2011年四川省高考数学试卷(理科)及答案
2011年高考四川卷理科数学(WORD版)及答案解析精校版

2011年普通高等学校招生全国统一考试(四川卷)数 学(理工类)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是 (A)16 (B )13 (C)12 (D )232.复数1i i-+=(A )2i - (B )12i (C )0 (D )2i 3.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是(A)12l l ⊥,23l l ⊥1l ⇒∥3l (B )12l l ⊥,2l ∥3l ⇒13l l ⊥ (C) 1l ∥2l ∥3l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 4.如图,正六边形ABCDEF 中,BA CD EF ++= (A)0 (B)BE (C)AD (D )CF5.5函数,()f x 在点0x x =处有定义是()f x 在点0x x =处连续的 (A)充分而不必要的条件 (B )必要而不充分的条件 (C)充要条件 (D)既不充分也不必要的条件6.在∆ABC 中.222sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是 (A)(0,6π] (B)[ 6π,π) (C )(0,3π] (D) [ 3π,π) 7.已知()f x 是R 上的奇函数,且当0x >时,1()()12xf x =+,则()f x 的反函数的图像大致是8.数列{}n a 的首项为3,{}n b 为等差数列且1(*)n n n b a a n N +=-∈ .若则32b =-,1012b =,则8a =(A )0 (B )3 (C )8 (D )119.某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车虚满载且只运送一次.拍用的每吨甲型卡车虚配2名工人,运送一次可得利润450元;派用的每辆乙型卡车虚配1名工人,运送一次可得利润350元.该公司合理计划党团派用两类卡车的车辆数,可得最大利润(A )4650元 (B )4700元 (C )4900元 (D )5000元10.在抛物线25(0)y x ax a =+-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为(A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)-11.已知定义在[)0,+∞上的函数()f x 满足()3(2)f x f x =+,当[)0,2x ∈时,2()2f x x x =-+.设()f x 在[)22,2n n -上的最大值为(*)n a n N ∈,且{}n a 的前n 项和为n S ,则lim n n S →∞=(A )3 (B )52 (C )2 (D )3212.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则mn = (A )415 (B )13 (C )25 (D )23 二.填空题:本大题共4小题,每小题4分,共16分.13.计算121(lg lg 25)100=4--÷ .14.双曲线22x y =1P 46436-上一点到双曲线右焦点的距离是,那么点P 到左准线的距离是 .15.如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大是,求的表面积与改圆柱的侧面积之差是 . 16.函数()f x 的定义域为A ,若12,x x A ∈且12()()f x f x =时总有12x x =,则称函数()f x 为单函数.例如,函数()21f x x =+(x R ∈)是单函数.下列命题:①函数2()f x x =(x R ∈)是单函数;②若()f x 为单函数,12,x x A ∈且12x x ≠,则12()()f x f x ≠;③若f :A B →为单函数,则对于任意b B ∈,它至多有一个原象;④函数()f x 在某区间上具有单调性,则()f x 一定是单函数. 其中的真命题是 .(写出所有真命题的编号) 答案:B解:从31.5到43.5共有22,所以221663P ==. 答案:A解:12i i i i i-+=--=-答案:B解:A 答案还有异面或者相交,C 、D 不一定 答案D解:BA CD EF BA AF EF BF EF CE EF CF ++=++=+=+= 答案:B解:连续必定有定义,有定义不一定连续. 答案:C解:由题意正弦定理22222222211cos 023b c a a b c bc b c a bc A A bc π+-≤+-⇒+-≥⇒≥⇒≥⇒<≤ 答案:A解:由反函数的性质原函数的值域为反函数的定义域,原函数的定义域为反函数的值域. 当10,0()1,122xx y ><<⇒<<,故选A 答案:B解:由已知知128,28,n n n b n a a n +=--=-由叠加法21328781()()()642024603a a a a a a a a -+-++-=-+-+-++++=⇒==答案:C解:由题意设派甲,乙,x y 辆,则利润450350z x y =+,得约束条件08071210672219x y x y x y x y ≤≤⎧⎪≤≤⎪⎪+≤⎨⎪+≥⎪+≤⎪⎩画出可行域在12219x y x y +≤⎧⎨+≤⎩的点75x y =⎧⎨=⎩代入目标函数4900z =.答案:A解:由已知的割线的坐标(4,114),(2,21),2a a k a---=-,设直线方程为(2)y a x b=-+,则223651(2)b a =+-又2564(2,9)(2)y x ax b a y a x b⎧=+-⇒=-⇒=⇒--⎨=-+⎩ 答案:D解:由题意1(2)()3f x f x +=,在[22,2]n n -上,2111()111331,()1,2,(),3,()()()lim 1333213nn n n nn f x n f x n f x a S S --=======⇒=⇒=- 答案:D基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3),3515n C ==⨯=由其中面积为1的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1) 其中面积为2的平行四边形的个数为(2,3)(2,5);(2,1)(2,3) 其中面积为3的平行四边形的个数(2,3)(4,3);(2,1)(4,5)其中面积为4的平行四边形的个数(2,1)(2,5);(4,1)(4,3);(4,3)(4,5) 其中面积为5的平行四边形的个数(2,3),(4,1);(2,5)(4,5); 其中面积为7的平行四边形的个数(2,5),(4,3)其中面积为8的平行四边形的个数(4,1)(4,5) 其中面积为9的平行四边形的个数(2,5),(4,1) 答案:20-解:12111(lg lg 25)100lg20410010--÷=÷=- 答案:16解:8,6,10a b c ===,点P 显然在双曲线右支上,点P 到左焦点的距离为20,所以205164c d d a==⇒= 答案:22R π解:max 24S r S π=⋅=⇒侧侧时,2222222R r R r r r R =-⇒=⇒=,则222422R R R πππ-=答案:②③ 解 :①错,12x x =±;④错()f x 在某区间上具有单调性,不一定在整个定义域上单调.故②③正确.三.解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本小题共12分)已知函数73()sin()cos(),44f x x x x Rππ=++-∈(Ⅰ)求()f x的最小正周期和最小值;(Ⅱ)已知44cos(),cos(),(0)552aπββααβ-=+=-<<≤,求证:2[()]20fβ-=18.(本小题共12分)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算).有人独立来该租车点则车骑游.各租一车一次.设甲、乙不超过两小时还车的概率分别为11,42;两小时以上且不超过三小时还车的概率分别为11,24;两人租车时间都不会超过四小时.(Ⅰ)求出甲、乙所付租车费用相同的概率;(Ⅱ)求甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望Eξ;如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1=1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.(I)求证:CD=C1D;(II)求二面角A-A1D-B的平面角的余弦值;(Ⅲ)求点C到平面B1DP的距离.设d 为非零实数,12211*1(2(1)]()n n n nn n n n n a C d C d n C d nC d n N n--=+++-+∈(1)写出123,,a a a 并判断{}n a 是否为等比数列.若是,给出证明;若不是,说明理由;(II)设*()n n b nda n N =∈,求数列{}n b 的前n 项和n S .本小题考查等比数列和组合数的基础知识以及基本的运算能力,分析问题、解决问题的能力和化归与转化等数学思想.21.(本小题共l2分)椭圆有两顶点A(-1,0)、B(1,0),过其焦点F(0,1)的直线l与椭圆交于C、D两点,并与x轴交于点P.直线AC与直线BD交于点Q.(I)当|CD | =322时,求直线l的方程;(II)当点P异于A、B两点时,求证:OP OQ为定值.本小题主要考查直线、椭圆的标准方程及基本性质等基础知识,考查平面解几何的思想方法及推理运算能力. 22.(本小题共l4分)已知函数21(),()32f x x h x x =+= (I)设函数()()()F x f x h x =-,求()F x 的单调区间与极值; (Ⅱ)设a R ∈,解关于x 的方程42233log [(1)]log ()log (4)24f x h a x x --=--- (Ⅲ)试比较1001(100)(100)()k f h h k =-∑与16的大小.本小题考查三角函数的性质,同角三角函数的关系,两角和的正、余弦公式、诱导公式等基础知识及基本运算能力 ,函数与方程、化归与转化等数学思想. 解:(Ⅰ) 7733()sin coscos sin cos cos sin sin4444f x x x x x ππππ=+++ 222sin()4x x x π==-max 2,()2T f x π∴==(Ⅱ)因为4cos()cos cos sin sin (1)5βααβαβ-=+=4cos()cos cos sin sin (2)5βααβαβ+=-=-又0cos 022ππαβββ<<≤⇒=⇒=cos cos 0αβ=2()2(())20f f ββ∴=⇒-=本小题主要考查相互独立事件、随机变量的分布列、数学期望等到概念及相关计算,考查运用所学知识与方法解决实际问题的能力.解:(Ⅰ)所付费用相同即为0,2,4元.设付0元为1111428P =⋅=,付2元为2111248P =⋅=,付4元为31114416P =⋅= 则所付费用相同的概率为123516P P P P =++=(Ⅱ)设甲,乙两个所付的费用之和为ξ,ξ可为0,2,4,6,81(0)811115(2)4422161111115(4)4424241611113(6)442416111(8)4416P P P P P ξξξξξ====⋅+⋅===⋅+⋅+⋅===⋅+⋅===⋅=故ξ的分布列为ξ 0 2 468P18 516 51631611684822E ξ=+++=本小题主要考查直三棱柱的性质、线面关系、二面角等基本知识,并考查空间想象能力和逻辑推理能力,考查应用向量知识解决数学问题的能力.解::(I )连接1B A 交1BA 于O ,1//B P 1面BDA ,111,,B P AB P AB P D OD ⊂=1面面面BA1//B P OD ∴,又O 为1B A 的中点,D ∴为AP 中点,1C ∴1为A P ,1ACD PC D ∴∆≅∆1C D CD ∴=,D 为1CC 的中点.(II )由题意11,AB AC AB AA AB C C ⊥⊥⇒⊥1面AA ,过B 作AH AD ⊥,连接BH ,则BH AD ⊥,AHB ∴∠为二面角1A A D B --的平面角.在1AA D ∆中,11551,,22AA AD A D ===,则252535253355AH AH BH AHB BH ==∠===(Ⅲ)因为11C B PD B PCD V V -=,所以1111133B PD PCD h S A B S ∆∆⋅=⋅,111A B = 11111244PCD PC C PC D S S S ∆∆∆=-=-=, 在1B DP ∆中,11119553525544,5,32255252B D B P PD DB P DB P +-===∠==∠=⋅, 1135315,2243B PD S h ∆∴=⋅== 解法二:如图,以1A 为原点,11A B ,11A C ,1A A 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系111A B C A -,则1(0,0,0)A ,1(1,0,0)B ,1(0,1,0)C ,(1,0,1)B .(Ⅰ)设1C D x =,AC ∥1PC ,111C P C D xAC CD x∴==-. 由此可得(0,1,)D x ,(0,1,0)1xP x+-, 1(1,0,1)A B ∴=,1(0,1,)A D x ∴=,1(1,1,0)1xB P x=-+-. 设平面1BA D 的一个法向量为1(,,)n a b c =,则111100n A B a c n A D b cx ⎧=+=⎪⎨=+=⎪⎩ 令1c =-,则1(1,,1)n x =-.1PB ∥平面1BA D ,111(1)(1)(1)001xn B P x x∴=⨯-+⋅++-⨯=- 由此可得12x =,故1CD C D =. (Ⅱ)由(Ⅰ)知,平面1BA D 的一个法向量为11(1,,1)2n =-, 又2(1,0,0)n =为平面1AA D 的一个法向量.12121212cos ,33||||12n n n n n n ∴<>===⨯.故二面角1A A D B --的平面角的余弦值为23. (Ⅲ)1(1,2,0)PB =-,1(0,1,)2PD =-设平面1B DP 的一个法向量为3111(,,)n a b c =,则31111312002n PB a b c n PD b ⎧=-=⎪⎨=-+=⎪⎩ 令11c =,可得31(1,,1)2n =. 又1(0,0,)2DC =,C ∴到平面1B DP 的距离33||13||DC n d n ==. 解:(Ⅰ)由已知可得2123,(1),(1)a d a d d a d d ==+=+.当n ≥2,k ≥1时,因为11k k n n k C C n --=,所以1111110(1)n n nk k k k k k n n n n n k k k k a C d C d d C d d d n ----=======+∑∑∑由此可见,当1d ≠-时,{}n a 是以d 为首项,1d +为公比的等比数列; 当1d =-,11a =-,0n a =(n ≥2),此时{}n a 不是等比数列.(Ⅱ)由(Ⅰ)可知,1(1)n n a d d -=+,从而21(1)n n b nd d -=+20212221(1)2(1)3(1)(1)n n S d d d d d d nd d -=++++++++20121[(1)2(1)3(1)(1)]n d d d d n d -=++++++++ ①当1d =-时,21n S d ==.当1d ≠-时,①式两边同乘以1d +得2123(1)[(1)2(1)3(1)(1)]n n d S d d d d n d +=++++++++ ②由②-①得:2221(1(1))[(1)()(1)1(1)n n n n d dS d d n d d d n d d d ⋅-+=-++=+-+-+ 化得即得:1(1)(1)nn S dn d =+-+ 综上,1(1)(1)nn S dn d =+-+.解:由已知可得椭圆方程为2212y x +=,设l 的方程为1(0),y k x k -=-为l 的斜率.则1212222222212122242122(2)2101221222k y kx y y x x k k k x kx y k x x x y y k k ⎧⎧=++=⎧+=-⎪⎪⎪⎪⎪++⇒++-=⇒⎨⎨⎨--++=⎪⎪⎪==⎩⎪⎪+⎩+⎩2422221212222288889()()2(2)(2)2k k k x x y y k k k k ++-+-=+=⇒=⇒=++ l ∴的方程为1y =+或1y =+为所求.(Ⅱ)当直线l 与x 轴垂直时与题意不符.设直线l 的方程为1y kx =+,(01)k k ≠≠±且,所以P 点坐标为1(,0)k-. 设11(,)C x y ,22(,)D x y ,由(Ⅰ)知12222k x x k +=-+,12212x x k=-+, 直线AC 的方程为11(1)1y y x x =++,直线BD 的方程为12(1)1yy x x =-- 将两直线方程联立,消去y 得2112(1)11(1)y x x x y x ++=--. 因为121,1x x -<<,所以11x x +-与21y y 异号. 222222121122222121212(1)22(1)(1)(1)1()1(1)22(1)(1)(1)y x x x x x x x y x x x x x +-++++==⋅=------ 22222211122()211122k k k k k k k k --++-++==--+-+++. 又22121212222(1)(1)2(1)1()1221k k k k y y k x x k x x k k k -++-=+++==-⋅+++.11k k -∴+与12y y 异号,11x x +-与11k k -+同号, 1111x k x k +-∴=-+,解得x k =-因此Q 点坐标为0(,)k y -,01(,0)(,)1OP OQ k y k=--=故OP OQ 为定值.本小题主要考查函数导数的应用、不等式的证明、解方程等基础知识,考查数形结合、分类与整合、特殊与一般等数学思想方法以及推理运算、分析问题、解决问题的能力. 解:(Ⅰ)由21()()()32F x f x g x x x =-=+(x ≥0)知, 2()32F x x '=,令()0F x '=,得916x = 当9016x ≤<时,()0F x '<;当916x >时,()0F x '>;故当9[0,)16x ∈时,()F x 单调递减;当9(,)16x ∈+∞时,()F x 单调递增;所以916x =是其极小值点,且极小值为9()16F 18=. (Ⅱ)因为33(1)124f x x --=-,故原方程可化为422log (1)log (4)log ()xh x h a x -+-=-;即2221log (1)log 4log 2x x a x -+-=-等价于:10400(1)(4)x x a x x x a x->⎧⎪->⎪⎨->⎪⎪--=-⎩214(3)5x x a a x ⎧<<⎪⇔<⎨⎪=--+⎩故画出函数图象后,由方程与函数的思想,讨论得: (1)当14a <≤时,原方程有一解35x a =--(2)当45a <<时,原方程有两解1,235x a =-(3)当5a =时,原方程有一解3x =; (4)当15a a ≤>或时,原方程无解.(Ⅲ) 由已知得10010011()k k h k k===∑.设数列{}n a 的前n 项和为n S ,且1()()6n S f n g n =-,*()n N ∈. 从而有111a S ==,当2100k ≤≤时,14341166k k k k k a S S k k -+-=-=-,又1[(4(46k a k k =--220==>则对任意的2100k ≤≤,有k a又因为11a ==10010011k k k a ==>∑,故10011(100)(100)()6k f h h k =->∑.。
2011年普通高等学校招生全国统一考试(四川卷)数 学(理工类)

绝密★启用前2011年普通高等学校招生全国统一考试(四川卷)数 学(理工类)本试卷分第一部分(选择题)和第二部分(非选择题)。
第一部分1至2页,第二部分3至4页,共4页.考生作答时,须将答案答在答题卡上及试题卷,草稿纸上答题无效,满分150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回. 参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P(A+B) =P(A)+P(B) 24s R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A·B)=P(A)·P(B) 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么243v R π=在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径n ()(1)(0,1,2,...)k kn k n P k C p p k n -=-=第一部分(选择题 共60分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上。
2.本部分共12小题,每小题5分,共60分。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是 (A)16 (B)13 (C)12 (D )23答案:B解析:从31.5到43.5共有22,所以221663P ==。
2、复数1i i-+=(A)2i - (B )12i (C )0 (D )2i 答案:A解析:12i i i i i-+=--=- 3、1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是(A)12l l ⊥,23l l ⊥13l l ⇒ (B )12l l ⊥,23l l ⇒13l l ⊥ (C)233l l l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 答案:B解析:A 答案还有异面或者相交,C 、D 不一定 4、如图,正六边形ABCDEF 中,BA CD EF ++=(A)0 (B)BE (C)AD (D)CF 答案D 解析:B AC ++=+5、5函数,()f x 在点0x x =处有定义是()f x 在点0x x =处连续的(A)充分而不必要的条件 (B)必要而不充分的条件 (C)充要条件 (D)既不充分也不必要的条件 答案:B解析:连续必定有定义,有定义不一定连续。
2011四川高考理科数学试题

2011年普通高等学校招生全国统一考试(四川卷)数 学(理工农医科)第Ⅰ卷本试卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A B ,互斥,那么球的表面积公式 24πS R =()()()P A B P A P B +=+其中R 表示球的半径如果事件A B ,相互独立,那么球的体积公式 34π3V R =()()()P A B P A P B =其中R 表示球的半径一、选择题:本小题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5, 19.5) 4 [19.5, 23.5) 9 [23.5, 27.5) 18[27.5, 31.5) 11 [31.5, 35.5) 12 [35.5, 39.5) 7 [39.5, 43.5) 3根据样本的频率分布估计,数据[31.5,43.5)的概率约是 (A )16(B )13(C )12(D )232.复数1i i -+=(A )2i - (B )12i (C )0 (D )2i3.l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是(A )l 1⊥l 2, l 2⊥l 3⇒ l 1∥l 3 (B) l 1⊥l 2, l 2∥l 3⇒ l 1⊥l 3(C )l 1∥l 2 ∥l 3 ⇒ l 1,l 2,l 3 共面 (D) l 1,l 2,l 3 共点⇒l 1,l 2,l 3 共面4.如图,正六边形ABCDEF 中,BA CD EF ++=(A )0 (B )AD (C )BE(D )CF5.函数()f x 在点0x x =处有定义是()f x 在点0x x =处连续的 (A )充分而不必要的条件 (B )必要而不充分的条件 (C )充要条件 (D )既不充分也不必要的条件6.在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是(A )(0,]6π(B )[,)6ππ (C )(0,]3π (D )[,)3ππ7. 已知()f x 是R 的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图像大致是8.数列{a n } 的首项为3,{b n }为等差数列且b n =a n+1- a n (n ∈N +),若b 3=-2, b 10 =12,则a 8=(A )0 (B )3 (C) 8 (D )11 9.某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车,某天需送往A 地至少72吨的货物,派用的每辆车需载满且只能送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡需配1名工人;没送一次可得利润350元,该公司合理计划当天派用甲乙卡车的车辆数,可得最大利润(A ) 4650元 (B )4700元 (C) 4900元 (D )5000元10.在抛物线y=x 2+ax-5(a ≠ 0)上取横坐标为x 1=4,x 2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x 2+5y 2=36相切,则(A ) (-2,-9) (B )(0,-5) (C) (2,-9) (D )(1,6)11.已知定义在[0,+∞ ]上的函数()f x 满足()f x =3(2)f x +,当[0,2)x ∈时,()f x =22x x -+,设()f x 在[22,2)n n -上的最小值为([0,)n a n N +∈且{}n a 的前n 项和为S n ,则limn x S →∞= (A )3 (B )52(C) 2 (D )3212.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量a=(a ,b )从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作为平行四边形的个数为n ,其中面积等于2的平行四边形的个数m ,则m n=第II 卷注意事项:1.考生须用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔画线,确认后在用0.5毫米黑色墨迹签字笔描清楚.答在试题卷上无效.2.本部分共10小题,共90分。
da2011年高考数学试卷答案 四川理

参考答案1.B .提示:样本落在区间[31.5,43.5)的频数为22,所以221663P ==. 2.A .提示:1i i i 2i i-+=--=-.3.B .提示: A 答案还有异面或者相交,C,D 不一定 4.D .提示:BA CD EF BA AF EF BF EF CE EF CF ++=++=+=+=. 5. B .提示:连续必定有定义,有定义不一定连续. 6.C .提示:由正弦定理得2222222221b c a a b c bc b c a bc bc+-+-+-≤,化简得≥,即≥,1cos 023A A π<所以≥,即≤.7.A .提示:由反函数的性质知原函数的值域为反函数的定义域,原函数的定义域为反函数的值域. 当10,0()1,122xx y ><<<<时所以,故选A . 8. B .提示:由已知知128,28,n n n b n a a n +=--=- 由叠加法21328781()()()642024603a a a a a a a a -+-++-=-+-+-++++===,可得.9.C .提示:由题意,设派甲,乙分别有,x y 辆车,则利润450350z x y =+,得约束条件08071210672219.x y x y x y x y ⎧⎪⎪⎪+⎨⎪+⎪+⎪⎩≤≤,≤≤,≤,≥,≤画出可行域,由方程组=122=19x y x y +⎧⎨+⎩,得点75x y =⎧⎨=⎩,,代入目标函数得4900z =.10. A .提示:由已知的割线的坐标(4,114),(2,21),2a a k a ---=-,设直线方程为(2)y a x b =-+,则223651(2)b a =+-.又2564(2,9)(2)y x ax b a y a x b⎧=+-=-=--⎨=-+⎩,解得,,故顶点坐标为.yxOA 4A 5A 6A 3A 2A 14253111.D .提示:当[0,2)x ∈时,2()2f x x x =-+的最大值为1.设222n x n -<≤,则02(1)2x n +-<≤. 由()3(2)f x f x =+得:23()3(2)3(22)3(23)f x f x f x f x =+=+⨯=+⨯113[2(1)]3n n f x n --=⋅⋅⋅=+-≤.由此得1*3()n n a n -=∈N ,即{}n a 是以11a =为首项,13为公比的等比数列. 所以13lim 1213n n S →∞==-.故选D . 12.B .提示:如下图,依题意构成以原点为起点的向量共有6个:1(2,1)OA =,2(2,3)OA =,3(2,5)OA =,4(4,1)OA =,5(4,3)OA =,6(4,5)OA =.从这6个向量中任取两个向量为邻边作平行四边形,可作成26C 15=个平行四边形,即15n =.其中面积不超过4的平行四边形的个数,等价于面积不超过2的△i j OA A (1,6,)i j i j ≠≤≤的个数.经过简单计算知△14OA A ,△15OA A ,△26OA A 的面积均为1,△12OA A 与△23OA A 的面积均为2,其余三角形面积均大于2,即5m =.由此得51=153m n =.故选B .13.20-.提示:12111(lg lg 25)100lg20410010--÷=÷=-. 14.16.提示:由2222564,36,104c a b c a b e a ===+===可得,故. 由P 到双曲线右焦点的距离是4得P 到双曲线左焦点的距离是2420a +=. 设点P 到左准线的距离为d ,则由双曲线第二定义得205,164e d d ===故.15.22R π.提示: 设圆柱的高为h 2,则底面半径为22h R -,则圆柱的侧面积为222222222()224()422h R h S R h h h R h R +-=π-⋅=π-π⋅=π≤.当且仅当222=h R h -,即222=h R 时取等号,故圆柱侧面积的最大值为22R π. 此时球的表面积与该圆柱的侧面积之差是222422R R R π-π=π. 16.②③.提示: 对于①,取11x =,21x =-,满足12()()f x f x =,但12x x ≠,故①假;对于②,此命题的逆否命题为单函数的定义,故②真;对于③,任给b B ∈,假设它有两个原象1x ,2x (12x x ≠),则12()()f x f x b ==. 由单函数的定义得12x x =,这与12x x ≠矛盾,故③真;对于④,函数2()f x x =在区间(0,)+∞上具有单调性,但()f x 在R 上不是单函数. 故④假. 17.7733()sin coscos sin cos cos sin sin 44442sin 2cos 2sin()4f x x x x x x x x ππππ=+++=-π=-解:(1),2,()2T f x ∴=π的最小值为-. 4cos()cos cos sin sin 54cos()cos cos sin sin 5cos cos 0.0cos 0.22βααβαββααβαβαβαβββ-=+=+=-=-=ππ<<⇒=⇒=(2)由已知得,,两式相加得≤ 2()2[()]20f f ββ∴=⇒-=.18.解:(1)由题意得,甲,乙在三小时以上且不超过四小时还车的概率分别为11,44.记甲,乙两人所付的租车费用相同为事件A ,则1111115()42244416P A =⨯+⨯+⨯=. 故甲,乙两人所付的租车费用相同的概率为516.(2)设甲,乙两人所付的费用之和为ξ,ξ可能的取值为0,2,4,6,8111(0),42811115(2),4422161111115(4),4424241611113(6),442416111(8).4416P P P P P ξξξξξ==⨯===⨯+⨯===⨯+⨯+⨯===⨯+⨯===⨯=甲,乙两人所付的租车费用之和ξ的分布列为ξ0 2 4 6 8P18 516 516316 116155317024688161616162E ξ=⨯+⨯+⨯+⨯+⨯=所以.19.如下图,以1A 为原点,11111,,A B AC A A 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系1A xyz -,则1(0,0,0)A,1(1,0,0)B ,1(0,1,0)C ,(1,0,1)B .(1) 证明:设1C D x =,11,1PC C D xAC AC CD x∴==-1∥PC . 由此可得(0,1,),(0,1,0),1xD x P x+- ∴1(1,0,1)A B =,1(0,1,),A D x =1(1,1,0)1xB P x=-+-. 设平面1BA D 的一个法向量为1(,,)a b c =n ,则11110,0.A B a c A D b cx ⎧⋅=+=⎪⎨⋅=+=⎪⎩n n 令1c =-,则1(1,,1)x =-n . ∵1PB ∥平面1BA D .111(1)(1)(1)001xB P x x⋅∴=⨯-+⨯++-⨯=-n , 由此可得11,2x CD C D ==故. (2)解:由(1)知,平面1BA D 的一个法向量11(1,,1)2=-n . 又2(1,0,0)=n 为平面1AA D 的一个法向量.∴12121212cos ,3||||312⋅<>===⋅⨯n n n n n n . 故二面角11A A D B --的平面角的余弦值为23.(3)解:11(1,2,0),(0,1,),2PB PD =-=- 设平面1B DP 的一个法向量为3111(,,)a b c =n ,则311113120,0.2PB a b c PD b ⎧⋅=-=⎪⎨⋅=-+=⎪⎩n n 331311(1,,1).21(0,0,),21.31,DC DC C B DP d c ==∴===又点到平面的距离令可得n n n20.解:(1)由已知可得2123(1)(1).a d a d d a d d ==+=+,,当1121C C ,k k n n k n k n --=≥,≥时,因此11111110C C C (1)n n n k k k k k k n n n n k k k k k a d d d d d d n -----=======+∑∑∑.由此可见,当d 1≠-时, {}n a 是以d 为首项,1d +为公比的等比数列;当=1d -时,11,0(2)n a a n =-=≥,此时{}n a 不是等比数列. 1212121(1),(1).[(1)2(1)3(1)(1)]n n n n n n a d d b nd d S d d d d n d ---=+=+=++++++++(2)由(1)可知从而①当=1d -时,21n S d ==.当d 1≠-时,①式两边同乘1d +得2123(1)[(1)2(1)3(1)(1)]n n d S d d d d n d +=++++++++②221(1(1))[](1).1(1)1(1)(1).n n n n n d dS d d n d d S dn d -⋅-+=-++-+=+-+②①可得:化简得1(1)(1).n n S dn d =+-+综上,21.解:因椭圆焦点在y 轴上,设椭圆的标准方程为22221(0),y x a b a b+=>>由已知得1,1,2b c a ===所以,则椭圆方程为2212y x +=.直线l 垂直于x 轴时与题意不符.设直线l 的方程为1(0),y k x k -=-为l 的斜率.222212211221221,1.2(2)210.22(,),(,),1.2y kx y x k x kx k x x kC x yD x y x x k =+⎧⎪⎨+=⎪⎩++-=⎧+=-⎪⎪+⎨-⎪=⎪+⎩由题得则化简得,设则2221212222(1)(1)[()4]2k CD k x x x x k +=++-=+. 由已知得2222(1)3222k k +=+,解得 2.k =±l 所以直线的方程为2121y x y x =+=-+或.(2)直线l 垂直于x 轴时与题意不符.设l 的方程为1(0)01y k x k k -=-≠≠±(且), 所以P 点坐标为1k(-,0). 122112212222(,),(,),1.2k x x kC x yD x y x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,设则直线11(1)1y AC y x x =++的方程为, 直线22(1)1y y x x =--的方程为BD , 将两直线方程联立,消去2112(1)11(1)y x x y x y x ++=--得. 因为121,1x x -<<,所以2111y x x y +-与异号222212212(1)1=1(1)y x x x y x ++--()=22222212221211()112k k k k k k k k -+--++=--++-+++. 又2212121222(1)1()121k k y y k x x k x x k k +-=+++=-++,1211111111=.11k x k y y k x k x k x k x k Q k y -+-∴+-++-∴=--+0与异号,与同号,,解得因此点坐标为(-,). 01(,0)(,) 1..OP OQ k y k OP OQ =--=故为定值22.解:(1)由21()32F x x x =+-(0x ≥)知,1221()32F x x -'=-.9==.16F x x '令()0,得 9()0;169()0169[()169[()16991()()=.16168x F x x F x x F x x F x F x x F '∈<'∈+∞>∈∈+∞=当(0,)时,当(,)时,故当0,)时,是减函数,当,)时,是增函数.在处有极小值且(2)原方程可化为422log (1)log (4)log (),x h x h a x -+-=- 即2221log (1)log (4)log 2x x a x ---=- 10,40,0,(1)(4).x x a x x x a x ->->->--=-⎧⎪⎪⇔⎨⎪⎪⎩214,,(3)5x x a a x ⎧<<⎪⇔<⎨⎪=--+⎩ 如下图,①1435a x a <=--当≤时,原方程有一解; ②1,24535a x a <<=±-当时,原方程有二解; ③当5a =时,原方程有一解3x =;④15.a a >≤或时,原方程无解 (3)由已知得10010011()k k h k k ===∑∑.设数列{}n a 的*1()(,=),6n n f n h n n n S S -∈N (前项和)且 从而有111a S ==.当2100k ≤≤时,14341166k k k k k a S S k k -+-=-=--. 又1[(43)(41)1]6k a k k k k k -=----221(43)(41)(1)6(43)(41)1k k k k k k k k ----=⋅-+--1106(43)(41)1k k k k =⋅>-+--. 即对任意100k 2≤≤,有k a k >,又因为111a ==,所以10010011k k k a k ==>∑∑.故1001()1(100)(100).6k h h k f =->∑。
2011年 四川省高考数学试卷(理科)

2011年四川省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2011•四川)有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5)2;[15.5,19.5)4;[19.5,23.5)9;[23.5,27.5)18;[27.5,31.5)11;[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3.根据样本的频率分布估计,数据[31.5,43.5)的概率约是()A.B.C.D.2.(5分)(2011•四川)复数=()A.﹣2i B.C.0 D.2i3.(5分)(2011•四川)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面4.(5分)(2011•四川)如图,正六边形ABCDEF中,=()A.B.C.D.5.(5分)(2011•四川)函数f(x)在点x=x0处有定义是f(x)在点x=x0处连续的()A.充分而不必要的条件B.必要而不充分的条件C.充要条件 D.既不充分也不必要的条件6.(5分)(2011•四川)在△ABC中,sin2A≤sin2B+sin2C﹣sinBsinC,则A的取值范围是()A.(0,]B.[,π) C.(0,]D.[,π)7.(5分)(2011•四川)已知f(x)是R的奇函数,且当x>0时,,则f(x)的反函数的图象大致是()A.B.C.D.8.(5分)(2011•四川)数列{a n}的首项为3,{b n}为等差数列且b n=a n+1﹣a n(n∈N*),若b3=﹣2,b10=12,则a8=()A.0 B.3 C.8 D.119.(5分)(2011•四川)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车,某天需送往A地至少72吨的货物,派用的每辆车需载满且只能送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡需配1名工人;每送一次可得利润350元,该公司合理计划当天派用甲乙卡车的车辆数,可得最大利润z=()A.4650元B.4700元C.4900元D.5000元10.(5分)(2011•四川)在抛物线y=x2+ax﹣5(a≠0)上取横坐标为x1=﹣4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为()A.(﹣2,﹣9)B.(0,﹣5)C.(2,﹣9)D.(1,6)11.(5分)(2011•四川)已知定义在[0,+∞)上的函数f(x)满足f(x)=3f(x+2),当x∈[0,2)时,f(x)=﹣x2+2x,设f(x)在[2n﹣2,2n)上的最大值为a n(n∈N+)且{a n}的前n 项和为S n,则=()A.3 B.C.2 D.12.(5分)(2011•四川)在集合1,2,3,4,5中任取一个偶数a和一个奇数b构成以原点为起点的向量=(a,b)从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作为平行四边形的个数为n,其中面积不超过4的平行四边形的个数m,则=()A.B.C.D.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2011•四川)计算÷=.14.(4分)(2011•四川)双曲线﹣=1上一点P到双曲线右焦点的距离是4,那么点P 到左准线的距离是.15.(4分)(2011•四川)如图,半径为R的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是.16.(4分)(2011•四川)函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:①函数f(x)=x2(x∈R)是单函数;②若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);③若f:A→B为单函数,则对于任意b∈B,它至多有一个原象;④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.其中的真命题是.(写出所有真命题的编号)三、解答题(共6小题,满分74分)17.(12分)(2011•四川)已知函数f(x)=sin(x+)+cos(x﹣),x∈R(Ⅰ)求f(x)的最小正周期和最小值;(Ⅱ)已知cos(β﹣α)=,cos(β+α)=﹣.0<α<β,求证:[f(β)]2﹣2=0.18.(12分)(2011•四川)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为,;两小时以上且不超过三小时还车的概率分别为,;两人租车时间都不会超过四小时.(Ⅰ)求甲乙两人所付的租车费用相同的概率.(Ⅱ)设甲乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望Eξ.19.(12分)(2011•四川)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=1,D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1(Ⅰ)求证:CD=C1D;(Ⅱ)求二面角A﹣A1D﹣B的平面角的余弦值;(Ⅲ)求点C到平面B1DP的距离.20.(12分)(2011•四川)设d为非零实数,(Ⅰ)写出a1,a2,a3并判断﹛a n﹜是否为等比数列.若是,给出证明;若不是,说明理由;(Ⅱ)设b n=nda n(n∈N*),求数列﹛b n﹜的前n项和S n.21.(12分)(2011•四川)椭圆有两顶点A(﹣1,0)、B(1,0),过其焦点F(0,1)的直线l与椭圆交于C、D两点,并与x轴交于点P.直线AC与直线BD交于点Q.(Ⅰ)当|CD|=时,求直线l的方程;(Ⅱ)当点P异于A、B两点时,求证:为定值.22.(14分)(2011•四川)已知函数f(x)=x+,h(x)=.(Ⅰ)设函数F(x)=f(x)﹣h(x),求F(x)的单调区间与极值;(Ⅱ)设a∈R,解关于x的方程log4[f(x﹣1)﹣]=log2h(a﹣x)﹣log2h(4﹣x);(Ⅲ)试比较f(100)h(100)﹣与的大小.。
2011年高考理科数学试题及答案(四川卷)

2011年全国统一招生考试(四川卷)理科数学本试卷分第一部分(选择题)和第二部分(非选择题)。
第一部分1至2页,第二部分3至4页,共4页.考生作答时,须将答案答在答题卡上及试题卷,草稿纸上答题无效,满分150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回. 参考公式:如果事件A 、B 互斥,那么 P(A+B) =P(A)+P(B) 球的表面积公式 24s R π= 其中R 表示球的半径如果事件A 、B 相互独立,那么 P(A·B)=P(A)·P(B)球的体积公式243v R π=其中R 表示球的半径如果事件A 在一次试验中发生的概率是p ,那么 在n 次独立重复试验中事件A 恰好发生k 次的概率n ()(1)(0,1,2,...)k kn k n P k C p p k n -=-=第一部分(选择题 共60分) 注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上。
2.本部分共12小题,每小题5分,共60分。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18[27.5,31.5) 1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是(A)16 (B)13 (C)12 (D )232、复数1i i -+=(A)2i - (B )12i(C )0 (D )2i3、1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是 (A)12l l ⊥,23l l ⊥13l l ⇒P(B )12l l ⊥,23l l P ⇒13l l ⊥[来源:] (C)233l l l P P ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 4、如图,正六边形ABCDEF中,BA CD EF ++u u u r u u u r u u u r=[来源:] (A)0 (B)BE u u u r (C)AD u u u r(D)CF uuu r5、5函数,()f x 在点0x x =处有定义是()f x 在点0x x =处连续的 (A)充分而不必要的条件 (B)必要而不充分的条件 (C)充要条件 (D)既不充分也不必要的条件6.在∆ABC 中.222sin sin sin sin sin B C B C ≤+-.则A 的取值范围是(A)(0,6π] (B)[ 6π,π) (c)(0,3π] (D) [ 3π,π)7.已知()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图像大致是8.数列{}n a 的首项为3,{}n b 为等差数列且1(*)n n n b a a n N +=-∈ .若则32b =-,1012b =,则8a =(A )0 (B )3 (C )8 (D )11 9.某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车虚满载且只运送一次.拍用的每吨甲型卡车虚配2名工人,运送一次可得利润450元;派用的每辆乙型卡车虚配1名工人,运送一次可得利润350元.该公司合理计划党团派用两类卡车的车辆数,可得最大利润 (A )4650元 (B )4700元 (C )4900元 (D )5000元10.在抛物线25(0)y x ax a ==-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为 (A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)-11.已知定义在[)0,+∞上的函数()f x 满足()3(2)f x f x =+,当[)0,2x ∈时,2()2f x x x =-+.设()f x 在[)22,2n n -上的最大值为(*)n a n N ∈,且{}n a 的前n 项和为n S ,则lim n n S →∞=(A )3 (B )52 (C )2 (D )3212.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过4的平行四边形的个数为m ,则m n =(A )415 (B )13 (C )25 (D )23二、填空题:本大题共4小题,每小题4分,共16分.13.计算121(lg lg 25)100=4--÷ .14.双曲线22x y =1P 46436-上一点到双曲线右焦点的距离是,那么点P 到左准线的距离是 .15.如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大是,求的表面积与改圆柱的侧面积之差是 .16.函数f x ()的定义域为A ,若1212x x A f x =f x ∈,且()()时总有12x =x f x ,则称()为单函数.例如,函数f x ()=2x+1(x R ∈)是单函数.下列命题:① 函数f x ()=2x (x ∈R )是单函数;② 若f x ()为单函数,121212x x A x x f x f x ∈≠≠,且,则()();③ 若f :A →B 为单函数,则对于任意b ∈B ,它至多有一个原象; ④ 函数f (x )在某区间上具有单调性,则f (x )一定是单函数.其中的真命题是 .(写出所有真命题的编号) 三、解答题17、 已知函数73()sin()cos(),44f x x x x Rππ=++-∈(1)求()f x 的最小正周期和最小值; (2)已知44cos(),cos(),(0)552a πββααβ-=+=-<<≤,求证:2[()]20f β-=18、本着健康、低碳的生活理念,租自行车骑游的人越来越多。
2011年四川高考数学试题理科(含答案)

2011年普通高等学校招生全国统一考试(四川卷)数 学(理工类)本试卷分第一部分(选择题)和第二部分(非选择题)。
第一部分1至2页,第二部分3至4页,共4页.考生作答时,须将答案答在答题卡上及试题卷,草稿纸上答题无效,满分150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回. 参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P(A+B) =P(A)+P(B) 24s R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A·B)=P(A)·P(B) 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么243v R π=在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径n ()(1)(0,1,2,...)k k n kn P k C p p k n -=-=第一部分(选择题 共60分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上。
2.本部分共12小题,每小题5分,共60分。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(11四川理1)有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是(A)16 (B)13 (C)12 (D )23(11四川理2)复数1i i-+=(A)2i - (B )12i (C )0 (D )2i(11四川理3)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是 (A)12l l ⊥,23l l ⊥13l l ⇒ (B )12l l ⊥,23l l ⇒13l l ⊥[来源:](C)233l l l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面(11四川理4)如图,正六边形ABCDEF 中,BA CD EF ++=(A)0 (B)BE (C)AD(D)CF(11四川理5)函数,()f x 在点0x x =处有定义是()f x 在点0x x =处连续的(A)充分而不必要的条件 (B)必要而不充分的条件 (C)充要条件 (D)既不充分也不必要的条件(11四川理6)在ABC ∆中.222sin sin sin sin sin B C B C ≤+-.则A 的取值范围是(A)(0,6π] (B)[ 6π,π) (c)(0,3π] (D) [ 3π,π)(11四川理7)已知()f x 是R 上的奇函数,且当0x >时,1()()12xf x =+,则()f x 的反函数的图像大致是(11四川理8)数列{}n a 的首项为3,{}n b 为等差数列且1(*)n n n b a a n N +=-∈ .若则32b =-,1012b =,则8a =(A )0 (B )3 (C )8 (D )11(11四川理9)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车虚满载且只运送一次.拍用的每吨甲型卡车虚配2名工人,运送一次可得利润450元;派用的每辆乙型卡车虚配1名工人,运送一次可得利润350元.该公司合理计划党团派用两类卡车的车辆数,可得最大利润(A )4650元 (B )4700元 (C )4900元 (D )5000元(11四川理10)在抛物线25(0)y x ax a =+-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为 (A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)- (11四川理11)已知定义在[)0,+∞上的函数()f x 满足()3(2)f x f x =+,当[)0,2x ∈时,2()2f x x x =-+.设()f x 在[)22,2n n -上的最大值为(*)n a n N ∈,且{}n a 的前n 项和为n S ,则lim n n S →∞=(A )3 (B )52(C )2 (D )32(11四川理12)在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n =(A )415(B )13(C )25(D )23二、填空题:本大题共4小题,每小题4分,共16分. (11四川理13)计算121(lg lg 25)100=4--÷ .(11四川理14)双曲线22x y=1P 46436-上一点到双曲线右焦点的距离是,那么点P 到左准线的距离是 .(11四川理15)如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大是,求的表面积与改圆柱的侧面积之差是 . (11四川理16)函数()f x 的定义域为A ,若12,x x A ∈且12()()f x f x =时总有12x x =,则称()f x 为单函数,例如,函数()21()f x x x R =+∈是单函数.下列命题: ① 函数2()()f x x x R =∈是单函数; ② 若()f x 为单函数,12,x x A ∈且12x x ≠,则12()()f x f x ≠; ③ 若f :A →B 为单函数,则对于任意b B ∈,它至多有一个原象; ④ 函数()f x 在某区间上具有单调性,则()f x 一定是单函数. 其中的真命题是 .(写出所有真命题的编号) 三、解答题(11四川理17)已知函数73()sin()cos(),44f x x x x R ππ=++-∈(1)求()f x 的最小正周期和最小值; (2)已知44cos(),cos(),(0)552a πββααβ-=+=-<<≤,求证:2[()]20f β-=(11四川理18)本着健康、低碳的生活理念,租自行车骑游的人越来越多。
2011年高考四川卷理科数学试题及答案

2011年普通高等学校招生全国统一考试理科数学(四川卷)参考公式:如果事件A 、B 互斥,那么球的表面积公式P (A+B ) =PA .+PB . 24s R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A·B )=PA .·PB . 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么243v R π=在n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径第一部分(选择题 共60分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上。
2.本部分共12小题,每小题5分,共60分。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是A .16B .13C .12D .232.复数1i i-+=A .2i -B .12i C .0 D .2i3.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是 A .12l l ⊥,23l l ⊥13//l l ⇒ B .12l l ⊥,23//l l ⇒13l l ⊥C .233////l l l ⇒ 1l ,2l ,3l 共面D .1l ,2l ,3l 共点⇒1l ,2l ,3l 共面n ()(1)(0,1,2,...)kkn kn P k C p p k n -=-=4.如图,正六边形ABCDEF 中,BA CD EF ++=A .0B .BEC .ADD .CF5.函数,()f x 在点0x x =处有定义是()f x 在点0x x =处连续的 A .充分而不必要的条件 B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件6.在∆ABC 中.222sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是A .(0,6π] B .[6π,π) C .(0,3π] D .[3π,π)7.已知()f x 是R 上的奇函数,且当0x >时,1()()12xf x =+,则()f x 的反函数的图像大致是8.数列{}n a 的首项为3,{}n b 为等差数列且1(*)n n n b a a n N +=-∈ .若则32b =-,1012b =,则8a =A .0B .3C .8D .119.某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车虚满载且只运送一次.派用的每辆甲型卡车虚配2名工人,运送一次可得利润450元;派用的每辆乙型卡车虚配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z=A .4650元B .4700元C .4900元D .5000元10.在抛物线25(0)y x ax a ==-≠上取横坐标为14x =-,22x=的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为A .(2,9)--B .(0,5)-C .(2,9)-D .(1,6)-11.已知定义在[)0,+∞上的函数()f x 满足()3(2)f x f x =+,当[)0,2x ∈时,2()2f x x x=-+.设()f x 在[)22,2n n -上的最大值为(*)n a n N ∈,且{}n a 的前n 项和为n S ,则lim n n S →∞=A .3B .52C .2D .3212.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n =A .415B .13C .25D .23本部分共10小题,共90分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.3B. C.2D.
12.(5分)在集合1,2,3,4,5中任取一个偶数a和一个奇数b构成以原点为起点的向量 =(a,b)从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作为平行四边形的个数为n,其中面积不超过4的平行四边形的个数m,则 =( )
A.4650元B.4700元C.4900元D.5000元
10.(5分)在抛物线y=x2+ax﹣5(a≠0)上取横坐标为x1=﹣4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为( )
A.(﹣2,﹣9)B.(0,﹣5)C.(2,﹣9)D.(1,6)
根据样本的频率分布估计,数据[31.5,43.5)的概率约是( )
A. B. C. D.
2.(5分)复数 =( )
A.﹣2iB. C.0D.2i
3.(5分)l1,l2,l3是空间三条不同的直线,则下列命题正确的是( )
A.l1⊥l2,l2⊥l3⇒l1∥l3
B.l1⊥l2,l2∥l3⇒l1⊥l3
C.l1∥l2∥l3⇒l1,l2,l3共面
(Ⅰ)求证:CD=C1D;
(Ⅱ)求二面角A﹣A1D﹣B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离.
20.(12分)设d为非零实数,
(Ⅰ)写出a1,a2,a3并判断﹛an﹜是否为等比数列.若是,给出证明;若不是,说明理由;
(Ⅱ)设bn=ndan(n∈N*),求数列﹛bn﹜的前n项和Sn.
21.(12分)椭圆有两顶点A(﹣1,0)、B(1,0),过其焦点F(0,1)的直线l与椭圆交于C、D两点,并与x轴交于点P.直线AC与直线BD交于点Q.
17.(12分)已知函数f(x)=sin(x+ )+cos(x﹣ ),x∈R
(Ⅰ)求f(x)的最小正周期和最小值;
(Ⅱ)已知cos(β﹣α)= ,cos(β+α)=﹣ .0<α<β ,求证:[f(β)]2﹣2=0.
18.(12分)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为 , ;两小时以上且不超过三小时还车的概率分别为 , ;两人租车时间都不会超过四小时.
D.l1,l2,l3共点⇒l1,l2,l3共面
4.(5分)如图,正六边形ABCDEF中, =( )
A. B. C. D.
5.(5分)函数f(x)在点x=x0处有定义是f(x)在点x=x0处连续的( )
A.充分而不必要的条件B.必要而不充分的条件
C.充要条件D.既不充分也不必要的条件
6.(5分)在△ABC中,sin2A≤sin2B+sin2C﹣sinBsinC,则A的取值范围是( )
A.(0, ]B.[ ,π)C.(0, ]D.[ ,π)
7.(5分)已知f(x)是R的奇函数,且当x>0时, ,则f(x)的反函数的图象大致是( )
A. B. C. D.
8.(5分)数列{an}的首项为3,{bn}为等差数列且bn=an+1﹣an(n∈N*),若b3=﹣2,b10=12,则a8=( )
①函数f(x)=x2(x∈R)是单函数;
②若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
③若f:A→B为单函数,则对于任意b∈B,它至多有一个原象;
④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.
其中的真命题是.(写出所有真命题的编号)
三、解答题(共6小题,满分74分)
A.0B.3C.8D.11
9.(5分)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车,某天需送往A地至少72吨的货物,派用的每辆车需载满且只能送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡需配1名工人;每送一次可得利润350元,该公司合理计划当天派用甲乙卡车的车辆数,可得最大利润z=( )
2011年四川省高考数学试卷(理科)
一、选择题(共12小题,每小题5分,满分60分)
1.(5分)有一个容量为66的样本,数据的分组及各组的频数如下:
[11.5,15.5)2;[15.5,19.5)4;[19.5,23.5)9;[23.5,27.5)18;
[27.5,31.5)11;[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3.
(Ⅰ)当|CD|= 时,求直线l的方程;
(Ⅱ)当点P异于A、B两点时,求证: 为定值.
22.(14分)已知函数f(x)= x+ ,h(x)= .
(Ⅰ)设函数F(x)=f(x)﹣h(x),求F(x)的单调区间与极值;
(Ⅱ)设a∈R,解关于x的方程log4[ f(x﹣1)﹣ ]=log2h(a﹣x)﹣log2h(4﹣x);
(Ⅰ)求甲乙两人所付的租车费用相同的概率.
(Ⅱ)学期望Eξ.
19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=1,D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1
A. B. C. D.
二、填空题(共4小题,每小题4分,满分16分)
13.(4分)计算 ÷ =.
14.(4分)双曲线 ﹣ =1上一点P到双曲线右焦点的距离是4,那么点P到左准线的距离是.
15.(4分)如图,半径为R的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是.
16.(4分)函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题: