最小公倍数的应用题教案
小学五年级奥数第27讲 最小公倍数(二)后附答案

第27讲最小公倍数(二)一、专题简析:最小公倍数的应用题,解题方法比较独特。
当有些题中所求的数不正好是已知数的最小公倍数时,我们可以通过“增加一部分”或“减少一部分”的方法,使问题转换成已知数的最小公倍数,从而求出结果。
二、精讲精练例题1 有一个自然数,被10除余7,被7除余4,被4除余1。
这个自然数最小是多少?练习一1、学校六年级有若干个同学排队做操,如果3人一行余2人,7人一行余2人,11人一行也余2人。
六年级最少多少人?2、一个数能被3、5、7整除,但被11除余1。
这个数最小是多少?例题2 有一批水果,总数在1000个以内。
如果每24个装一箱,最后一箱差2个;如果每28个装一箱,最后一箱还差2个;如果每32个装一箱,最后一箱只有30个。
这批水果共有多少个?练习二1、一所学校的同学排队做操,排成14行、16行、18行都正好能成长方形,这所学校至少有多少人?2、有一批乒乓球,总数在1000个以内。
4个装一袋、5个装一袋或6个、7个、8个装一袋最后都剩下一个。
这批乒乓球到底有多少个?例题3 一盒围棋子,4颗4颗数多3颗,6颗6颗数多5颗,15颗15颗数多14颗,这盒棋子在150至200颗之间,问共有多少颗?练习三1、有一批树苗,9棵一捆多7棵,10棵一捆多8棵,12棵一捆多10棵。
这批树苗数在150至200之间,求共有多少棵树苗。
2、五(1)班的五十多位同学去大扫除,平均分成4组多2人,平均分成5组多3人。
请你算一算,五(1)班有多少位同学?例题4 从学校到少年宫的这段公路上,一共有37根电线杆,原来每两根电线杆之间相距50米,现在要改成每两根之间相距60米,除两端两根不需移动外,中途还有多少根不必移动?练习四1、插一排红旗共26面。
原来每两面之间的距离是4米,现在改为5米。
如果起点一面不移动,还可以有几面不移动?2、一行小树苗,从第一棵到最后一棵的距离是90米。
原来每隔2米植一棵树,由于小树长大了,必须改为每隔5米植一棵。
五年级下册最小公倍数解决问题教案

五年级下册最小公倍数解决问题教案一、教学目标1. 让学生理解最小公倍数的概念,并能够求出两个数的最小公倍数。
2. 通过实际问题的解决,培养学生的数学应用能力。
3. 培养学生的思维能力和合作精神。
二、教学内容1. 最小公倍数的概念和性质。
2. 如何求两个数的最小公倍数。
三、教学难点与重点重点:最小公倍数的概念和求法。
难点:如何运用最小公倍数解决实际问题。
四、教具和多媒体资源1. 黑板和粉笔。
2. 投影仪和教学PPT。
3. 教学软件:数学工具。
五、教学方法1. 激活学生的前知:回顾因数和倍数的概念,为最小公倍数做铺垫。
2. 教学策略:采用讲解、示范、小组讨论和案例分析的方法进行教学。
3. 学生活动:小组合作,解决实际问题。
六、教学过程1. 导入:故事导入——讲述一个小朋友为了参加学校的舞蹈表演,需要学会一些基本的舞步,如转圈、踏步等,这些动作都需要他们步伐一致才能完成,引出“最小公倍数”的概念。
2. 讲授新课:通过PPT展示最小公倍数的概念和求法,让学生了解什么是最小公倍数,如何求两个数的最小公倍数。
3. 巩固练习:设计一些实际问题,如“一个班级的学生要分组进行活动,每组人数要相同,如何确定每组的人数?”让学生运用最小公倍数的知识解决。
4. 归纳小结:总结本节课学到的知识,强调最小公倍数在实际生活中的应用。
七、评价与反馈1. 设计评价策略:通过小组报告、口头测试和观察学生的实际操作来评价学生的学习效果。
2. 为学生提供反馈:根据学生的表现,给予他们建议和指导,帮助他们了解自己的学习状况,并指导他们如何改进。
八、作业布置1. 求下列每组数的最小公倍数:(1) 12和15(2) 24和36(3) 45和602. 实际问题解决:一个工厂生产零件,需要4个工人一组进行组装,现有3组工人同时工作,每组的人数分别为6人、8人和12人,如何分组才能让所有工人同时完成工作?。
最小公倍数的应用场景及解题技巧教案

最小公倍数是数学中常见的概念,它是指两个或多个数的公共倍数中,最小的那个数。
在生活和学习中,最小公倍数有着广泛的应用。
本文将介绍最小公倍数的应用场景和解题技巧教案。
一、最小公倍数的应用场景1.分数的通分在分数的四则运算中,常常需要对分母进行通分,而最小公倍数就是通分的关键。
例如,将$\frac{2}{3}$ 和 $\frac{5}{6}$ 通分,可以先求出它们的最小公倍数 $6$,然后分别乘以 $\frac{2}{3}$ 和 $\frac{5}{6}$ 的倍数,得到 $\frac{4}{6}$ 和$\frac{5}{6}$,然后就可以进行加减乘除运算了。
2.时间和距离的计算在时间和距离的计算中,最小公倍数也有着重要的作用。
例如,甲、乙两个车站之间相隔$300$ 公里,甲站有一辆车开往乙站,速度为 $60$ 千米/时,而乙站有一辆车从乙站出发,速度为 $50$ 千米/时,那么两辆车相遇的时间是多少?这个问题可以通过求出两车速度的最小公倍数 $300$,然后根据相遇点与两车站点之间的距离,使用时间等于距离除以速度的公式,求出相遇时间。
3.货币换算货币换算也与最小公倍数有着密切的关系。
例如,需要将 $1050$ 元平均分给 $3$ 个人,其中第一个人拿 $\frac{1}{4}$,第二个人拿 $\frac{1}{3}$,第三个人拿$\frac{2}{5}$,在此情况下,最小公倍数为 $60$,所以可以将 $1050$ 元乘以$\frac{60}{60}$,得到 $63000$ 分,在按照比例进行分配。
4.选取小数点位数在进行计算的时候,为了方便,需要将小数点后的位数控制在一定范围内。
这时,最小公倍数就成为了一个重要的参考值。
例如,对 $0.3$ 和 $0.25$ 相加,若要保留两位小数,则可以将这两个小数都乘以 $100$,然后进行运算,最后再除以 $100$。
这时的运算涉及到的最小公倍数即为 $100$。
精品拓展教案——最大公因数与最小公倍数(可用)

最大公因数与最小公倍数适用学科数学适用年级五年级适用区域通用课时时长(分钟)60知识点公因数和公倍数应用题;因数、公因数和最大公因数;因数和倍数的意义;公倍数与最小公倍数。
教学目标 1.两个数的公倍数、最小公倍数的意义,求最小公倍数的方法。
2.两个数的公因数、最大公因数的意义,求最大公因数的方法。
3.最小公倍数与最大公因数的应用4.用“短除法”求两个数的最大公因数和最小公倍数。
5.使学生能够运用所学知识,采用列方程的方法解答应用题.6.使学生进一步积累解决问题的经验,增强数学的应用意识。
教学重点理解最大公因数、最小公倍数的意义及求法。
教学难点两种特殊情况的最大公因数、最小公倍数的求法。
教学过程一、复习预习1、什么是倍数①一个整数能够把另一整数整除,这个整数就是另一整数的倍数。
如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
②一个数除以另一数所得的商。
如a÷b=c,就是说a是b的c倍,a是b的倍数。
③一个因数能让它的积整除,那么,这个数就是因数,它的积就是倍数。
例如: 3 × 5 = 15↑↑↑因数1 因数2 倍数A÷B=C,就可以说A是B的C倍④一个数的倍数(0除外)有无数个,也就是说一个数的倍数的集合为无限集.注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
2、什么是因数:整数A能被整数B整除,A叫做B的倍数,B就叫做A的因数或素数,(在自然数的范围内)例:6÷2=3 ,1、2、3和6就是6的因数。
6的因数有:1、2、3、610的因数有:1、2、5、1015的因数有:1、3、5、15二、知识讲解1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。
一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
奥数最大公约数与最小公倍 数例题、练习及答案

最大公约数与最小公倍数(一)教学目标:1.通过学生对应用题的条件与问题的全面分析,培养学生发现问题和解决问题的意识。
2.通过比较与辨析,使学生进一步理解和掌握“最大公约数和最小公倍数”应用题的解题规律。
3.培养学生的合作交流意识和创新意识,发展学生的空间观念与想像力。
教学过程:一、基本概念知识1.公约数和最大公约数①如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。
②如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。
在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。
例如:12的约数有:1,2,3,4,6,12; 18的约数有:1,2,3,6,9,18。
自然数的最大公约数通常用符号()表示,例如,12和18的公约数有:1,2,3,6.其中6是12和18的最大公约数,记作(12,18)=6。
(8,12)=4,(6,9,15)=3。
2.公倍数和最小公倍数 ③如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。
在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。
例如:12的倍数有:12,24,36,48,60,72,84,… 18的倍数有:18,36,54,72,90,…自然数的最小公倍数通常用符号[]表示,例如12和18的公倍数有:36,72,….其中36是12和18的最小公倍数,记作[12,18]=36。
[8,12]=24,[6,9,15]=90。
3.互质数如果两个数的最大公约数是1,那么这两个数叫做互质数。
常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。
用短除法求若干个数的最大公约数与最小公倍数的区别:求个数的最大公约数:(1)必须每次都用个数的公约数去除;(2)一直除到个数的商互质(但不一定两两互质);(3)个数的最大公约数即为短除式中所有除数的乘积。
求个数的最小公倍数:(1)必须先用(如果有)个数的公约数去除,除到个数没有除去1以外的公约数后,在用个数的公约数去除,除到个数没有除1以外的公约数后,再用个数的公约数去除,如此继续下去,为保证这一条,每次所用的除数均可选质数;(2)只要有两个数(被除数)能被同一数整除,就要继续除,一定要除到个数的商两两互质为止;(3)个数的最小公倍数即为短除式中,所有除数和最后两两互质的商的乘积。
最小公倍数和最大公因数的应用题归纳讲课稿

最小公倍数与最大公因数典型的应用题汇总一、解题技巧:最大公因数解题技巧:通常从问题入手,所求的数量处于小数(即处于除数、商、因数)的地位时,因为小数(即处于除数、商、因数)是大数(即处于被除数、被除数、积)的因数,此时,所求的数量就处于因数的地位。
如果出现相同的(公有的)/最长的所求数量,即求他们的公因数/最大公因数的应用题。
最小公倍数解题技巧:通常从问题入手,所求的数量处于大数(即处于被除数、被除数、积)的地位时,因为大数(即处于被除数、被除数、积)是小数(即处于除数、商、因数)的倍数,此时,所求的数量应处于倍数的地位。
如果出现相同的(公有的)/最小的所求数量,即求他们的公倍数/最小公倍数的应用题。
补充部分公式小长方形个数=(大正方形边长÷小长方形长)×(大正方形边长÷小长方形的宽)小正方形个数=(大长方形的长÷小正方形边长)×(大长方形的宽÷小正方形边长)小长方体个数=(大正方体边长÷小长方体长)×(大正方体边长÷小长方体的宽)×(大正方体边长÷小长方体高)小正方体个数=(大长方体边长÷小正方体边长)×(大长方体的宽÷小正方体边长)×(大长方体的高÷小正方体边长)剩余定理余数相同时,总数(被除数)=最小公倍数+余数缺数相同时,总数(被除数)=最小公倍数-缺数植树问题公式不封闭型:2、只有一端都栽1、两端都栽间隔个数=株数间隔个数=株数-1株数=间隔个数+1 株数=间隔个数距离=一个间隔的长度×间隔个数距离=一个间隔的长度×间隔个数3、两端都不栽间隔个数=株数+1株数=间隔个数-1距离=一个间隔的长度×间隔个数封闭型:间隔个数=株数株数=间隔个数距离=一个间隔的长度×间隔个数封闭型再正方形边上栽,并且4个顶点都栽:株数=(每边株数-1)×4备注:上下多少层楼以及锯段数及敲钟问题等实际运用实质上是两端都栽树的植树问题,这类题通常先求一层/一段需要多少时间,再乘以段数即可二、经典题目1、一个大长方形长24厘米,宽18厘米,把它裁成若干个小正方形而没有剩余,如小正方形的边长最长,边长是多少厘米?最多能裁成多少个小正方形?2、一个长方形的长6厘米,宽4厘米,至少要多少个这样的小长方形才能拼成一个大的正方形?此时,大的正方形的边长是多少厘米?3、一个大长方体长24厘米,宽18厘米,高12厘米,把它裁成若干个小正方体而没有剩余,如小正方体的边长最长,正方体的棱长是多少厘米?最多能裁成多少个小正方体?4、一个长方体的长6厘米,宽4厘米,高2厘米。
最大公因数和最小公倍数应用题教师版

专题:大【小公倍数应用题第三讲公因数、公倍数问题,是指用求几个数的(最大)公因数或(最小)公倍数的方法来解答的应用题。
这类题一般都没有直接指明是求公因数或公借数,要通过对已知条件的仔细分析,才能发现解题方法。
解答公因数或公倍数问题的关键是:从因数和倍数的意义入手来分析,把原题归结为求几个数的公因数问题。
【考点分析】最大公因数和最小公倍数的性质。
(1)两个数分别除以它们的最大公因数,所得的商一左是互质数。
(2)两个数的最大公因数的因数,都是这两个数的公因数,(3)两个自然数的最大公因数与最小公倍数的乘枳等于这两个数的乘积。
【例题1】有一个长方体的木头,长3. 25米,宽1.75米,厚0.75米。
如果把这块木头截成许多相等的小立方体,并使每个小立方体尽可能大,小立方体的棱长及个数各是多少?解:根据题意,小立方体一条棱长应是长方体长、宽、厚各数的最大公约数。
即:(325、175、75)=25(厘米)因为3254-25=1317525=7 , 75三25二3所以13X7X3=273 (个)答:能分为小立方体273个,小立方体的每条棱长为25厘米。
【例题2】有一个两位数,除50余2,除63余3,除73余1。
求这个两位数是多少?【分析】这个两位数除50余2,则用他除48 (52-2)恰好整除。
也就是说,这个两位数是48的约数。
同理,这个两位数也是60、72的约数。
所以,这个两位数只可能是48、60、72 的公约数1、2、3、4、6、12,而满足条件的只有公约数12,即(48、60、72) =12。
答:这个两位数是12。
【强化练习】1、有三根铁线,一根长18米,一根长24米,一根长30米。
现在要把它们截成同样长的小段。
每段最长可以有几米?一共可以截成多少段?【分析】撤成的小段一定是18、24、30的最大公因数。
先求这三个数的最大公因数,再求一共可以截成多少段。
解:(18、24、30) =6(18+24+30) 4-6=12 段答:每段最长可以有6米,一共可以截成12段。
小学生最小公倍数练习题教案

小学生最小公倍数练习题教案是每个小学数学教师都应该掌握的一项重要技能。
最小公倍数在小学数学中是一个经常出现的概念,对于学生来说,熟练掌握最小公倍数的求解方法可以大大提高他们的数学水平。
本文将从教学目标、教学过程、教学方法、考核方法等几个方面,为大家详细介绍小学生最小公倍数练习题教案。
一、教学标1.熟练掌握求解两个数的最小公倍数的方法以及相关概念。
2.能够自主思考,识别和分析最小公倍数相关问题。
3.通过练习,巩固和提高掌握最小公倍数的能力,达到将知识应用于实际问题的目的。
二、教学过程1.调研阶段在进行最小公倍数练习题教学前,我们可以通过课前小测试来了解学生对最小公倍数的掌握情况,根据测试结果,调整教学方案。
2.教学设计本教学设计分为以下几个环节:(1)概念讲解在最小公倍数的概念讲解中,我们应该通过图例、实例等方式来说明最小公倍数的概念和用途,引导学生进行思考和分析。
(2)练习环节通过难度适中的练习题,帮助学生运用所学知识,在练习中逐步掌握最小公倍数的具体方法。
(3)小组探究将学生分为四五人小组,让小组成员合作完成课内练习和课外练习,体验协作学习的乐趣,培养团队精神。
(4)合作交流鼓励学生通过合作交流,分享自己的想法,分析困惑,找到解决问题的思路。
(5)知识总结让学生重新审视所学知识,进行知识总结,巩固和提高最小公倍数的掌握能力。
(6)评价和反馈教师应该对学生成绩进行评价和反馈,并针对学生掌握程度,给予相应的知识补充和巩固。
三、教学方法1.案例法通过真实和生活中的案例,让学生感知和理解最小公倍数的概念、用途以及实际应用。
2.多媒体法在教学中,可以借助多媒体技术,使用图片、动画、视频等形式,直观、生动地展示最小公倍数的计算方法和实际应用。
3.任务型通过培养学生的独立思考和合作探究能力,让学生在任务完成的过程中体验和掌握最小公倍数的求解方法。
四、考核方法1.小测验在教学过程中可以使用小测验来检测学生在最小公倍数方面的掌握情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最小公倍数的应用题教案
内容:人教版数学五年级下册72页第10、11题
教学目标:1、熟练掌握公倍数的意义,并解决实际的问题。
2、培养学生解决实际问题的能力。
3、培养良好的学习习惯。
重难点:把公倍数应用到实际题目中。
教学过程:
一:导入
1、复习公倍数的概念
2、求4和6的最小公倍数
二:新授
1、出示72页第十题的内容
列出所给的条件:
3路6分钟发一次车
5路8分钟发一次车
现在同时发出,多少分钟后再同时发出?
由3路车发出的时间可以知道,3路车以后每次发出的时间是:6分钟后、12分钟后、18分钟后、24分钟后------
5路车以后每次发出的时间是:8分钟后、16分钟后、24分钟后------
由以上列出的时间可知下次同时发出的时间是24分钟后。
那么我们再看一下其实24是6和8的最小公倍数。
所以这道题目也就是求6和8的最小公倍数。
那么,实际上是让我们求最小公倍数。
所以,再过24分钟后两路车第二次同时发车。
2、出示72页第十一题的内容
列出所给题目的条件:
爸爸一圈3分钟
妈妈一圈4分钟
我一圈6分钟
现在同时起跑,多少分钟后再次同时起跑?各跑了多少圈?
由所给的条件可知:第一问,结合上一道题目,实际上是让求3、4、6的最小公倍数,根据前面所学可求出,他们的最小公倍数是12.
也就是他们都跑了12分钟。
第二问,都跑了12分钟,那么各跑的圈数是:
爸爸:12÷3=4(圈)
妈妈:12÷4=3(圈)
我:12÷6=2(圈)
最后加上答案。
课堂练习:
书上:71页6、7题。
学生自己做,教师最后订正。
总结:
此类题目在开始没有不知道如何下手的情况下,可以采取本办法,分别列出来,看看题目到底是想让我们做什么,最后我们可以看到实际上是想让我们求最小公倍数。