将介绍半干法脱硫塔设计的计算方法,旨在帮助工程师进行设计和优化。

2. 设计原理半干法脱硫塔是一种采用喷射液和干燥剂进行脱硫的设备。

其主要原理是将烟气通过喷射液和干燥剂的作用,使硫化物等污染物被氧化和吸附,从而达到脱硫的目的。

3. 设计参数在进行半干法脱硫塔设计前,需要明确一些设计参数,包括:•烟气流量•烟气温度•烟气含硫量•喷射液流量….4. 计算步骤半干法脱硫塔设计的计算步骤如下:4.1 计算喷射液需求量喷射液的需求量取决于烟气中硫化物的含量以及硫化物的吸收效率。

根据喷射液对硫化物的吸收效率可以得到喷射液的需求量。

4.2 计算干燥剂需求量干燥剂用于提高脱硫效果。

根据烟气中的硫含量和干燥剂对硫化物的吸附速度可以计算出干燥剂的需求量。

4.3 设计喷射器根据喷射液的需求量和喷射液的性质,设计喷射器的尺寸和布置。

喷射器的数量和布置对脱硫效果有重要影响。

4.4 设计底部结构底部结构的设计主要包括底板和集液器。

底板的设计需要考虑到喷射液的流动情况和污水的排放。

集液器的设计需要考虑到污水的收集和排放方式。

4.5 设计布袋半干法脱硫塔中的布袋是用于收集吸附了的硫化物和其他颗粒物的,其设计需要考虑到布袋的材质和尺寸。

4.6 设计风机和排气口风机和排气口的设计需要考虑到烟气的排放和脱硫效果,在设计过程中,需要确定风机的型号和参数,以及排气口的尺寸和位置。

4.7 设计吸收塔吸收塔的设计需要考虑到烟气和喷射液的接触方式和时间。

在设计过程中,需要确定吸收塔的高度和直径,以及内部的填料和喷射液的分布方式。

5. 总结半干法脱硫塔设计计算是一个复杂的过程,需要考虑多个因素。

本文简要介绍了半干法脱硫塔设计的计算方法,希望能对工程师在进行脱硫塔设计时提供参考和指导。

CFB半干法脱硫设计计算

CFB半干法脱硫设计计算

ηSO2 ηd0 ηsep ηd2 Δαd0 Δαd1 Δαd2 T2 TH2O Tslime nl0 nl nl1 nl2 Ca/S
% 给定 % 取用 % 给定 % 给定
选自除尘器参数资料 选自除尘器参数资料 选自除尘器参数资料 ℃ 给定 ℃ 给定 ℃ 给定 % 给定 % 给定 % 给定 % 给定 mol/mol 给定
符号 AFGDin LFGDin,1 LFGDin,2
H1 H2 Tav Vg,FGDav,r AFGD
单位 m2 m m m m ℃
m3/h m2
计算公式
数值
Vg,FGDin,r/(3600*w)
13.35974
选取
4
AFGDin/LFGDin,1
3.339935
选取
2
选取
2
(T1+T2)/2 (273.15+Tav)*Vg,FGDout/273.
名称 脱硫塔表观烟速 脱硫塔烟气停留时间 脱硫塔文丘里数量 脱硫塔喉口速度
符号 wFGD τ
n wth
单位 m/s s
计算公式 4.5~5 m/s 3~8s
m/s 选取
数值 5 4 7 28
3.2 序号
1 2 3 4 5 6 7 8
脱硫塔结构设计(附右 图)
名称 入口管道截面积 入口管道边长1 入口管道边长2 弯头高度 方圆节高度 脱硫塔平均烟气温度 脱硫塔实际烟气量 脱硫塔截面积
A Vg,FGDin,r
m2 m3/h
L1*L2 (273.15+T1)*Vg,FGDin/273.1 5
24 1394757
5
现有除尘器入口管道烟速
wESP
m/s Vg,FGDin,r/(3600*A)

脱硫塔计算

脱硫塔计算

地震影响系数最大值 场地土的特征周期 一阶振型阻尼比 基础标高
150 0.7 13300 12800 488 170 60 3 2 300 147 120 60 24 147
H 地脚螺栓座 下限 下限 16MnR δb [σ]bt d1 δG l2 Q235-A E
'
塔器高度
mm mm mm MPa mm mm MPa mm mm mm MPa
6锥段 8000/13000 12 3000 15537 3884 0 3501 500 0 0
7 8000 12 6250 14819 3705 0 4844 2400 0 0
8 8000 10 6250 12346 3087 0 4842 400 0 0
7000
9 8000 8 6250 9874 2469 0 4840 400 0 0 mm
2.52E+08 1.68E+08 4.03E+08 6.65E+08 9.70E+08 1.68E+09 4.14E+09
3.88E+07 2.22E+08 4.74E+08 7.65E+08 1.40E+09 2.90E+09
1.13E+08 3.59E+08 6.41E+08 1.23E+09 2.34E+09
28000 0.8644 0.5283 0.3692 1.5747 3000 9800 18138.02
34250 0.8772 0.6462 0.5060 1.7503 6250 5500 25115.98
40500 0.8872 0.7642 0.6830 1.9714 6250 5500 29827.07

脱硫各项计算公式

脱硫各项计算公式

脱硫各项计算公式脱硫是指通过化学或物理方法去除燃煤、燃油等燃料中的硫化物,以减少大气中的二氧化硫排放,保护环境。

在脱硫工程中,需要进行各项计算来确定设备的尺寸、操作参数等。

下面将介绍脱硫各项计算公式及其应用。

1. 脱硫效率计算公式。

脱硫效率是衡量脱硫设备去除硫化物的能力的重要指标。

脱硫效率的计算公式如下:脱硫效率 = (进口SO2浓度出口SO2浓度) / 进口SO2浓度× 100%。

其中,进口SO2浓度和出口SO2浓度分别表示进入脱硫设备的烟气中的二氧化硫浓度和离开脱硫设备后的二氧化硫浓度。

通过这个公式可以计算出脱硫设备的去除效果,为后续工艺设计和操作提供重要参考。

2. 石灰用量计算公式。

在石灰-石膏法脱硫工艺中,需要计算石灰的用量来保证脱硫效果。

石灰用量的计算公式如下:石灰用量 = (SO2排放浓度×烟气流量× 3600) / (100 × CaO含量×石灰利用系数)。

其中,SO2排放浓度表示烟气中的二氧化硫浓度,烟气流量表示单位时间内烟气的流量,CaO含量表示石灰中氧化钙的含量,石灰利用系数表示石灰的利用率。

通过这个公式可以计算出石灰的用量,为脱硫设备的运行提供指导。

3. 石膏产量计算公式。

在石灰-石膏法脱硫工艺中,石膏是脱硫产生的主要副产品,需要计算石膏的产量来合理处理。

石膏产量的计算公式如下:石膏产量 = SO2排放浓度×烟气流量× 3600 / 100。

通过这个公式可以计算出单位时间内产生的石膏量,为后续的石膏处理提供依据。

4. 脱硫塔液气比计算公式。

在湿法脱硫工艺中,需要计算脱硫塔的液气比来保证脱硫效果。

脱硫塔液气比的计算公式如下:液气比 = (进口SO2浓度×烟气流量) / (脱硫液循环速率× 3600)。

其中,进口SO2浓度和烟气流量表示进入脱硫塔的烟气中的二氧化硫浓度和烟气流量,脱硫液循环速率表示单位时间内脱硫液的循环速率。

脱硫塔基础计算模板

脱硫塔基础计算模板

π
D1 2
2
HL
12
1.1
π
D1 2
+
a1 +
2
a2
+
LL
= 14.363
+
a1 +
2
a2
h2 +
π
D1 2
+
2
a1
( h1 +
0.1)
= 761.271
π
D1 2
2
HL
12 +
G+
G1 +
V
25 +
LL +
Fy +
Fv
...
F1 :=
+
π
D1 2
+
a1
+
a2
2
-
D1 2
+
a1
2
h1
18
π
D1 2
+
a1
+
2
a2
= 203.962
F0 = 220
风压高度系数:
顶出尺寸时产生竖向压力,
Fy :=
π
9 2
2
3
0
入口中心标高:H3 := 18.05 出口中心标高:H4 := 44.35
桁架时两柱脚荷载合计:
Fv :=
π 6.02 0.006 7.85 1.8
10 +
3.012 8
15 11 + 120 0 = 0
基础混凝土量:
V :=
π
D1 2
净烟道桁架活载M4:
D2 M4 := Fv = 0

半干法脱硫塔设计计算

半干法脱硫塔设计计算

半干法脱硫塔设计计算1.引言脱硫是指将含有二氧化硫(SO2)的烟气中的SO2去除的工艺过程。

半干法脱硫塔是一种常见的脱硫设备,其原理是通过喷淋液将烟气中的SO2吸收并与之发生反应,然后通过除尘设备将脱硫后的烟气排放出去。

本文将详细介绍半干法脱硫塔的设计计算过程。

2.设备基本参数半干法脱硫塔的设计需要考虑以下基本参数:•烟气流量:Qg (m3/h)•烟气中SO2的浓度:Cg (ppm)•除尘效率:ηd (%)•脱硫效率:ηs (%)•脱硫液的进口浓度:Cs (wt%)•脱硫液的流量:Qs (m3/h)•脱硫液的循环比:R (m3/m3)3.设计计算步骤步骤 1: 确定脱硫效率要求根据燃煤机组的排放标准和环境要求,确定脱硫效率的要求。

常见的要求为90%以上。

步骤 2: 计算脱硫液的流量脱硫液的流量由烟气中SO2的浓度和脱硫效率决定。

计算公式如下:Qs = Qg * Cg * (1 - ηs) / (Cs * ηs)步骤 3: 计算脱硫液的循环比脱硫液的循环比是指单位时间内脱硫液循环的次数。

循环比的选择应使得脱硫效率最大化。

计算公式如下:R = Qs / (Qg * Cg)步骤 4: 计算脱硫液的浓缩倍数脱硫液的浓缩倍数是指单位时间内脱硫液中SO2浓度的增加倍数。

浓缩倍数的选择应使得脱硫效率最大化。

计算公式如下:M = (Cg / Cs) * (1 - ηs) / ηs步骤 5: 选择喷淋液根据脱硫液的进口浓度和流量、脱硫液的循环比和浓缩倍数,选择合适的喷淋液。

常见的喷淋液有石灰石浆、石灰石浆和石膏浆的混合液等。

步骤 6: 设计喷淋系统根据喷淋液的流量和喷淋液的性质,设计喷淋系统。

确保喷淋液均匀喷洒在烟气中,以提高脱硫效率。

步骤 7: 设计除尘系统根据烟气流量和除尘效率,设计除尘系统。

确保脱硫后的烟气排放符合环境要求。

4.总结半干法脱硫塔是一种常用的脱硫设备,其设计涉及多个参数的计算和选择。

本文介绍了半干法脱硫塔的设计计算步骤,包括脱硫效率要求的确定、脱硫液流量和循环比的计算、脱硫液浓缩倍数的计算、喷淋液的选择和喷淋系统的设计、除尘系统的设计等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Column Tag No.:HCL Scrubber Job No.:4506A Client :JOLProject:SR - Plant -4, 5Input DataStream:HCL Vap.Packing type =Intallox Saddles Packing size =25mm Packing MOC=PP Gas pr. Drop / m bed =15mmWC / m packing height =147.1(N/m 2)/mTotal packing height = 3.2m (including all packed beds)Gas / Vapour Properties Gas / Air flow rate=1000kg/h OR0m 3/h =0.2778kg/s =0m 3/sGas pressure at entry = 1.0000atm Gas temperature at entry =30.00o C =303.00o KGas / Air mol weight=29Component to be scrubbed Component Name =HCL VapComponent flow rate =70Kg/h % comp. in air/gas =6% (v/v)Molecular weight of comp.=36.53Conversion :Liquid Viscosity, µL =0.0035000Ns/m 2 3.5C p =Ns/m 2Packing factor, F p=21m -1Charac. Packing Factor,C f =33 Ref. Table 6.3, Characterstics of Random packingsConversion factor, J = 1.0factor for adequate liquid distribution & irrigation across the bedSCRUBBER DESIGN (PACKED COLUMN)0.00350000CalculationsSince larger flow quantities are at the bottom for an absorber, the diameter will be chosen to accommodate the bottom conditions.To calculate Gas density Avg. molecular weight =29.45Kg / KmolSelect vol. flow rate and mass flow rate from above,Selected mass flow rate =0.277778Kg/s Selected vol. Flow rate =0.234499m 3/s Selected molar flow rate =0.009432Kmol/s Therefore, gas density=1.1846Kg/m 3(mass flow rate / vol. Flow rate)To find L', G' and Tower c/s areaComponent removed =(molar flow rate x % comp. x mol. Wt.)Liquid leaving =(Inlet liquid flow rate + comp. Removed)0.5=0.00497Using0.00497as ordinate, Refer fig.6.34 using a gas pressure drop of 147.1(N/m 2)/mG' 2 C f µL 0.1 J =0.04 (from graph)) g c Therefore, G'=0.5=1.6665Kg / m2.s Tower c/s area =0.1667m 2( c/s area = mass flow rate / G' )Tower diameter=0.4607m =460.7mm=500mm Corresponding c/s area=2TO CALCULATE COLUMN DIAMETEREfficiency of fan / blower=60%To calculate pressure drop Pressure drop for irrigated =2(pressure drop per m packing x total ht. of packing)packingFor dry packing,O/L Gas flow rate, G'=2.s (Gas inlet flow rate - Component removed) / c/s areaO/L Gas pressure =2(subtracting pressure drop across packing)= gas mol wt. x 273 x gas o/l pr. 22.41m3/Kmol T in kelvin 101330=C D =96.7 Ref. Table 6.3, Characterstics of Random packingsDelta P = Z=2Pressure drop for packing =613.61N/m 2(irrigated packing + dry packing)Pressure drop for internals =25mmWC (packing supports and liquid distributors)=245.17N/m 2Gas velocity=7.5m/s Inlet expansion & outlet = 1.5 x Velocity heads =1.5 x (V 2 / 2g)contraction losses=42.19N m / Kg =49.97N/m 2(divide by density)Total pressure drop =908.75N/m 2(packing + internals + losses)Fan power output=pressure drop,N/m 2 x (gas in - component removed) Kg/sO/L gas density, Kg/m 3=201.35N .m / s =0.20kW Power for fan motor=0.34kW (fan power output / motor efficiency)=0.45hpTO ESTIMATE POWER REQUIREMENTLiq.-Vap. Flow factor, F LV==Design for an initial pressure drop of15mm H2O /m packingFrom K 4v/s F LV ,K 4=0.85K 4 at flooding =6.50Trial % flooding==Gas mass flow rate, V m==3.7763kg/m 2.s Trial column c/s area =V / V m(Trial A s )=0.0736m 2Trial column dia., D =D = (4/pi) x Trial A s Round off 'D' to nearest standard sizeTherefore, D =0.500mColumn C/S area, A s=2A s =(pi/4) x D 2% flooding =% flooding = Trial % flooding x (Trial A s / A s )ConclusionGenerally packed towers are designed for 50% -- 85% flooding.If flooding is to be reduced,(i) Select larger packing size and repeat the above steps.OR(ii) Increase the column diameter and repeat the above steps.COLUMN DIAMETER / HYDRAULIC CHECK(1/2)Input Data 0.018 N/m =dyne/cm Liquid-phase Surface Tension, =20dyne/cm Liquid Viscosity = 3.5cP n=1.13080Calculation ln HETP =HETP=2.310437ft =0.704221mFor separations, less than 15 theoritical stages, a 20% design safety factor can be applied.Considering 20% safety factor, HETP =0.845065mFor separations, requiring 15 to 25 theoritical stages, a 15% design safety factor can be applied.Considering 15% safety factor, HETP =0.809854mHETP PREDICTIONNorton's Correlation Applicable Norton's Correlation NOT applicable18。

相关文档
最新文档