幂的运算测试题(经典题型

合集下载

幂的运算总结性练习题

幂的运算总结性练习题

幂的运算总结性练习题幂运算是数学中常见且重要的运算方法之一。

它的原理是将一个数字乘以自己多次,通过指数来表示运算的次数。

在实际应用中,幂运算常用于表示面积、体积、复利计算等方面。

为了巩固对幂运算的理解和运用,下面给出一些幂运算的练习题,帮助读者巩固相关知识点。

题目一:计算幂1. 计算 2^3。

2. 计算 4^2。

3. 计算 5^0。

4. 计算 6^1。

5. 计算 3^4。

题目二:幂的运算规则1. 计算 (2^3)^2。

2. 计算 2^(3+2)。

3. 计算 (4^2)^(1/2)。

4. 计算 2^(3-2)。

5. 计算 (6^3)^(-1)。

题目三:幂运算的性质1. 把一个数的幂的幂记作数的幂的幂的幂,简化表达式2^(2^3)。

2. 计算 2^0+2^1+2^2+2^3+2^4。

题目四:应用题1. 小明每年年末将10000元存入银行,年利率为5%。

存款连续存5年,计算五年后小明的本息合计。

2. 若一个正方形的边长为a,计算正方形的面积。

3. 若一个圆的半径为r,计算圆的周长。

4. 若一个正方体的边长为a,计算正方体的体积。

5. 若一个长方体的长、宽、高分别为a、b、c,计算长方体的体积。

以上练习题旨在通过计算幂的运算,帮助读者熟悉幂运算的基本概念、运算规则和性质,并将其应用于实际问题中。

通过多次练习,读者将对幂运算有更深入的理解和熟练的运用。

建议读者在完成练习题后,自行核对答案,找出自己的错误,并尝试录入实际数值进行计算,提高运算的准确性和速度。

幂的运算实数练习题

幂的运算实数练习题

幂的运算实数练习题一、基础题1. 计算:\(2^3\)2. 计算:\((3)^2\)3. 计算:\(\left(\frac{1}{2}\right)^4\)4. 计算:\((2)^5\)5. 计算:\(\left(\frac{3}{4}\right)^3\)二、混合运算题6. 计算:\(2^3 \times 3^2\)7. 计算:\(\frac{4^3}{2^2}\)8. 计算:\((5^2)^3\)9. 计算:\(\left(\frac{2}{3}\right)^2 \times \left(\frac{3}{4}\right)^2\)10. 计算:\(\left(\frac{5}{6}\right)^3 \div \left(\frac{2}{3}\right)^2\)三、指数比较题11. 比较:\(3^4\) 和 \(4^3\)12. 比较:\((2)^5\) 和 \((3)^4\)13. 比较:\(\left(\frac{3}{4}\right)^2\) 和\(\left(\frac{4}{5}\right)^2\)14. 比较:\(\left(\frac{2}{3}\right)^3\) 和\(\left(\frac{3}{4}\right)^3\)15. 比较:\(2^6\) 和 \(3^4\)四、应用题16. 一个正方形的边长为2,求其面积。

17. 一个数的平方是64,求这个数。

18. 一个数的立方是216,求这个数。

19. 如果一个数的平方根是4,求这个数的平方。

20. 如果一个数的立方根是3,求这个数的立方。

五、拓展题21. 计算:\(2^3 + 3^2 4^2\)22. 计算:\(\left(\frac{1}{2}\right)^5 \times\left(\frac{2}{3}\right)^4\)23. 计算:\(\left(\frac{3}{4}\right)^2 \div\left(\frac{4}{5}\right)^2\)24. 计算:\(\left(2^3\right)^2 \times \left(3^2\right)^3\)25. 计算:\(\sqrt[3]{64} \times \sqrt[4]{81}\)六、根式运算题26. 计算:\(\sqrt{49}\)27. 计算:\(\sqrt[3]{27}\)28. 计算:\(\sqrt{64} + \sqrt{25}\)29. 计算:\(\sqrt[4]{16} \times \sqrt[3]{8}\)30. 计算:\(\sqrt{121} \sqrt{81}\)七、分数指数幂题31. 计算:\(4^{\frac{1}{2}}\)32. 计算:\(9^{\frac{3}{2}}\)33. 计算:\(\left(\frac{1}{16}\right)^{\frac{1}{4}}\)34. 计算:\(\left(\frac{1}{25}\right)^{\frac{2}{3}}\)35. 计算:\(32^{\frac{1}{5}}\)八、指数方程题36. 解方程:\(2^x = 32\)37. 解方程:\(3^{x+1} = 27\)38. 解方程:\(\left(\frac{1}{2}\right)^x = 8\)39. 解方程:\(5^{2x1} = 25\)40. 解方程:\(4^{x+2} = \frac{1}{16}\)九、指数不等式题41. 解不等式:\(2^x > 16\)42. 解不等式:\(3^{x1} < 27\)43. 解不等式:\(\left(\frac{1}{3}\right)^x \geq 9\)44. 解不等式:\(5^{2x3} \leq 125\)45. 解不等式:\(4^{x+1} > \frac{1}{64}\)十、综合题46. 已知\(a^2 = 36\),\(b^3 = 64\),计算\(a^3 + b^2\)。

(完整版)幂的运算经典习题

(完整版)幂的运算经典习题

一、同底数幂的乘法1、下列各式中,正确的是( ) A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107= 3、()()()345-=-•-y x y x4、若a m =2,a n =3,则a m+n 等于( ) (A)5 (B)6 (C)8 (D)95、()54a a a =•6、在等式a 3·a 2·( )=a 11中,括号里面人代数式应当是( ).(A)a 7 (B)a 8 (C)a 6 (D)a 383a a a a m =••,则m=7、-t 3·(-t)4·(-t)58、已知n 是大于1的自然数,则()c -1-n ()1+-•n c 等于 ( )A. ()12--n c B.nc 2-C.c-n2 D.n c 29、已知x m-n ·x 2n+1=x 11,且y m-1·y 4-n =y 7,则m=____,n=____. 二、幂的乘方 1、()=-42x 2、()()84aa =3、( )2=a 4b 2;4、()21--k x =5、323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =6、计算()734x x •的结果是 ( )A. 12xB. 14xC. x 19D.84x7、()()=-•342a a8、n n 2)(-a 的结果是 9、()[]52x --= 10、若2,x a =则3x a = 三、积的乘方1)、(-5ab)2 2)、-(3x 2y)2 3)、332)311(c ab - 4)、(0.2x 4y 3)2 5)、(-1.1x m y 3m )2 6)、(-0.25)11×411 7)、-81994×(-0.125)1995 四、同底数幂的除法 1、()()=-÷-a a 42、()45a a a =÷3、()()()333b a ab ab =÷4、=÷+22x x n5、()=÷44ab ab .6、下列4个算式: (1)()()-=-÷-24c c 2c(2) ()y -()246y y -=-÷(3)303z z z =÷ (4)44a a a m m =÷ 其中,计算错误的有 ( )A.4个B.3个C.2个D.1个 7、 ÷a 2=a 3。

(完整word版)幂的运算习题精选及答案要点

(完整word版)幂的运算习题精选及答案要点

(完整word版)幂的运算习题精选及答案要点《幂的运算》提高练习题一、选择题1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4个B、3个C、2个D、1个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C 、D、(x﹣y)3=x3﹣y34、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是( )A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是( )①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2•x3= _________ ;(﹣a2)3+(﹣a3)2= _________ .7、若2m=5,2n=6,则2m+2n= _________ .三、解答题8、已知3x(x n+5)=3x n+1+45,求x的值。

9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x•32y的值.11、已知25m•2•10n=57•24,求m、n.(完整word版)幂的运算习题精选及答案要点12、已知a x=5,a x+y=25,求a x+a y的值.13、若x m+2n=16,x n=2,求x m+n的值.14、比较下列一组数的大小.8131,2741,96115、如果a2+a=0(a≠0),求a2005+a2004+12的值.16、已知9n+1﹣32n=72,求n的值.18、若(a n b m b)3=a9b15,求2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)20、若x=3a n,y=﹣,当a=2,n=3时,求a n x﹣ay的值.21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24、用简便方法计算:(1)(2)2×42(完整word版)幂的运算习题精选及答案要点(2)(﹣0。

70道幂运算计算题(试题版) -百度版

70道幂运算计算题(试题版) -百度版

70道七下数学《幂运算》易错点幂运算计算题(试题版)学校:________ 班级:________ 姓名:________ 成绩:________一、解答题(共70小题)1.计算:x2•(﹣x3)4.2.计算a2•a4+(a3)2﹣32a63.计算:(2x2)4﹣x•x3•x4.4.计算:a3•a4•a+(﹣2a4)2.5.计算:m2•m4+(﹣2m2)3﹣(﹣m)6.6.化简:a•a5﹣(﹣2a3)2.7.(x﹣y)•(y﹣x)2•(y﹣x)3﹣(y﹣x)6.8.计算:(﹣a2)3•(﹣a3)2.9.计算:m7•m5+(﹣m3)4﹣(﹣2m4)3.10.计算:(2x2)3﹣x4•x2.11.计算:﹣a4•a3•a+(a2)4﹣(﹣2a4)2.12.(a﹣b)2•(b﹣a)3•(b﹣a)(结果用幂的形式表示)13.计算,x2•x4•x6+(x3)2+[(﹣x)4]3.14.(﹣x3)2(x2)3+(﹣x3)415.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.16.计算:(2x2)3+x4•x217.计算结果用幂的形式表示:[(a﹣b)3•(a﹣b)]2•(b﹣a)5;18.(a3)2•(a4)3+(a2)519.计算:a3•a•a4+(﹣2a4)2+(a2)4.20.计算:(m﹣n)2×(n﹣m)3×(m﹣n)621.计算:y3•(﹣y)•(﹣y)5•(﹣y)222.计算:a2⋅a4+(3a3)2﹣10a623.(﹣x)•(﹣x12)•(﹣x3)3.24.[(a+b)3]2﹣[(a+b)2]3﹣2(a+b)(﹣a﹣b)[(a+b)2]3.25.a2•a4+2a•a5﹣(2a3)2.26.计算:(﹣x)3•x•(﹣x)2.27.已知x n=2(n为正整数),求(x2n)2•(x3)2n的值.28.计算:22m+4m﹣22m+129.计算:(a﹣b)2(b﹣a)4.30.计算:(﹣2x2)3+x2•x431.x2•x5•x+(﹣2x4)2+(x2)433.计算:(﹣x)3x5+(2x4)2.34.计算:﹣(a2)4•(a2)335.计算:(﹣3x3)2﹣x2•x4﹣(x2)336.计算:x•x3+(x2)237.a3•a4•a+(a2)4+(﹣2a4)2.38.计算:a•a3﹣(2a2)2+4a439.计算:(2x2)3﹣x2•x4.41.计算:(2a2)3+(﹣3a3)2+(a2)2•a242.计算:(m4)2+m5•m3+(﹣m)4•m4.43.计算:a+2a+3a+a2•a5+a•a3•a3.44.计算:a5•(﹣a)3+(﹣2a2)4.45.计算:[﹣(a﹣b)2]3﹣[﹣(b﹣a)3]2+(a+b)2•(﹣a﹣b)4.46.计算,结果用幂的形式表示:a3•a•a5+a4•a2•a3.47.(x﹣y)3•(x﹣y)4•(x﹣y)2.48.计算:(﹣2a)6﹣(﹣3a3)2+[﹣(2a)2]3.49.计算:(2x)3(﹣5xy2).50.计算:2x4•x2+(﹣3x3)2﹣5x6.51.(﹣a2b)(2ab)3+10a3b4.52.计算:a3b2•(﹣b2)2+(﹣2ab2)3.53.计算:(﹣2x2)3+(﹣3x3)2+(﹣x)6.54.计算:(2a)2﹣a×3a+a2.55.计算:(﹣2x2)3+2x2•x456.计算:2a3•a+(2a2)2﹣5a457.化简:a2•(﹣2a)4﹣(3a3)2+(﹣2a2)3.58.(﹣2x2y)3+(3x2)2•(﹣x)2•(﹣y)359.计算:2a2•3a3﹣2a•(﹣a2)2.60.化简(5x)2•x7﹣(3x3)3+2(x3)2+x361.(﹣3a3)2•a3+(﹣4a2)•a7﹣(5a3)362.计算:(﹣a)2•(﹣a3)•(﹣a)+(﹣a2)3﹣(﹣a3)2.63.计算:22017×.64.简便计算:0.1252016×(﹣8)2017.65.[2(a﹣b)3]2+[(a﹣b)2]3﹣[﹣(a﹣b)2]66.x2•(﹣x)2•(﹣x)2+(﹣x2)367.(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2.68.计算:(﹣0.125)2014×82015.69.计算:﹣82015×(﹣0.125)2016+(0.25)3×26.70.计算0.1259×(﹣8)10+()11×(2)12.70道七下数学《幂运算》易错点幂运算计算题(答案版)学校:________ 班级:________ 姓名:________ 成绩:________一、解答题(共70小题)1.计算:x2•(﹣x3)4.【解答】解:原式=x2•x12=x14.2.计算a2•a4+(a3)2﹣32a6【解答】解:原式=a6+a6﹣32a6=﹣30a6.3.计算:(2x2)4﹣x•x3•x4.【解答】解:原式=16x8﹣x8=15x8.4.计算:a3•a4•a+(﹣2a4)2.【解答】解:a3•a4•a+(﹣2a4)2=a8+4a8=5a8.5.计算:m2•m4+(﹣2m2)3﹣(﹣m)6.【解答】解:原式=m6﹣8m6﹣m6=﹣8m6.6.化简:a•a5﹣(﹣2a3)2.【解答】解:a•a5﹣(﹣2a3)2=a6﹣4 a6=﹣3a6.7.(x﹣y)•(y﹣x)2•(y﹣x)3﹣(y﹣x)6.【解答】解:(x﹣y)•(y﹣x)2•(y﹣x)3﹣(y﹣x)6=﹣(x﹣y)•(x﹣y)2•(x﹣y)3﹣(x﹣y)6=﹣(x﹣y)6﹣(x﹣y)6=﹣2(x﹣y)6.8.计算:(﹣a2)3•(﹣a3)2.【解答】解:原式=﹣a6•a6=﹣a12.9.计算:m7•m5+(﹣m3)4﹣(﹣2m4)3.【解答】解:原式=m12+m12﹣(﹣8m12)=m12+m12+8m12=10m12.10.计算:(2x2)3﹣x4•x2.【解答】解:(2x2)3﹣x4•x2=8x6﹣x6=7x6.11.计算:﹣a4•a3•a+(a2)4﹣(﹣2a4)2.【解答】解:原式=﹣a8+a8﹣4a8=﹣4a8.12.(a﹣b)2•(b﹣a)3•(b﹣a)(结果用幂的形式表示)【解答】解:(a﹣b)2•(b﹣a)3•(b﹣a)=(b﹣a)2•(b﹣a)3•(b﹣a)=(b﹣a)2+3+1=(b﹣a)6.13.计算,x2•x4•x6+(x3)2+[(﹣x)4]3.【解答】解:原式=x12+x6+x12=2x12+x6.14.(﹣x3)2(x2)3+(﹣x3)4【解答】解:原式=x6•x6+x12=x12+x12=2x12.15.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.【解答】解:原式=﹣(a﹣b)6+8(a﹣b)6=﹣7(a﹣b)616.计算:(2x2)3+x4•x2【解答】解:原式=8x6+x6=9x6.17.计算结果用幂的形式表示:[(a﹣b)3•(a﹣b)]2•(b﹣a)5;【解答】解:[(a﹣b)3•(a﹣b)]2•(b﹣a)5=(a﹣b)7•[﹣(a﹣b)5]=﹣(a﹣b)12.18.(a3)2•(a4)3+(a2)5【解答】解:原式=a6•a12+a10=a18+a10.19.计算:a3•a•a4+(﹣2a4)2+(a2)4.【解答】解:a3•a•a4+(﹣2a4)2+(a2)4=a8+4a8+a8=6a8.20.计算:(m﹣n)2×(n﹣m)3×(m﹣n)6【解答】解:原式=(n﹣m)2×(n﹣m)3×(n﹣m)6=(n﹣m)2+3+6=(n﹣m)11.21.计算:y3•(﹣y)•(﹣y)5•(﹣y)2【解答】解:原式=y3•(﹣y)•(﹣y)5•y2=y3+1+5+2=y11.22.计算:a2⋅a4+(3a3)2﹣10a6【解答】解:原式=a6+9a6﹣10a6=0.23.(﹣x)•(﹣x12)•(﹣x3)3.【解答】解:(﹣x)•(﹣x12)•(﹣x3)3=﹣x22.24.[(a+b)3]2﹣[(a+b)2]3﹣2(a+b)(﹣a﹣b)[(a+b)2]3.【解答】解:[(a+b)3]2﹣[(a+b)2]3﹣2(a+b)(﹣a﹣b)[(a+b)2]3.=(a+b)6﹣(a+b)6+2(a+b)8=2(a+b)8.25.a2•a4+2a•a5﹣(2a3)2.【解答】解:a2•a4+2a•a5﹣(2a3)2=a6+2a6﹣4a6=﹣a6.26.计算:(﹣x)3•x•(﹣x)2.【解答】解:(﹣x)3•x•(﹣x)2=﹣x3•x•x2=﹣x6.27.已知x n=2(n为正整数),求(x2n)2•(x3)2n的值.【解答】解:(x2n)2•(x3)2n=(x n)4•(x n)6=24×26=210.28.计算:22m+4m﹣22m+1【解答】解:原式=22m+(22)m﹣2×22m=22m×(1+1﹣2)=0.29.计算:(a﹣b)2(b﹣a)4.【解答】解:原式=(a﹣b)2(a﹣b)4=(a﹣b)6.30.计算:(﹣2x2)3+x2•x4【解答】解:(﹣2x2)3+x2•x4=﹣8x6+x6=﹣7x6.31.x2•x5•x+(﹣2x4)2+(x2)4【解答】解:原式=x8+4x8+x8=6x8.32.计算:2x7•(﹣x3)﹣(﹣x3)2•x4【解答】解:原式=﹣2x10﹣x10=﹣3x10.33.计算:(﹣x)3x5+(2x4)2.【解答】解:原式=﹣x8+4x8=3x8.34.计算:﹣(a2)4•(a2)3【解答】解:﹣(a2)4•(a2)3=﹣a8•a6=﹣a14.35.计算:(﹣3x3)2﹣x2•x4﹣(x2)3【解答】解:原式=9x6﹣x6﹣x6=7x6.36.计算:x•x3+(x2)2【解答】解:原式=x•x3+(x2)2,=x4+x4=2x4.37.a3•a4•a+(a2)4+(﹣2a4)2.【解答】解:原式=a3+4+1+a2×4+4a8,=a8+a8+4a8,=6a8.38.计算:a•a3﹣(2a2)2+4a4【解答】解:原式=a4﹣4a4+4a4=a4.39.计算:(2x2)3﹣x2•x4.【解答】解:(2x2)3﹣x2•x4=8x6﹣x6=7x6.40.计算:(2a2)3﹣a4•a2﹣(a3)2【解答】解:原式=8a6﹣a6﹣a6=6a6.41.计算:(2a2)3+(﹣3a3)2+(a2)2•a2【解答】解:(2a2)3+(﹣3a3)2+(a2)2•a2=23×(a2)3+(﹣3)2×(a3)2+(a2)2×a2=8a6+9a6+a6=(8+9+1)a6=18a6.42.计算:(m4)2+m5•m3+(﹣m)4•m4.【解答】解:(m4)2+m5•m3+(﹣m)4•m4=m4×2+m5+3+m4+4=3m8.43.计算:a+2a+3a+a2•a5+a•a3•a3.【解答】解:原式=(a+2a+3a)+(a7+a7)=6a+2a7.44.计算:a5•(﹣a)3+(﹣2a2)4.【解答】解:a5•(﹣a)3+(﹣2a2)4.=a5•(﹣a3)+16a8=﹣a8+16a8=15a8.45.计算:[﹣(a﹣b)2]3﹣[﹣(b﹣a)3]2+(a+b)2•(﹣a﹣b)4.【解答】解:原式=﹣(a﹣b)6﹣(a﹣b)6+(a+b)6=﹣2(a﹣b)6+(a+b)6.46.计算,结果用幂的形式表示:a3•a•a5+a4•a2•a3.【解答】解:a3•a•a5+a4•a2•a3=a9+a9=2a9.47.(x﹣y)3•(x﹣y)4•(x﹣y)2.【解答】解:原式=(x﹣y)3+4+2=(x﹣y)9.48.计算:(﹣2a)6﹣(﹣3a3)2+[﹣(2a)2]3.【解答】解:(﹣2a)6﹣(﹣3a3)2+[﹣(2a)2]3=(﹣2)6•a6﹣(﹣3)2•(a3)2+(﹣1)3•(2a)6=64a6﹣9a6﹣64a6=﹣9a6.49.计算:(2x)3(﹣5xy2).【解答】解:原式=8x3•(﹣5xy2)=﹣40x4y2.50.计算:2x4•x2+(﹣3x3)2﹣5x6.【解答】解:2x4•x2+(﹣3x3)2﹣5x6=2x6+9x6﹣5x6=6x6.51.(﹣a2b)(2ab)3+10a3b4.【解答】解:原式=(﹣a2b)•8a3b3+10a3b4=﹣8a5b3+10a3b4.52.计算:a3b2•(﹣b2)2+(﹣2ab2)3.【解答】解:a3b2•(﹣b2)2+(﹣2ab2)3=a3b2•b4﹣8a3b6=a3b6﹣8a3b6=﹣7a3b6.53.计算:(﹣2x2)3+(﹣3x3)2+(﹣x)6.【解答】解:原式=﹣8x6+9x6+x6=2x6.54.计算:(2a)2﹣a×3a+a2.【解答】解:原式=4a2﹣3a2+a2=2a2.55.计算:(﹣2x2)3+2x2•x4【解答】解:原式=﹣8x6+2x6=﹣6x6.56.计算:2a3•a+(2a2)2﹣5a4【解答】解:原式=2a4+4a4﹣5a4=a4.57.化简:a2•(﹣2a)4﹣(3a3)2+(﹣2a2)3.【解答】解:原式=a2•16a4﹣9a6﹣8a6=﹣a658.(﹣2x2y)3+(3x2)2•(﹣x)2•(﹣y)3【解答】解:(﹣2x2y)3+(3x2)2•(﹣x)2•(﹣y)3=﹣8x6y3﹣9x6y3=﹣17x6y3.59.计算:2a2•3a3﹣2a•(﹣a2)2.【解答】解:2a2•3a3﹣2a•(﹣a2)2.=2a2•3a3﹣2a•a4=6a5﹣2a5=4a5.60.化简(5x)2•x7﹣(3x3)3+2(x3)2+x3【解答】解:(5x)2•x7﹣(3x3)3+2(x3)2+x3=25x2•x7﹣27x9+2x6+x3=25x9﹣27x9+2x6+x3=﹣2x9+2x6+x3.61.(﹣3a3)2•a3+(﹣4a2)•a7﹣(5a3)3【解答】解:原式=9a6•a3﹣4a2•a7﹣125a9=9a9﹣4a7﹣125a9=﹣120a9.62.计算:(﹣a)2•(﹣a3)•(﹣a)+(﹣a2)3﹣(﹣a3)2.【解答】解:原式=﹣a2•(﹣a3)•(﹣a)+(﹣a6)﹣a6=a6﹣a6﹣a6=﹣a6.63.计算:22017×.【解答】解:22017×.=22017××(﹣)=[2×(﹣)]2017×(﹣)=﹣1×(﹣)=.64.简便计算:0.1252016×(﹣8)2017.【解答】解:0.1252016×(﹣8)2017,=×(﹣8)2016×(﹣8),=(﹣1)2016×(﹣8),=﹣8.65.[2(a﹣b)3]2+[(a﹣b)2]3﹣[﹣(a﹣b)2]【解答】解:原式=4(a﹣b)6+(a﹣b)6+(a﹣b)2=5(a﹣b)6+(a﹣b)2.66.x2•(﹣x)2•(﹣x)2+(﹣x2)3【解答】解:原式=x2•x2•x2﹣x6=x6﹣x6=0.67.(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2.【解答】解:(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2=4y6﹣64y6﹣4y2•(9y4)=4y6﹣64y6﹣36y6=﹣96y6.68.计算:(﹣0.125)2014×82015.【解答】解:原式=(﹣0.125×8)2014×8=(﹣1)2014×8=8.69.计算:﹣82015×(﹣0.125)2016+(0.25)3×26.【解答】解:原式=﹣82015×(﹣0.125)2015×(﹣0.125)+(0.25)3×23×23=﹣[8×(﹣0.125)]2015×(﹣0.125)+(0.25×2×2)3=1×(﹣0.125)+1=0.875.70.计算0.1259×(﹣8)10+()11×(2)12.【解答】解:0.1259×(﹣8)10+()11×(2)12=(﹣0.125×8)9×(﹣8)+(×2)11×2=8+2=10.。

幂的运算(基础、典型、易错、压轴)分类专项训练-【2022-2023学年七年级数学下学期核心考点

幂的运算(基础、典型、易错、压轴)分类专项训练-【2022-2023学年七年级数学下学期核心考点

第8章 幂的运算(基础、常考、易错、压轴)分类专项训练【基础】一、单选题(2023春·江苏·七年级专题练习)1. 计算32m m ÷的结果是( )A. mB. m 2C. m 3D. m 5(2023春·江苏·七年级专题练习)2. 已知32816x x ⨯=,则x 的值为( )A. 2B. 3C. 4D. 5(2023春·江苏·七年级专题练习)3. 计算23m m ⋅的结果是( )A. 6mB. 5mC. 6mD. 5m(2023春·江苏·七年级专题练习)4. 计算()32a a - 的结果是( )A. 6aB. 6a -C. 5aD. 5a -(2022春·江苏常州·七年级常州市清潭中学校考期中)5. 下列计算正确的是( )A. 236a a a+= B. 236a a a ⨯=C. 826a a a ÷=D. ()437a a =(2023春·江苏·七年级专题练习)6. 计算:()323·a a -结果为( )A. 9a -B. 9aC. 8aD. 8a (2023春·江苏·七年级专题练习)7. 如果()21633n =,则n 的值为( )A. 3B. 4C. 8D. 14(2022春·江苏连云港·七年级统考期中)8. 目前发现的新冠病毒其直径约为0.00012毫米,则这个数字用科学记数法表示正确的是( )A. 41.210⨯ B. 41.210⨯﹣ C. 50.1210⨯ D. 50.1210⨯﹣(2023春·江苏·七年级专题练习)9. 下列运算正确的是( )A. 842x x x ÷= B. ()239xx =C. 437x x x ⋅= D. ()22222xy x y =(2022秋·江苏·七年级专题练习)10. 式子5555555555++++化简的结果是( )A. 25 B. 55 C. 65 D. 555+二、填空题(2022春·江苏泰州·七年级校考阶段练习)11. 把数字0.0000009用科学记数法表示为 _____.(2023春·江苏·七年级专题练习)12. 计算:()22y -= ___.(2021春·江苏泰州·七年级校考期中)13. 4月9日,以“打造城市硬核 塑造都市功能”为主题的2021泰州城市推介会在中国医药城会展交易中心举行,某出席企业研制的溶液型药物分子直径为0.00000008厘米,该数据用科学记数法表示为______厘米.(2021春·江苏南京·七年级南京钟英中学校考期中)14. 在()()22323xy x y =的运算过程中,依据是______.(2022秋·江苏·七年级校考阶段练习)15. 计算:9999188⎛⎫⨯-= ⎪⎝⎭_____________.三、解答题(2021春·江苏连云港·七年级东海实验中学校考阶段练习)16. 计算:(1)()102132363π-⎛⎫--⨯+- ⎪⎝⎭(2)()()333nnn a a a a +-⋅(2023春·江苏·七年级专题练习)17. 计算:()()()3443x x x x ⋅+-⋅---.(2021春·江苏苏州·七年级苏州草桥中学校考期中)18. 计算:3272(2)a a a a -⋅+÷.(2022春·江苏连云港·七年级校考期中)19. 计算: ()100100133⎛⎫⨯- ⎪⎝⎭.(2022春·江苏宿迁·七年级统考期中)20. 我们都知道“先看见闪电,后听见雷声”,那是因为在空气中光的传播速度比声音快.科学家们发现,光在空气中的传播速度约为8310m/s ⨯,而声音在空气中的传播速度约为300m /s .问:在空气中光的传播速度是声音的多少倍?(结果用科学记数法表示)【常考】一.选择题(共4小题)(2022春•江阴市校级月考)21. 计算(﹣0.25)2022×42021的结果是( )A. ﹣1B. 1C. 0.25D. 44020(2022春•吴江区期中)22. 计算()234a 的正确结果是( )A. 616a B. 516a C. 68a D. 916a (2022春•沛县月考)23. 下列运算正确的是( )A. 2242x x x += B. 236x x x ⋅=C. 236()x x = D. 22(2)4x x -=-(2021春•秦淮区期末)24. 下列计算正确的是( )A. 235a a a += B. 236a a a ⋅= C. ()326a a = D. 624a a a ÷=二.填空题(共8小题)(2022春•亭湖区校级期末)25. H9N2型禽流感病毒的病毒粒子的直径在0.00008毫米~0.00012毫米之间,数据0.00012用科学记数法可以表示为_____.(2022春•邗江区期末)26. 若x +y =3,则2x •2y 的值为_____.(2021春•惠山区校级期中)27. 已知2,4x y m m ==,则x y m +=_____.(2022春•浦口区校级月考)28. 计算:22(2)xy - =____________________.(2022春•泰兴市校级月考)29. 16=a 4=2b ,则代数式a+2b=__.(2022春•广陵区期末)30. 已知a m =3,a n =2,则a 2m ﹣n 的值为_____.(2021春•梁溪区期中)31. 已知2x =3,2y =5,则22x+y-1=_____.(2020春•丹阳市校级月考)32. 若0(1)1x -=,则x 满足条件__________.三.解答题(共8小题)(2021春•高新区校级月考)33. 阅读下面的文字,回答后面的问题:求231005555+++⋯+的值.解:令231005555S =+++⋯+①,将等式两边同时乘以5得到:23410155555S =+++⋯+②,②-①得:101455S =-∴101554S -=即10123100555555.4-+++⋯+=问题:(1)求231002222+++⋯+的值;(2)求404123643+++⋯+⨯的值.(2022春•建邺区校级期中)34. 如果c a b =,那么我们规定(),a b c =,例如:因为328=,所以()2,83=(1)根据上述规定,填空:()3,27= ,()4,1= ,()2,0.25= ;(2)记()()()3,5,3,6,3,30a b c ===.求证:a b c +=.(2021春•东台市月考)35. 若105x =,103y =,求2310x y +的值.(2022春•宝应县校级月考)36. (1)若10x =3,10y =2,求代数式103x +4y 的值.(2)已知:3m +2n ﹣6=0,求8m •4n 的值.(2022春•亭湖区校级月考)37. 阅读下列材料:若32a =,53b =,则,a b 的大小关系是a_____b.(填“<”或“>”)解:因为15355()232a a ===,15533()327b b ===,32>27,所以1515a b >,所以a b >解答下列问题:(1)上述求解过程中,逆用的幂的运算性质是:A.同底数幂的乘法 B.同底数幕的除法C.幂的乘方D.积的乘方(2)已知72x =,93y =,试比较x 与y 的大小.(2020秋•淇滨区校级月考)38. 已知2,3m n x x ==,求32m n x -的值.(2021春•高新区校级月考)39. 已知23,25x y ==.求:(1)2x y +的值;(2)32x 的值;(3)212x y +-的值.(2020•盐城二模)40. 计算:()0112π42-----【易错】一.选择题(共4小题)(2022春•吴江区校级期中)41. 新型冠状病毒呈圆形或者椭圆形,最大直径约0.00000014米,怕酒精,不耐高温,相信我们团结一心,必定早日战胜病毒.用科学记数法表示新冠病毒的直径是( )A. 61410⨯﹣ B. 71410⨯﹣ C. 61.410⨯﹣ D. 71.410⨯﹣(2022春•东海县期末)42. 算式35-可以表示为( )A. ()()()()()33333-⨯-⨯-⨯-⨯- B.1555⨯⨯C. ()()()()()33333-+-+-+-+- D. 555-⨯⨯(2022春•相城区期末)43. 下列运算中,正确的是( )A. 2221a a -= B. ()2222a a = C. 633a a a ÷= D. 428a a a ⋅=(2022春•工业园区校级期中)44. 下列运算正确的是( )A. 326a a a ⋅= B. 323a a a +=C. ()3339a a-=- D. ()236aa -=二.填空题(共7小题)(2022春•丹阳市期末)45. 每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________.(2022春•宜兴市校级月考)46. (1)若2•4m •8m =221,则m =_____.(2)若3x ﹣5y ﹣1=0,则103x ÷105y =_______.(2022秋•通州区期中)47. 计算:()02-=__.(2021春•宝应县月考)48. 若()3n n -的值为1,则n 的值为__.当x __时,()0241x -=(2020春•高新区期中)49. 20182019133⎛⎫⨯-= ⎪⎝⎭________.(2022春•相城区校级期末)50. 若416m =,28n =,则22m n -=________.(2019春•滨湖区期中)51. 计算:()2020201940.25⨯-_______.三.解答题(共5小题)(2022春•盐都区月考)52. 若a m =a n (a >0且a ≠1,m ,n 是正整数),则m =n .你能利用上面的结论解决下面的2个问题吗?试试看,相信你一定行!(1)如果2×8x ×16x =222,求x 的值;(2)已知9n +1﹣32n =72,求n 的值.(2022春•江阴市校级月考)53. 计算:()()2020********π-⎛⎫----+- ⎪⎝⎭.(2022春•泰兴市校级月考)54. 世界上最小、最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,体长仅0.021厘米,其质量也只有0.000005克.(1)用科学记数法表示上述两个数据.(2)一个鸡蛋的质量大约是50克,多少只卵蜂的质量和与这个鸡蛋的质量相等?(2020春•沭阳县期中)55. 已知:23a =,25b =,275c =.(1)求22a 的值;(2)求2c b a -+的值.(2022春•江都区月考)56. (1)已知a +3b =4,求3a ×27b 的值;(2)解关于x 的方程4321313155x x x +++⨯=.【压轴】一、单选题(2021春·江苏无锡·七年级宜兴市实验中学校考期中)57. 计算100501111122222⋅⋅⋅-⋅⋅⋅个个其结果用幂的形式可表示为( )A.25033333⋅⋅⋅ 个B.26033333⋅⋅⋅ 个C.27033333⋅⋅⋅ 个D.28033333⋅⋅⋅ 个(2023春·七年级单元测试)58. 设m ,n 是正整数,且m n >,若9m 与9n 的末两位数字相同,则m n -的最小值为( )A. 9B. 10C. 11D. 12(2022春·江苏无锡·七年级校考阶段练习)59. 计算20206060(0.125)(2)-⨯的结果是( )A. 1B.1- C. 8 D. 8-(2022春·江苏·七年级专题练习)60. 观察等式:232222+=-;23422222++=-;2345222222+++=-;…已知按一定规律排列的一组数:1001011021992002,2,2,,2,2 ,若1002S =,用含S 的式子表示这组数据的和是( )A. 22S S -B. 22S S +C. 222S S -D. 2222S S --二、填空题(2022春·江苏扬州·七年级校考阶段练习)61. 已知23a =,26b =,212c =,现给出3个数a ,b ,c 之间的四个关系式:①2a c b +=;②23a b c +=-;③23b c a +=+;④2b a =+.其中,正确的关系式是____(填序号).(2022春·江苏扬州·七年级校考期中)62. 已知5160x =,32160y =,则(1)(1)1(2022)x y ----=__________.(2022秋·江苏南通·七年级南通田家炳中学校考阶段练习)63. 计算:202320222021(0.125)24-⨯⨯=________.(2023春·七年级单元测试)64. 观察等式:232222+=-;23422222++=-;按一定规律排列的一组数:5051529910022222+++++ ,若502a =,则用含a 的代数式表示下列这组数50515299100222.....22++++的和_________.(2022春·江苏·七年级专题练习)65. 已知整数a b c d 、、、满足a b c d <<<且234510000a b c d =,则432a b c d +++的值为_____.三、解答题(2023春·江苏·七年级专题练习)66. 规定两数a ,b 之间的一种运算,记作(a ,b ):如果a c =b ,那么(a ,b )=c .例如:因为23=8,所以(2,8)=3(1)根据上述规定,填空:(5,25)=,(2,1)=,(3,19)=.(2)小明在研究这种运算时发现一个特征:(3n ,4n )=(3,4),并作出了如下的证明:设(3n ,4n )=x ,则(3n )x =4n ,即(3x )n =4n .所以3x =4,即(3,4)=x ,所以(3n ,4n )=(3,4).试解决下列问题:①计算(8,1000)﹣(32,100000);②请你尝试运用这种方法证明下面这个等式:(3,2)+(3,5)=(3,10).(2023春·江苏·七年级专题练习)67. 如果10b =n ,那么b 为n 的“劳格数”,记为b =d (n ).由定义可知:10b =n 与b =d (n )表示b 、n 两个量之间的同一关系.(1)根据“劳格数”的定义,填空:d (10)=____ ,d (10-2)=______;(2)“劳格数”有如下运算性质:若m 、n 为正数,则d (mn )=d (m )+d (n ),d (mn)=d (m )-d (n );根据运算性质,填空:3()()d a d a =________.(a 为正数)(3)若d (2)=0.3010,分别计算d (4);d (5).(2023春·江苏·七年级专题练习)68. 阅读下列材料:按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为1a ,依此类推,排在第n 位的数称为第n 项,记为n a .一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0)q ≠.如:数列1,3,9,27,⋯为等比数列,其中11a =,公比为3q =.然后解决下列问题.(1)等比数列3,6,12,⋯的公比q 为 ,第4项是 .(2)如果已知一个等比数列的第一项(设为1)a 和公比(设为)q ,则根据定义我们可依次写出这个数列的每一项:1a ,1a q ,21a q ,31a q ,⋯.由此可得第n 项n a = (用1a 和q 的代数式表示).(3)若一等比数列的公比2q =,第2项是10,求它的第1项与第4项.(4)已知一等比数列的第3项为12,第6项为96,求这个等比数列的第10项.(2023春·七年级单元测试)69. 阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=①则22021202222222S =++⋅⋅⋅++②②-①得,2022221S S S -==-.请仿照小明的方法解决以下问题:(1)220222++⋅⋅⋅+=______;(2)求2501111222+++⋅⋅⋅++=______;(3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)(2023春·江苏·七年级专题练习)70. 阅读下列材料,并解决下面的问题:我们知道,加减运算是互逆运算,乘除运算也是互逆运算,其实乘方运算也有逆运算,如我们规定式子328=可以变形为25log 83log 252==,也可以变形为2525=.在式子328=中,3叫做以2为底8的对数,记为2log 8.一般地,若()010n a b a a b =≠>且,>,则n 叫做以a 为底b 的对数,记为()a log log a b b n 即,=且具有性质:()log log log log log log n n a a a a a a b n b a n M N M N ==+=⋅①;②;③,其中0a >且100.a M N ≠,>,>根据上面的规定,请解决下面问题:(1)计算:31010log 1_____log 25log 4=+=, _______(请直接写出结果);(2)已知3log 2x =,请你用含x 的代数式来表示y ,其中3log 72y =(请写出必要的过程).(2022春·江苏·七年级专题练习)71. 阅读下面的文字,回答后面的问题:求231005555+++⋯+的值.解:令231005555S =+++⋯+①,将等式两边同时乘以5得到:23410155555S =+++⋯+②,②-①得:101455S =-∴101554S -=即10123100555555.4-+++⋯+=问题:(1)求231002222+++⋯+的值;(2)求404123643+++⋯+⨯的值.(2022春·江苏宿迁·七年级统考阶段练习)72. (1)你发现了吗?2222()333=⨯,22211133()222322()333-==⨯=⨯,由上述计算,我们发现2223(___(32-;(2)请你通过计算,判断35()4与34(5-之间的关系;(3)我们可以发现:()m b a -____()m a b(0)ab ≠(4)利用以上的发现计算:3477()()155-⨯.(2022秋·江苏·七年级专题练习)73. 观察下面三行单项式:x ,22x ,34x ,48x ,516x ,632x ,⋯;①2x -,24x ,38x -,416x ,532x -,664x ,⋯;②22x ,33x -,45x ,59x -,617x ,733x -,⋯;③根据你发现的规律,解答下列问题:(1)第①行的第8个单项式为_______;(2)第②行的第9个单项式为_______;第③行的第10个单项式为_______;(3)取每行的第9个单项式,令这三个单项式的和为A .当12x =时,求15124A ⎛⎫+ ⎪⎝⎭的值.第8章 幂的运算(基础、常考、易错、压轴)分类专项训练【基础】一、单选题(2023春·江苏·七年级专题练习)【1题答案】【答案】A【解析】【分析】根据同底数幂的除法法则进行解答即可.【详解】解: 3232m m m m -÷==.故选:A .【点睛】此题主要考查了同底数幂的除法运算,底数不变,指数相减,正确掌握相关运算法则是解题关键.(2023春·江苏·七年级专题练习)【2题答案】【答案】B【解析】【详解】根据幂的乘方,可得同底数幂的乘法,根据同底数的幂相等,可得指数相等,可得答案.【解答】解:由题意,得34122222x x x ⋅==,412x =,解得3x =,故选:B .【点睛】本题考查了同底数幂的乘法,利用幂的乘方得出同底数幂的乘法是解题关键.(2023春·江苏·七年级专题练习)【3题答案】【答案】D【解析】【分析】根据同底数幂的乘法法则计算即可.【详解】解:原式235m m +==,故选D .【点睛】本题考查了同底数幂的乘法,掌握m n m n a a a +⋅=是解题的关键.(2023春·江苏·七年级专题练习)【4题答案】【答案】D【解析】【分析】利用同底数幂的乘法的法则进行求解即可.【详解】解:()32a a - =32a +-=5a -.故选:D【点睛】本题主要考查同底数幂的乘法,解答的关键是对同底数幂的乘法的法则的掌握与运用.(2022春·江苏常州·七年级常州市清潭中学校考期中)【5题答案】【答案】C【解析】【分析】依据合并同类项,同底数幂的乘除法法则、幂的乘方法则进行判断,即可得出结论.【详解】解:A .235a a a +=,故错误,不合题意;B .235a a a ⨯=,故错误,不合题意;C .826a a a ÷=,故正确,符合题意;D .()1432a a =,故错误,不合题意;故选:C .【点睛】本题主要考查了合并同类项,同底数幂的乘除法、幂的乘方,掌握幂的运算法则是解题的关键.(2023春·江苏·七年级专题练习)【6题答案】【答案】A【解析】【分析】利用幂的乘方的法则及同底数幂的除法的法则对式子进行运算即可.【详解】解:()323639··a a a a a -=-=-.故选:A .【点睛】本题主要考查了同底数幂的除法,幂的乘方;解答的关键是对相应的运算法则的掌握.(2023春·江苏·七年级专题练习)【7题答案】【答案】C【解析】【分析】把左边的数化成底数是3的幂的形式,然后利用利用相等关系,可得出关于n 的相等关系,解即可.【详解】解:∵()2233nn =,∴21633n =,∴216n =,∴8n =.故选:C .【点睛】本题考查了幂的乘方,掌握幂的乘方运算公式是关键.(2022春·江苏连云港·七年级统考期中)【8题答案】【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:40.00012 1.210.-=⨯故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.(2023春·江苏·七年级专题练习)【9题答案】【答案】C【解析】【分析】分别根据同底数幂的乘法,同底数幂的除法、幂的乘方与积的乘方法则对各选项进行计算即可.【详解】解:A .原式4x =,故本选项错误,不合题意;B .原式6x =,故本选项错误,不合题意;C .原式7x =,故本选项正确,符合题意;D .原式224x y =,故本选项错误,不合题意;故选:C .【点睛】本题主要考查了同底数幂的乘法,同底数幂的除法、幂的乘方与积的乘方法,解题的关键是掌握同底数幂的乘法(除法),底数不变,指数相加(减);幂的乘方,底数不变,指数相乘;积的乘方,把每个因式分别乘方,(2022秋·江苏·七年级专题练习)【10题答案】【答案】C【解析】【分析】利用乘方的意义计算即可得到结果.【详解】解:555555655555555++++=⨯=.故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(2022春·江苏泰州·七年级校考阶段练习)【11题答案】【答案】7910-⨯【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:70.0000009910-=´,故答案为:7910-⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.(2023春·江苏·七年级专题练习)【12题答案】【答案】4y 【解析】【分析】根据幂的乘方法则计算,即可求解.【详解】解:()422y y -=.故答案为:4y .【点睛】本题主要考查了幂的乘方,熟练掌握幂的乘方,底数不变,指数相乘是解题的关键.(2021春·江苏泰州·七年级校考期中)【13题答案】【答案】8810-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:80.00000008810-=⨯.故答案是:8810-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.(2021春·江苏南京·七年级南京钟英中学校考期中)【14题答案】【答案】积的乘方运算法则【解析】【分析】根据积的乘方法则∶把每一个因式分别乘方,再把所得的幂相乘可得答案.【详解】解∶在()()22323xy x y =的运算过程中,依据是积的乘方运算法则,故答案为∶积的乘方运算法则.【点睛】此题主要考查了单项式乘法和积的乘方,关键是掌握积的乘方计算法则.(2022秋·江苏·七年级校考阶段练习)【15题答案】【答案】-1【解析】【分析】根据积的乘方的逆用进行计算即可得.【详解】解:原式=9918(8⎡⎤⨯-⎢⎥⎣⎦=99(1)-=-1故答案为:-1.【点睛】本题考查了积的乘方的逆用,解题的关键是掌握积的乘方的逆用并正确计算.三、解答题(2021春·江苏连云港·七年级东海实验中学校考阶段练习)【16题答案】【答案】(1)14-(2)332n n a a +-【解析】【分析】(1)根据乘方运算,负指数幂的运算,非零数的零次幂运算法则即可求解;(2)根据幂的乘方,同底数幂的乘法运算法则即可求解.【小问1详解】解:()102132363π-⎛⎫--⨯+- ⎪⎝⎭9231=--⨯+14=-.【小问2详解】解:()()333n n n a a a a +-⋅333n n n a a a +=+-332n n a a +=-.【点睛】本题主要考查整式的混合运算,掌握同底数幂的乘法法则,幂的乘方,负指数幂的运算,非零数的零次幂的运算是解题的关键.(2023春·江苏·七年级专题练习)【17题答案】【答案】0【解析】【分析】根据同底数幂的乘法以及积的乘方计算法则进行求解即可【详解】()()()3443x x x x ⋅+-⋅---()()4343x x x x ⋅+=⋅---4343x x ++-=77x x =-0=.【点睛】本题主要考查了同底数幂的乘法和积的乘方,解题的关键在于能够熟练掌握相关计算法则进行求解.(2021春·江苏苏州·七年级苏州草桥中学校考期中)【18题答案】【答案】57a -【解析】【分析】先计算积的乘方运算,再计算同底数幂的乘法,同底数幂的除法运算,再合并同类项即可.【详解】解:3272(2)a a a a -⋅+÷3258a a a =-+558a a =-+57a =-.【点睛】本题考查的是积的乘方运算,同底数幂的乘法运算,除法运算,合并同类项,掌握以上基础运算的运算法则是解本题的关键.(2022春·江苏连云港·七年级校考期中)【19题答案】【答案】1【解析】【分析】逆用积的乘方公式即可求解.【详解】解:()100100133⎛⎫⨯- ⎪⎝⎭100133⎛⎫=-⨯ ⎪⎝⎭1=.【点睛】本题考查积的乘方,灵活运用积的乘方公式是解题关键.(2022春·江苏宿迁·七年级统考期中)【20题答案】【答案】6110⨯【解析】【分析】先根据同底数幂相除法则计算,再改写成科学记数法表示即可.【详解】解:根据题意得:8310300⨯=82310310⨯⨯ =610=6110⨯答:在空气中光的传播速度是声音的6110⨯倍【点睛】本题考查同底数幂相除,用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为10n a ⨯,其中110a ≤<,n 是正整数,正确确定a 的值和n 的值是解题的关键.【常考】一.选择题(共4小题)(2022春•江阴市校级月考)【21题答案】【答案】C【解析】【分析】根据积的乘方的逆运算法则计算即可.【详解】原式()2021202120212021111111144114444444⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯⨯-=-⨯⨯-=-⨯-=-⨯-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故选:C .【点睛】本题考查积的乘方的逆运算,熟练掌握运算法则是解题的关键.(2022春•吴江区期中)【22题答案】【答案】A【解析】【分析】根据积的乘方运算法则来进行计算,再与选项进行比较求解.【详解】解:()2323264416a a a ⨯==.故选:A .【点睛】本题主要考查了积的乘方.积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘.理解相关知识是解答关键.(2022春•沛县月考)【23题答案】【答案】C【解析】【分析】根据合并同类项,同底数幂的乘法,幂的乘方与积的乘方法则进行计算即可.【详解】解:A 222.2x x x +=,故A 不符合题意;B.235x x x ⋅=,故B 不符合题意;C.236()x x =,故C 符合题意;D.22(2)4x x -=,故D 不符合题意;故选:C .【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.(2021春•秦淮区期末)【24题答案】【答案】C【解析】【分析】根据同底数幂的乘法法则,合并同类项法则,同底数幂的除法法则,幂的乘方法则对每个选项进行分析,即可得出答案.【详解】解:∵235a a a +≠,∴选项A 不符合题意;∵232356a a a a a +⋅==≠,∴选项B 不符合题意;∵()326a a =,∴选项C 符合题意;∵624a a a ÷=,∴选项D 不符合题意;故选:C .【点睛】本题考查了同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方,熟练掌握同底数幂的乘法法则,合并同类项法则,同底数幂的除法法则,幂的乘方法则是解决问题的关键.二.填空题(共8小题)(2022春•亭湖区校级期末)【25题答案】【答案】1.2×10﹣4.【解析】【分析】根据科学记数法的表示方法解答即可.【详解】解:数据0.00012用科学记数法可以表示为1.2×10﹣4.故答案为:1.2×10﹣4.【点睛】本题考查了科学记数法,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.(2022春•邗江区期末)【26题答案】【答案】8【解析】【分析】运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:∵x +y =3,∴2x •2y=2x +y=23=8故答案为8.【点睛】本题考查同底数幂的乘法,熟记同底数幂相乘,底数不变指数相加是解题的关键.(2021春•惠山区校级期中)【27题答案】【答案】8【解析】【分析】根据幂的运算法则即可求解.【详解】∵2,4x y m m ==∴x y m +=248x y m m =⨯⨯=故答案为:8.【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.(2022春•浦口区校级月考)【28题答案】【答案】244x y 【解析】【分析】根据积的乘方运算以及幂的乘方运算法则求解即可.【详解】解:22(2)xy -()()22222x y =-⋅244x y =,故答案为:244x y .【点睛】本题考查整式运算,涉及到积的乘方运算以及幂的乘方运算,熟练掌握整式运算的法则是解决问题的关键.(2022春•泰兴市校级月考)【29题答案】【答案】10或6【解析】【分析】根据16=24,求出a,b的值,即可解答.【详解】解:∵16=24,16=a4=2b,∴a=±2,b=4,∴a+2b=2+8=10,或a+2b=﹣2+8=6,故答案为:10或6.【点睛】本题考查的知识点是幂的乘方与积的乘方,利用已知条件得出a、b的值是解此题的关键.(2022春•广陵区期末)【30题答案】【答案】4.5【解析】【分析】首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的逆运算方法,求出a2m-n的值为多少即可.【详解】详解:∵a m=3,∴a2m=32=9,∴a2m-n=292mnaa=4.5.故答案为4.5.【点睛】此题主要考查了同底数幂的除法的逆运算法则,以及幂的乘方的逆运算,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2021春•梁溪区期中)【31题答案】【答案】45 2【解析】【分析】根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.【详解】解:22x+y-1=22x ×2y ÷2=(2x )2×2y ÷2=9×5÷2=452故答案为:452.【点睛】本题考查了同底数幂的乘法与除法的逆用,熟记法则并根据法则计算是解题关键.(2020春•丹阳市校级月考)【32题答案】【答案】x ≠1.【解析】【分析】根据0的零次幂没有意义,有意义的条件下,一个数的零次幂等于1求解即可.【详解】解:∵0的零次幂没有意义,有意义的条件下,一个数的零次幂等于1,∴x-1≠0,∴x ≠1,故答案是:x ≠1.【点睛】本题考查了零次幂的性质,掌握零次幂的性质是关键.三.解答题(共8小题)(2021春•高新区校级月考)【33题答案】【答案】(1)1012 2.-(2)()41231.⨯-【解析】【分析】(1)根据已知材料的方法解答即可(2)先把式子化简成与题干中的式子一致的形式再解答.【详解】解:(1)令231002222S =+++⋯+①,将等式两边同时乘以2得到:23410122222S ②,=+++⋯+②-①得:10122S =-∴即2310010122222 2.+++⋯+=-(2)()4023404123643413333+++⋯+⨯=++++⋯+令()2340413333S =++++⋯+①,将等式两边同时乘以3得到:()2341343333S ②,=+++⋯+②-①得:()412431S =-()41S 231.=⨯-【点睛】此题重点考查学生对同底数幂的乘法的应用,能根据材料正确找到做题方法是解题关键.(2022春•建邺区校级期中)【34题答案】【答案】(1)3,0,2-(2)见解析【解析】【分析】(1)根据规定求解即可;(2)根据规定,得到35,36,330a b c ===,进而得到33356303a b a b c +⋅==⨯==,即可得证.【小问1详解】解∵3021327,41,20.254-====∴()3,273=,()4,10=,()2,0.252=-,故答案为:3,0,2-;【小问2详解】解:由题意,得:35,36,330a b c ===,∵33356303a b a b c +⋅==⨯==,∴a b c +=.【点睛】本题考查零指数幂,负整数指数幂,同底数幂的乘法.理解并掌握题干中的规定,熟练掌握相关运算法则,是解题的关键.(2021春•东台市月考)【35题答案】【答案】675【解析】【分析】根据同底数幂的乘法,可得要求的形式,根据幂的乘方,可得答案.【详解】解:因为10x=5,10y=3,所以102x+3y=102x⋅103y=(10x)2⋅(10y)3=52×33=25×27=675.故答案为675.【点睛】本题考查了幂的乘方以及同底数幂的乘法.(2022春•宝应县校级月考)【36题答案】【答案】(1)432;(2)64【解析】【分析】(1)利用同底数幂的乘法、幂的乘方运算法则将原式变形进行求解;(2)利用同底数幂的乘法运算法则将原式变形进行求解.【详解】(1)∵10x=3,10y=2,∴代数式103x+4y=(10x)3×(10y)4=33×24=432;(2)∵3m+2n﹣6=0,∴3m+2n=6,∴8m•4n=23m•22n=23m+2n=26=64.【点晴】考查了同底数幂的乘法运算以及幂的乘方运算,解题关键是熟记运算法则.(2022春•亭湖区校级月考)【37题答案】【答案】1、C,2、x<y【解析】【分析】(1)、根据幂的乘方法则将其化成同指数,然后进行比较大小得出答案;(2)、将x 和y 的指数化成相同,然后进行比较幂的大小从而得出底数的大小.【详解】(1)、C(2)、解∵x 63=(x 7)9=29=512,y 63=(y 9)7=37=2187,2187>512,∴x 63<y 63,∴x <y .(2020秋•淇滨区校级月考)【38题答案】【答案】89【解析】【分析】根据幂的乘方及同底数幂的除法的逆运算,进行运算即可.【详解】解: 32m n x -32m nx x =÷()()32m n x x =÷89=÷89=.【点睛】本题主要考查了幂的乘方及同底数幂的除法的逆运算,熟练掌握幂的乘方及同底数幂的除法的逆运算是解题的关键.(2021春•高新区校级月考)【39题答案】【答案】(1)15(2)27(3)22.5【解析】【分析】(1)根据同底数幂乘法的逆运算计算,即可求解;(2)根据幂的乘方的逆运算,即可求解;(3)根据同底数幂乘法的逆运算,幂的乘方的逆运算,同底数幂除法的逆运算计算,即可求解.【小问1详解】解:2223515x y x y +=⋅=⨯=【小问2详解】解:()33322327x x ===【小问3详解】解:()2212222235222.5x y x y +-=÷⨯=⋅=÷【点睛】本题主要考查了同底数幂乘法的逆运算,幂的乘方的逆运算,同底数幂除法的逆运算,熟练掌握相关运算法则是解题的关键.(2020•盐城二模)【40题答案】【答案】1-.【解析】【分析】先计算负整数指数幂、零指数幂运算,再计算有理数的减法即可.【详解】原式11122=--1=-.【点睛】本题考查了负整数指数幂、零指数幂运算、有理数的减法,熟记各运算法则是解题关键.【易错】一.选择题(共4小题)(2022春•吴江区校级期中)【41题答案】【答案】D【解析】【分析】根据科学记数法的表示方法求解即可.【详解】解:70.00000014 1.410-=⨯.故选:D .【点睛】本题主要考查科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数.解题关键是正确确定a 的值以及n 的值.(2022春•东海县期末)【42题答案】。

完整版)幂的运算练习题及答案

完整版)幂的运算练习题及答案

完整版)幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。

-299 B。

-2 C。

299 D。

22.当m是正整数时,下列等式成立的有()1)a^(2m)=(a^m)^2;(2)a^(2m)=(a^2)^m;(3)a^(2m)=(-a^m)^2;4)a^(2m)=(-a^2)^m.A。

4个 B。

3个 C。

2个 D。

1个3.下列运算正确的是()A。

2x+3y=5xy B。

(-3x^2y)^3=-9x^6y^3C。

D。

(x-y)^3=x^3-y^34.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。

an与XXX^(2n)与b^(2n)C。

a^(2n+1)与b^(2n+1) D。

a^(2n-1)与(-b^(2n-1))5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6•(-a)^3•a=a^10;③(-a)^4•(-a)^5=a^20;④25+25=26.A。

0个 B。

1个 C。

2个 D。

3个二、填空题6.计算:x^2•x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^n+1+45,求x的值。

9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))10.已知2x+5y=3,求4x•3^2y的值.11.已知25^m•2•10^n=57•24,求m、n.12.已知a^x=5,a^(x+y)=25,求a^(x+y)的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^n,当a=2,n=3时,求a^n*x-a^y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)•(b-a)^2•(a-b)^m•(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)÷3]3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299解答:(-2)100+(-2)99=(-2)99×(-2)=-299,故选A。

幂运算练习题大全

幂运算练习题大全

幂运算练习题大全幂运算,是数学领域中一种常见的运算方式。

它用于表示一个数的某个指数次幂,例如2的3次幂就是2×2×2,通常表示为2^3。

幂运算在数学、物理、计算机科学等领域有着重要的应用。

在本文中,我们将提供一系列幂运算的练习题,帮助读者更好地掌握幂运算的概念和运用。

1. 简化以下幂运算:a) 2^4b) 3^2c) 5^3d) 10^02. 计算以下幂运算的结果:a) 2^5b) 4^3c) 6^2d) 8^43. 给定以下幂运算,求未知数的值:a) 2^x = 16b) 3^x = 27c) 4^x = 256d) 5^x = 6254. 简化以下幂运算的结果,使用负指数:a) 2^-3b) 3^-2c) 5^-4d) 10^-15. 简化以下幂运算的结果,使用幂与根相互抵消的关系:a) √(4^3)b) ∛(8^2)c) ∜(16^2)d) ⁵√(32^3)6. 简化以下幂运算的结果,使用幂运算的运算法则:a) (2^3) × (2^4)b) (3^2) ÷ (3^5)c) (5^6)^2d) (10^4)^07. 计算以下复合幂运算的结果:a) (2^3)^2b) (4^2)^3c) (6^4)^2d) (8^5)^08. 解决以下问题,应用幂运算的概念:a) 一台计算机每秒钟可以执行10^9次运算,那么1分钟内可以执行多少次运算?b) 一辆汽车每小时行驶80公里,那么2小时内可以行驶多远?c) 一块土地的面积为5^2平方米,如果将其分割成边长为1米的小方块,可以得到多少个小方块?9. 解决以下问题,应用幂运算的运算法则:a) 简化表达式:(2^3 × 2^4) ÷ 2^2b) 简化表达式:(3^5)^2 ÷ (3^2)c) 简化表达式:(5^3 ÷ 5^2) × 5^4d) 简化表达式:(10^6)^2 ÷ 10^3通过以上的练习题,可以帮助读者巩固幂运算的知识点和运用技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂的运算性质
1、下列各式计算过程正确的是( )
(A )x 3+x 3=x 3+3=x 6 (B )x 3·x 3=2x 3=x 6
(C )x ·x 3·x 5=x 0+3+5=x 8 (D )x 2·(-x )3=-x 2+3=-x 5
2、化简(-x )3·(-x )2,结果正确的是( )
(A )-x 6 (B )x 6 (C )x 5 (D )-x 5
3、下列计算:①(x 5)2=x 25;②(x 5)2=x 7;③(x 2)5=x 10;④x 5·y 2=(xy )7;
⑤x 5·y 2=(xy )10;⑥x 5y 5=(xy )5;其中错误..
的有( ) (A )2个 (B )3个 (C )4个 (D )5个
4、下列运算正确的是( )
(A )a 4+a 5=a 9 (B )a 3·a 3·a 3=3a 3 (C )2a 4×3a 5=6a 9 (D )(-a 3)4=a 7
5、下列计算正确的是( )
(A )(-1)0=-1 (B )(-1)-1=+1 (C )2a -3=321a (D )(-a 3)÷(-a )7=41a
6、下列计算中,运算错误的式子有( )
⑴5a 3-a 3=4a 3;⑵x m +x m =x 2m ;⑶2m ·3n =6m +n ;⑷a m +1·a =a m +2;
(A )0个 (B )1个 (C )2个 (D )3个
7、计算(a -b )2(b -a )3的结果是( )
(A )(a -b )5 (B )-(a -b )5 (C )(a -b )6 (D )-(a -b )6
8.计算9910022)
()(-+-所得的结果是( ) A .-2 B 2 C .-992 D .992
9.当n 是正整数时,下列等式成立的有( )
(1)22)(m m a a = (2)m m a a )(22= (3)22)(m m a a -= (4)m m a a )(22-=
A.4个 B.3个 C.2个 D.1个
10.若52=m ,62=n ,则n m 22+= .
11、(2m -n)3·(n-2m)2= ;
12、要使(x -1)0-(x +1)-2有意义,x 的取值应满足什么条件?
13、如果等式()1122=-+a a ,则a 的值为
14、232324)3()(9n m n m -+ 15、422432)(3)3(a ab b a ⋅-⋅ 16、已知:
()1242=--x x ,求x 的值.
17、(-2a 2b )3+8(a 2)2·(-a )2·(-b )3; 18、(-3a 2)3·a 3+(-4a )2·a 7-(5a 3)3;
逆向思维
19、0.25101×4100= ;(-0.5)2002×(-2)2003= ;22006×32006的个位数字是 ;
20、若a =999111,b =111222,则a 、b 的大小关系是 ;
21、已知:10a =5,10b =6,求102a +3b 的值. 练: 若3m =6,9n =2,求32m
-4n +1的值;
22、若n 为正整数,且x 2n =4,求(x 3n )2-2(x 2)n 的值.
23、若n 为正整数,且x 2n =3,求(3x 3n )2-8(x 2)2n 的值.
24、已知:352=+y x ,求y
x 324⋅的值; 25、012200420052006222222------Λ的值
26、已知y x y x x a a a
a +==+求,25,5的值. 27、已知472510225•=••n m ,求m 、n .。

相关文档
最新文档