大学物理课后习题解答(第五章) 北京邮电大学出版社

大学物理课后习题解答(第五章) 北京邮电大学出版社
大学物理课后习题解答(第五章) 北京邮电大学出版社

习题五

5-1 振动和波动有什么区别和联系?平面简谐波动方程和简谐振动方程有什么不同?又有什么联系?振动曲线和波形曲线有什么不同?

解: (1)振动是指一个孤立的系统(也可是介质中的一个质元)在某固定平衡位置附近所做的往复运动,系统离开平衡位置的位移是时间的周期性函数,即可表示为)(t f y =;波动是振动在连续介质中的传播过程,此时介质中所有质元都在各自的平衡位置附近作振动,因此介质中任一质元离开平衡位置的位移既是坐标位置x ,又是时间t 的函数,即),(t x f y =. (2)在谐振动方程)(t f y =中只有一个独立的变量时间t ,它描述的是介质中一个质元偏离平衡位置的位移随时间变化的规律;平面谐波方程),(t x f y =中有两个独立变量,即坐标位置x 和时间t ,它描述的是介质中所有质元偏离平衡位置的位移随坐标和时间变化的规律.

当谐波方程

)

(cos u x

t A y -=ω中的坐标位置给定后,即可得到该点的振动方程,而波源持续不断地振动又是产生波动的必要条件之一.

(3)振动曲线)(t f y =描述的是一个质点的位移随时间变化的规律,因此,其纵轴为y ,横轴为t ;波动曲线),(t x f y =描述的是介质中所有质元的位移随位置,随时间变化的规律,

其纵轴为y ,横轴为x .每一幅图只能给出某一时刻质元的位移随坐标位置x 变化的规律,即只能给出某一时刻的波形图,不同时刻的波动曲线就是不同时刻的波形图.

5-2 波动方程y =A cos [ω(

u x t -

)+0?]中的u x

表示什么?如果改写为y =A cos (0?ωω+-u x t ),u x ω又是什么意思?如果t 和x 均增加,但相应的[ω(

u x t -

)+0?]的值不变,由此能从波动方程说明什么?

解: 波动方程中的u x /表示了介质中坐标位置为x 的质元的振动落后于原点的时间;u x ω则表示x 处质元比原点落后的振动位相;设t 时刻的波动方程为

)

cos(0φωω+-=u x

t A y t

则t t ?+时刻的波动方程为

]

)

()(cos[0φωω+?+-?+=?+u x x t t A y t t

其表示在时刻t ,位置x 处的振动状态,经过t ?后传播到t u x ?+处.所以在

)

(u x t ωω-中,当t ,x 均增加时,

)

(u x t ωω-的值不会变化,而这正好说明了经过时间t ?,波形即向前传播了t u x ?=?的距离,说明)

cos(0φωω+-=u x

t A y 描述的是一列行进中的波,故谓之行

波方程.

5-3 波在介质中传播时,为什么介质元的动能和势能具有相同的位相,而弹簧振子的动能和势能却没有这样的特点?

解: 我们在讨论波动能量时,实际上讨论的是介质中某个小体积元dV 内所有质元的能量.波动动能当然是指质元振动动能,其与振动速度平方成正比,波动势能则是指介质的形

变势能.形变势能由介质的相对形变量(即应变量)决定.如果取波动方程为),(t x f y =,则相对形变量(即应变量)为x y ??/.波动势能则是与x y ??/的平方成正比.由波动曲线图(题5-3图)可知,在波峰,波谷处,波动动能有极小(此处振动速度为零),而在该处的应变也为极小(该处0/=??x y ),所以在波峰,波谷处波动势能也为极小;在平衡位置处波动动能为极大(该处振动速度的极大),而在该处的应变也是最大(该处是曲线的拐点),当然波动势能也为最大.这就说明了在介质中波动动能与波动势能是同步变化的,即具有相同的量值.

题5-3图

对于一个孤立的谐振动系统,是一个孤立的保守系统,机械能守恒,即振子的动能与势能之和保持为一个常数,而动能与势能在不断地转换,所以动能和势能不可能同步变化. 5-4 波动方程中,坐标轴原点是否一定要选在波源处? t =0时刻是否一定是波源开始振动的时刻? 波动方程写成y =A cos ω(u x

t -

)时,波源一定在坐标原点处吗?在什么前提下波动

方程才能写成这种形式?

解: 由于坐标原点和开始计时时刻的选全完取是一种主观行为,所以在波动方程中,坐标原点不一定要选在波源处,同样,0=t 的时刻也不一定是波源开始振动的时刻;当波动方程

写成

)

(cos u x

t A y -=ω时,坐标原点也不一定是选在波源所在处的.因为在此处对于波源的含义已做了拓展,即在写波动方程时,我们可以把介质中某一已知点的振动视为波源,只

要把振动方程为已知的点选为坐标原点,即可得题示的波动方程.

5-5 在驻波的两相邻波节间的同一半波长上,描述各质点振动的什么物理量不同,什么物理量相同?

解: 取驻波方程为vt

x A y απλ

π

cos 2cos 2=,则可知,在相邻两波节中的同一半波长上,描述各质点的振幅是不相同的,各质点的振幅是随位置按余弦规律变化的,即振幅变化规律

可表示为x

A λ

π

2cos

2.而在这同一半波长上,各质点的振动位相则是相同的,即以相邻两波节的介质为一段,同一段介质内各质点都有相同的振动位相,而相邻两段介质内的质点振动位相则相反.

5-6 波源向着观察者运动和观察者向波源运动都会产生频率增高的多普勒效应,这两种情况有何区别?

解: 波源向着观察者运动时,波面将被挤压,波在介质中的波长,将被压缩变短,(如题5-6图所示),因而观察者在单位时间内接收到的完整数目(λ'/u )会增多,所以接收频率增高;

而观察者向着波源运动时,波面形状不变,但观察者测到的波速增大,即B v u u +=',因

而单位时间内通过观察者完整波的数目λu '

也会增多,即接收频率也将增高.简单地说,前

者是通过压缩波面(缩短波长)使频率增高,后者则是观察者的运动使得单位时间内通过的波面数增加而升高频率.

题5-6 图多普勒效应

5-7 一平面简谐波沿x 轴负向传播,波长λ=1.0 m ,原点处质点的振动频率为ν=2. 0 Hz ,振幅A =0.1m ,且在t =0时恰好通过平衡位置向y 轴负向运动,求此平面波的波动方程.

解: 由题知0=t 时原点处质点的振动状态为0,000

<=v y ,故知原点的振动初相为2π

,取

波动方程为]

)(2cos[0φλπ++=x

T t A y 则有

]

2)12(2cos[1.0π

π++=x t y

)

224cos(1.0π

ππ++=x t m

5-8 已知波源在原点的一列平面简谐波,波动方程为y =A cos(Cx Bt -),其中A ,B ,C

为正值恒量.求:

(1)波的振幅、波速、频率、周期与波长;

(2)写出传播方向上距离波源为l 处一点的振动方程; (3)任一时刻,在波的传播方向上相距为d 的两点的位相差. 解: (1)已知平面简谐波的波动方程

)cos(Cx Bt A y -=(0≥x )

将上式与波动方程的标准形式

)

22cos(λπ

πυx

t A y -=

比较,可知: 波振幅为A ,频率

πυ2B =

波长

C πλ2=

,波速C B

u =

=λυ, 波动周期

B T πυ21=

=. (2)将l x =代入波动方程即可得到该点的振动方程

)cos(Cl Bt A y -=

(3)因任一时刻t 同一波线上两点之间的位相差为

)

(212x x -=

π

φ

将d x x =-12,及C π

λ2=

代入上式,即得

Cd =?φ.

5-9 沿绳子传播的平面简谐波的波动方程为y =0.05cos(10x t ππ4-),式中x ,y 以米计,t 以秒计.求:

(1)波的波速、频率和波长;

(2)绳子上各质点振动时的最大速度和最大加速度; (3)求x =0.2m 处质点在t =1s 时的位相,它是原点在哪一时刻的位相?这一位相所代表的运动状态在t =1.25s 时刻到达哪一点? 解: (1)将题给方程与标准式

)

22cos(x t A y λπ

πυ-

=

相比,得振幅05.0=A m ,频率5=υ1-s ,波长5.0=λm ,波速5.2==λυu 1

s m -?.

(2)绳上各点的最大振速,最大加速度分别为

ππω5.005.010max =?==A v 1s m -? 222max 505.0)10(ππω=?==A a 2s m -?

(3)2.0=x m 处的振动比原点落后的时间为

08.05.22.0==u x s

故2.0=x m ,1=t s 时的位相就是原点(0=x ),在92.008.010=-=t s 时的位相,

即 2.9=φπ.

设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则

825.0)0.125.1(5.22.0)(11=-+=-+=t t u x x m

5-10 如题5-10图是沿x 轴传播的平面余弦波在t 时刻的波形曲线.(1)若波沿x 轴正向传播,该时刻O ,A ,B ,C 各点的振动位相是多少?(2)若波沿x 轴负向传播,上述各点的

振动 位相又是多少?

解: (1)波沿x 轴正向传播,则在t 时刻,有

题5-10图

对于O 点:∵

0,0<=O O v y ,∴

φ=

O

对于A 点:∵0,=+=A A v A y ,∴0=A φ 对于B 点:∵0,0>=B B v y ,∴

φ-

=B 对于C 点:∵0,0<=C C

v y ,∴23πφ-

=C (取负值:表示C B A 、、点位相,应落后于O 点的位相)

(2)波沿x 轴负向传播,则在t 时刻,有

对于O 点:∵

0,0>'='O O v y ,∴

φ-='O

对于A 点:∵0,='+='

A A v A y ,∴0='A φ 对于

B 点:∵0,0<'='

B B v y ,∴2πφ=

B 对于

C 点:∵0,0>'='C C v y ,∴

23πφ='C (此处取正值表示C B A 、、点位相超前于O 点的位相)

5-11 一列平面余弦波沿x 轴正向传播,波速为5m ·s -1

,波长为2m ,原点处质点的振动曲线如题5-11图所示. (1)写出波动方程;

(2)作出t =0时的波形图及距离波源0.5m 处质点的振动曲线.

解: (1)由题5-11(a)图知,1.0=A m ,且0=t 时,0,000

>=v y ,∴

230πφ=

5.225

==

=

λ

υu

Hz ,则ππυω52==

题5-11图(a)

取 ]

)(cos[0φω+-=u x

t A y ,

则波动方程为

)]

235(5cos[1.0π

π+-

=x t y m

(2) 0=t 时的波形如题5-11(b)图

题5-11图(b) 题5-11图(c)

将5.0=x m 代入波动方程,得该点处的振动方程为

)5cos(1.0)235.05.055cos(1.0πππ

ππ+=+?-

=t t y m

如题5-11(c)图所示.

5-12 如题5-12图所示,已知t =0时和t =0.5s 时的波形曲线分别为图中曲线(a)和(b) ,波沿x 轴正向传播,试根据图中绘出的条件求: (1)波动方程;

(2)P 点的振动方程.

解: (1)由题5-12图可知,1.0=A m ,4=λm ,又,0=t 时,0,000<=v y ,∴

20πφ=

25.01==??=

t x u 1

s m -?,5.042===λυu Hz ,∴ππυω==2

故波动方程为

]

2)2(cos[1.0π

π+-=x t y m

(2)将1=P x m 代入上式,即得P 点振动方程为

t

t y ππ

π

πcos 1.0)]2

2

cos[(1.0=+

-

=m

题5-12图

5-13 一列机械波沿x 轴正向传播,t =0时的波形如题5-13图所示,已知波速为10 m ·s -1

,波长为2m ,求: (1)波动方程;

(2) P 点的振动方程及振动曲线; (3) P 点的坐标;

(4) P 点回到平衡位置所需的最短时间. 解: 由题5-13图可知1.0=A m ,0=t 时,

0,200<=

v A y ,∴30πφ=,由题知2=λm ,

10=u 1s m -?,则

5210==

=

λ

υu

Hz

∴ ππυω102==

(1)波动方程为

]3)10(10cos[.01π

π+-

=x t y m

题5-13图

(2)由图知,0=t 时,

0,2<-

=P P v A y ,∴

34πφ-=P (P 点的位相应落后于0点,故取负值)

∴P 点振动方程为

)

34

10cos(1.0ππ-=t y p (3)∵

π

ππ34

|3)10(100-=+-=t x t ∴解得

67

.135

==x m (4)根据(2)的结果可作出旋转矢量图如题5-13图(a),则由P 点回到平衡位置应经历的位

相角

题5-13图(a)

ππ

π

φ6523

=+

=

?

∴所属最短时间为

121

106/5==

?=

?ππω

φ

t s

5-14 如题5-14图所示,有一平面简谐波在空间传播,已知P 点的振动方程为

P y =A cos(0?ω+t ).

(1)分别就图中给出的两种坐标写出其波动方程; (2)写出距P 点距离为b 的Q 点的振动方程.

解: (1)如题5-14图(a),则波动方程为

])(cos[0φω+-+

=u x

u l t A y

如图(b),则波动方程为

题5-14图

]

)(cos[0φω++=u x

t A y

(2) 如题5-14图(a),则Q 点的振动方程为 ]

)(cos[0φω+-=u b

t A A Q

如题5-14图(b),则Q 点的振动方程为

]

)(cos[0φω++=u b

t A A Q

5-15 已知平面简谐波的波动方程为)24(cos x t A y +=π(SI).

(1)写出t =4.2 s 时各波峰位置的坐标式,并求此时离原点最近一个波峰的位置,该波峰何

时通过原点?

(2)画出t =4.2 s 时的波形曲线. 解:(1)波峰位置坐标应满足

ππk x t 2)24(=+

解得 )4.8(-=k x m (,2,1,0±±=k …) 所以离原点最近的波峰位置为4.0-m . ∵

u x

t t t ωωππ+=+24 故知2=u 1s m -?,

2.024

.0=-=

'?t s ,这就是说该波峰在2.0s 前通过原点,那么从计时时刻算起,则应是42.02.4=-s ,即该波峰是在4s 时通过原点的.

题5-15图

(2)∵2,4==u πω1

s m -?,∴

1

2===ωπ

λu

uT m ,又0=x 处,2.4=t s 时,

ππφ8.1642.40=?=

A A y 8.02.44cos 0-=?=π

又,当A y -=时,πφ17=x

,则应有

πππ1728.16=+x

解得 1.0=x m ,故2.4=t s 时的波形图如题5-15图所示

5-16 题5-16图中(a)表示t =0时刻的波形图,(b)表示原点(x =0)处质元的振动曲线,试求此波的波动方程,并画出x =2m 处质元的振动曲线.

解: 由题5-16(b)图所示振动曲线可知2=T s ,2.0=A m ,且0=t 时,0,000>=v y ,

故知

20π

φ-

=,再结合题5-16(a)图所示波动曲线可知,该列波沿x 轴负向传播,

且4=λm ,若取]

)(2cos[0φλπ++=x

T t A y

题5-16图

则波动方程为

]

2)42(2cos[2.0π

π-+=x t y

5-17 一平面余弦波,沿直径为14cm 的圆柱形管传播,波的强度为18.0×10-3J ·m -2·s -1

频率为300 Hz ,波速为300m ·s -1

,求 : (1)波的平均能量密度和最大能量密度?

(2)两个相邻同相面之间有多少波的能量? 解: (1)∵ u w I =

5

3

106300100.18--?=?==u I w 3m J -? 4max 102.12-?==w w 3m J -?

(2)

νπλπωu

d w d w V W 2

24141=== 7

251024.9300

300

)14.0(41106--?=????=πJ 5-18 如题5-18图所示,1S 和2S 为两相干波源,振幅均为1A ,相距4λ

,1S 较2S 位相超前2π

,求:

(1) 1S 外侧各点的合振幅和强度; (2) 2S 外侧各点的合振幅和强度

解:(1)在1S 外侧,距离1S 为1r 的点,1S 2S 传到该P 点引起的位相差为

πλλππ

φ=???

???+--

=

?)4(221

1r r

0,02

11===-=A I A A A

(2)在2S 外侧.距离2S 为1r 的点,1S 2S 传到该点引起的位相差.

)4(2222=-+

-

=

?r r λ

λπ

π

φ

2

121114,2A A I A A A A ===+=

5-19 如题5-19图所示,设B 点发出的平面横波沿BP 方向传播,它在B 点的振动方程为

t y π2cos 10231-?=;C 点发出的平面横波沿CP 方向传播,它在C 点的振动方程为

)2cos(10232ππ+?=-t y ,本题中y 以m 计,t 以s 计.设BP =0.4m ,CP =0.5 m ,波

速u =0.2m ·s -1

,求:

(1)两波传到P 点时的位相差;

(2)当这两列波的振动方向相同时,P 处合振动的振幅;

*(3)当这两列波的振动方向互相垂直时,P 处合振动的振幅.

解: (1)

)

(2)(12BP CP --

-=?λ

π

?φφ

)

(BP CP u --

π

)4.05.0(2.02=--=ππ

题5-19图

(2)P 点是相长干涉,且振动方向相同,所以

321104-?=+=A A A P m

(3)若两振动方向垂直,又两分振动位相差为0,这时合振动轨迹是通过Ⅱ,Ⅳ象限的直线,

所以合振幅为

3312

2211083.210222--?=?==+=

A A A A m

5-20 一平面简谐波沿x 轴正向传播,如题5-20图所示.已知振幅为A ,频率为ν波速为u . (1)若t =0时,原点O 处质元正好由平衡位置向位移正方向运动,写出此波的波动方程;

(2)若从分界面反射的波的振幅与入射波振幅相等,试写出反射波的波动方程,并求x 轴上 因入射波与反射波干涉而静止的各点的位置.

解: (1)∵0=t 时,0,000

>=v y ,∴

20π

φ-

=故波动方程为

]

2)(2cos[π

π--=u x t v A y m

题5-20图

(2)入射波传到反射面时的振动位相为(即将

λ43=

x 代入)2432πλλπ-?-,再考虑到波由

波疏入射而在波密界面上反射,存在半波损失,所以反射波在界面处的位相为

πππ

λλπ

-=+-?-

2432

若仍以O 点为原点,则反射波在O 点处的位相为 ππλλπ25432-=-?-,因只考虑π2以内的位相角,∴反射波在O 点的位相为2π-,故

反射波的波动方程为

]

2)(2cos[π

πυ-+=u x t A y 反

此时驻波方程为

]2)(2cos[ππυ--=u x t A y ]

2)(2cos[π

πυ-++u x t A

)

22cos(2cos 2π

πυπυ-=t u x A

故波节位置为

2)12(22πλππυ+==k x u x

4)

12(λ

+=k x (,2,1,0±±=k …)

根据题意,k 只能取1,0,即

λ

λ43,41=x 5-20 一驻波方程为y =0.02cos20x cos750t (SI),求:

(1)形成此驻波的两列行波的振幅和波速; (2)相邻两波节间距离. 解: (1)取驻波方程为

t u x

A y πυπυ2cos 2cos

2= 故知

01

.0202.0==A m 7502=πυ,则πυ2750=, 20

2=u πυ

5

.37202/7502202=?==πππυu 1s m -? (2)∵314

.01.020/2====πυπυυλu m 所以相邻两波节间距离 157

.02

==

x m

5-22 在弦上传播的横波,它的波动方程为1y =0.1cos(13t +0.0079x ) (SI)

试写出一个波动方程,使它表示的波能与这列已知的横波叠加形成驻波,并在x =0处为波 节.

解: 为使合成驻波在0=x 处形成波节,则要反射波在0=x 处与入射波有π的位相差,故反射波的波动方程为

)0079.013cos(1.02π--=x t y

5-23 两列波在一根很长的细绳上传播,它们的波动方程分别为

1y =0.06cos(t x ππ4-)(SI), 2y =0.06cos(t x ππ4+)(SI).

(1)试证明绳子将作驻波式振动,并求波节、波腹的位置; (2)波腹处的振幅多大?x =1.2m 处振幅多大? 解: (1)它们的合成波为

)4cos(06.0)4cos(06.0t x x y ππππ++-= t x ππ4cos cos 12.0=

出现了变量的分离,符合驻波方程特征,故绳子在作驻波振动. 令ππk x =,则k x =,k=0,±1,±2…此即波腹的位置;

2)

12(π

π+=k x ,则21

)

12(+=k x ,,2,1,0±±=k …,此即波节的位置. (2)波腹处振幅最大,即为12.0m ;2.1=x m 处的振幅由下式决定,即

097.0)2.1cos(12.0=?=π驻A m

5-24 汽车驶过车站时,车站上的观测者测得汽笛声频率由1200Hz 变到了1000 Hz ,设空气

中声速为330m ·s -1

,求汽车的速率.

解: 设汽车的速度为

s v ,汽车在驶近车站时,车站收到的频率为

1υυs v u u -=

汽车驶离车站时,车站收到的频率为0

2υυs v u u +=

联立以上两式,得

30

10012001000

120030021211=+-?=+-=υυυυυu

1s m -?

5-25 两列火车分别以72km ·h -1

和54 km ·h -1

的速度相向而行,第一列火车发出一个600 Hz

的汽笛声,若声速为340 m ·s -1

,求第二列火车上的观测者听见该声音的频率在相遇前和相遇后分别是多少?

解: 设鸣笛火车的车速为201=v 1s m -?,接收鸣笛的火车车速为152=v 1

s m -?,则两者相遇前收到的频率为

6656002034015

3400121=?-+=-+=

υυv u v u Hz

两车相遇之后收到的频率为

5416002034015

3400121=?+-=+-=

υυv u v u Hz

大学物理试卷期末考试试题答案

2003—2004学年度第2学期期末考试试卷(A 卷) 《A 卷参考解答与评分标准》 一 填空题:(18分) 1. 10V 2.(变化的磁场能激发涡旋电场),(变化的电场能激发涡旋磁场). 3. 5, 4. 2, 5. 3 8 6. 293K ,9887nm . 二 选择题:(15分) 1. C 2. D 3. A 4. B 5. A . 三、【解】(1) 如图所示,内球带电Q ,外球壳内表面带电Q -. 选取半径为r (12R r R <<)的同心球面S ,则根据高斯定理有 2() 0d 4πS Q r E ε?==? E S 于是,电场强度 204πQ E r ε= (2) 内导体球与外导体球壳间的电势差 22 2 1 1 1 2200 01211d 4π4π4πR R R AB R R R Q Q dr Q U dr r r R R εεε?? =?=?==- ????? ? r E (3) 电容 12 001221114π/4πAB R R Q C U R R R R εε??= =-= ?-?? 四、【解】 在导体薄板上宽为dx 的细条,通过它的电流为 I dI dx b = 在p 点产生的磁感应强度的大小为 02dI dB x μπ= 方向垂直纸面向外. 电流I 在p 点产生的总磁感应强度的大小为 22000ln 2222b b b b dI I I dx B x b x b μμμπππ===? ? 总磁感应强度方向垂直纸面向外. 五、【解法一】 设x vt =, 回路的法线方向为竖直向上( 即回路的绕行方向为逆时

针方向), 则 21 d cos602B S Blx klvt Φ=?=?= ? ∴ d d klvt t εΦ =- =- 0ac ε < ,电动势方向与回路绕行方向相反,即沿顺时针方向(abcd 方向). 【解法二】 动生电动势 1 cos602 Blv klvt ε?动生== 感生电动势 d 111 d [cos60]d 222d d dB B S Blx lx lxk klvt t dt dt dt εΦ=- =?=--?===?感生- klvt εεε==感生动生+ 电动势ε的方向沿顺时针方向(即abcd 方向)。 六、【解】 1. 已知波方程 10.06cos(4.0)y t x ππ=- 与标准波方程 2cos(2) y A t x π πνλ =比较得 , 2.02, 4/Z H m u m s νλνλ==== 2. 当212(21)0x k ππΦ-Φ==+合时,A = 于是,波节位置 21 0.52k x k m += =+ 0,1,2, k =±± 3. 当 21222x k A ππΦ-Φ==合时,A = 于是,波腹位置 x k m = 0,1,2, k =±± ( 或由驻波方程 120.12cos()cos(4)y y y x t m ππ=+= 有 (21) 00.52 x k A x k m π π=+?=+合= 0,1,2, k =±± 20.122 x k A m x k m π π=?=合=, 0,1,2, k =±± )

大学物理第五章 习题解答

第五章 习题解答 5-1 解:等压过程系统做功W ,根据等压过程做功的公式: W=p(V 2-V 1)=νR ΔT 可得ΔT=W/νR ,ν=1mol ,ΔT=W/R W W i T R i T T C Q p 2 72222)(12=+=?+=-=υ υp 5-2 J T R i E 65.124131.82 3102=???=?=?υ 5-3 解:等容过程有W=0,Q=ΔE J T R i E 747930031.82 322=???=?=?=υ 5-4 解:等压过程系统做功W ,根据等压过程做功的公式: W=p(V 2-V 1)=νR ΔT=200J W i T R i T T C Q 2 222)(12+=?+=-=υ υp 单原子分子 i =3,J Q 5002002 23=?+= 单原子分子 i =5,J Q 7002002 25=?+= 5-5. 一系统由如图所示的a 状态沿acb 到达b 状态,有334J 热量传入系统,系统做功J 126。 (1)经adb 过程,系统做功J 42,问有多少热量传入系统? (2)当系统由b 状态沿曲线ba 返回状态a 时,外界对系统 做功为J 84,试问系统是吸热还是放热?热量传递了多少? 解:由acb 过程可求出b 态和a 态的内能之差 Q=ΔE+W ,ΔE=Q -W=334-126=208 J adb 过程,系统作功W=42 J , Q=ΔE+W=208+42=250J 系统吸收热量 ba 过程,外界对系统作功A=-84 J , Q=ΔE +W=-208-84=-292 J 系统放热 5-6 解:ab 过程吸热,bc 过程吸热 cd 过程放热,da 过程放热 取1atm=105Pa 根据等温、等压过程的吸热公式可得 J V p V p i T T C Q a a b b ab 336)(2)(12=-= -=V υ J V p V p i Q b b c c bc 560)(2 2=-+= J V p V p i Q c c d d cd 504)(2 -=-= J V p V p i Q d d a a da 280)(2 2-=-+= 整个过程总吸热J Q Q Q bc ab 8961=+=,总放热J Q Q Q da cd 7842=+= p

大学物理课后题答案

习 题 四 4-1 质量为m =的弹丸,其出口速率为300s m ,设弹丸在枪筒中前进所受到的合力 9800400x F -=。开抢时,子弹在x =0处,试求枪筒的长度。 [解] 设枪筒长度为L ,由动能定理知 2022121mv mv A -= 其中??-==L L dx x Fdx A 00)9 8000400( 9 40004002 L L - = 而00=v , 所以有: 22 300002.05.09 4000400??=-L L 化简可得: m 45.00 813604002==+-L L L 即枪筒长度为。 4-2 在光滑的水平桌面上平放有如图所示的固定的半圆形屏障。质量为m 的滑块以初速度0v 沿切线方向进入屏障内,滑块与屏障间的摩擦系数为μ,试证明:当滑块从屏障的另一端滑出时,摩擦力所作的功为() 12 1220-= -πμe mv W [证明] 物体受力:屏障对它的压力N ,方向指向圆心,摩擦力f 方向与运动方向相反,大小为 N f μ= (1) 另外,在竖直方向上受重力和水平桌面的支撑力,二者互相平衡与运动无关。 由牛顿运动定律 切向 t ma f =- (2) 法向 R v m N 2 = (3) 联立上述三式解得 R v a 2 t μ-= 又 s v v t s s v t v a d d d d d d d d t === 所以 R v s v v 2 d d μ -= 即 s R v v d d μ-=

两边积分,且利用初始条件s =0时,0v v =得 0ln ln v s R v +- =μ 即 s R e v v μ -=0 由动能定理 2 022 121mv mv W -= ,当滑块从另一端滑出即R s π=时,摩擦力所做的功为 () 12 1212122020220-=-=--πμ πμ e mv mv e mv W R R 4-3 质量为m 的质点开始处于静止状态,在外力F 的作用下沿直线运动。已知 T t F F π2sin 0=,方向与直线平行。求:(1)在0到T 的时间内,力F 的冲量的大小;(2)在0到2T 时间内,力F 冲量的大小;(3)在0到2T 时间内,力F 所作的总功;(4)讨论质点的运动情况。 [解]由冲量的定义?=1 2 d t t t F I ,在直线情况下,求冲量I 的大小可用代数量的积分,即 ?= 1 2 d t t t F I (1) 从t =0到 t=T ,冲量的大小为: ?= =T t F I 01d ?-=T T T t T F t T t F 0 00]2cos [2d 2sin πππ=0 (2) 从t =0到 t =T /2,冲量的大小为 π πππ0000 0022 2 2]2cos [2d 2sin d TF T t T F t T t F t F I T T T =-=== ?? (3) 初速度00=v ,由冲量定理 0mv mv I -= 当 t =T /2时,质点的速度m TF m I v π0== 又由动能定理,力F 所作的功 m F T m F mT mv mv mv A 22022 22022 20222212121ππ===-= (4) 质点的加速度)/2sin()/(0T t m F a π=,在t =0到t =T /2时间内,a >0,质点 作初速度为零的加速运动,t =T /2时,a =0,速度达到最大;在t =T /2到t =T 时间内,a <0,但v >0,故质点作减速运动,t =T 时 a =0,速度达到最小,等于零;此后,质点又进行下一

大学物理(第四版)课后习题及答案 质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t = 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--=t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有 2002 1at t v x x + += 间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案 习 题1 1-1. 已知质点位矢随时间变化的函数形式为 )ωt sin ωt (cos j i +=R r 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。 解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω= 消去t 可得轨道方程 222R y x =+ 2) j r v t Rcos sin ωωt ωR ωdt d +-== i R ωt ωR ωt ωR ωv =+-=2 122 ])cos ()sin [( 1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求: (1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。 解:1)由j i r )t 23(t 42++=可知 2t 4x = t 23y += 消去t 得轨道方程为:2)3y (x -= 2)j i r v 2t 8dt d +== j i j i v r 24)dt 2t 8(dt 1 1 +=+==??Δ 3) j v 2(0)= j i v 28(1)+= 1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单

位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。 解:1)j i r v 2t 2dt d +== i v a 2dt d == 2)21 22 12)1t (2] 4)t 2[(v +=+= 1 t t 2dt dv a 2 t +== n a == 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。 解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为 2012 1 at t v y += (1) 图 1-4 2022 1 gt t v h y -+= (2) 21y y = (3) 解之 t = 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 2 1 h y -= 式(2) j i r )gt 2 1 -h (t v (t)20+= (2)联立式(1)、式(2)得 2 02 v 2gx h y -= (3) j i r gt -v t d d 0= 而 落地所用时间 g h 2t =

大学物理(北邮大)答案习题10

习题十 10-1 一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B 垂直.当回路 半径以恒定速率 t r d d =80cm ·s -1 收缩时,求回路中感应电动势的大小. 解: 回路磁通 2 πr B BS m 感应电动势大小 40.0d d π2)π(d d d d 2 t r r B r B t t m V 10-2 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题10-2图所示.均匀磁 场B =80×10-3 T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角 当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向. 解: 取半圆形cba 法向为i , 题10-2图 则 cos 2 π21 B R m 同理,半圆形adc 法向为j ,则 cos 2 π22 B R m ∵ B 与i 夹角和B 与j 夹角相等, ∴ 45 则 cos π2 R B m 221089.8d d cos πd d t B R t m V 方向与cbadc 相同,即异时针方向.

题10-3图 *10-3 如题10-3图所示,一根导线弯成抛物线形状y =2 ax ,放在均匀磁场中.B 与xOy 平 面垂直,细杆CD 平行于x 轴并以加速度a 从抛物线的底部向开口处作平动.求CD 距O 点为y 处时回路中产生的感应电动势. 解: 计算抛物线与CD 组成的面积内的磁通量 a y m y B x x y B S B 0 2 3 2 322d )(2d 2 ∴ v y B t y y B t m 2 1 212d d d d ∵ ay v 22 ∴ 2 1 2y a v 则 a By y a y B i 8222 12 1 i 实际方向沿ODC . 题10-4图 10-4 如题10-4图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压 N M U U . 解: 作辅助线MN ,则在MeNM 回路中,沿v 方向运动时0d m ∴ 0 MeNM 即 MN MeN

大学物理习题解答5第五章稳恒电流

第五章 稳恒电流 本章提要 1.电流强度 · 当导体中存在电场时,导体中的电荷会发生定向运动形成电流。如果在t ?时间内通过导体某一截面的电量为q ?,则通过该截面的电流I 为 q I t ?= ? · 如果电流随时间变化,电流I 的定义式为 t q t q I t d d lim 0= ??=→? 2.电流密度 · 导体中任意一点的电流密度j 的大小规定为单位时间内通过该点单位垂直截面的电量,j 的方向规定为通过该点的正电荷运动的方向。根据电流密度的定义,导体中某一点面元d S 的电流密度为 d d I j S ⊥ = · 对于宏观导体,当导体中各点的j 有不同的大小和方向,通过导体任意截面S 的电流可通过积分计算,即 d j S S =???I 3.欧姆定律 · 对于一般的金属导体,在恒定条件下欧姆定律有如下表达形式 R U U I 2 1-= 其中R 为导体的电阻,21U U -为导体两端的电势差 · 欧姆定律的微分形式为 E j σ= 其中ρσ1=为电导率

4.电阻 · 当导体中存在恒定电流时,导体对电流有一定的电阻。导体的电阻与导体的材料、大小、形状以及所处状态(如温度)有关。当导体的材料与温度一定时,对一段截面积均匀的导体,其电阻表达式为 S l R ρ = 其中l 为导体的长度,S 为导体的横截面积,ρ为导体的电阻率 5.电动势 · 非静电力反抗静电力移动电荷做功,把其它种形式的能量转换为电势能,产生电势升高。 q A 非= ε · 当非静电力不仅存在于内电路中,而且存在于外电路中时,整个回路的电动势为 l E l k ??=d ε 6.电源电动势和路端电压 · 若电源正负极板的电势分别为U +和U -,电源内阻为r ,电路中电流为I ,则电源电动势为 ()U U Ir +-ε=-- · 路端电压为 Ir U U -=--+ε 7.接触电动势 · 因电子的扩散而在导体接触面上形成的等效电动势。 A B ln n kT e n ε= 其中e 为电子电量,k 为玻尔兹曼常数,T 为热力学温度

大学物理课后习题标准答案第六章

大学物理课后习题答案第六章

————————————————————————————————作者:————————————————————————————————日期:

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 2 00 200)1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为 l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的 电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3220)(41 cos R x xdq dE dE x += =πεθ R O λ1 λ2 l x y z

大学物理期末考试试题

西安工业大学试题纸 1.若质点的运动方程为:()2r 52/2t t i t j =+-+(SI ),则质点的v = 。 2. 一个轴光滑的定滑轮的转动惯量为2/2MR ,则要使其获得β的角加速度,需要施加的合外力矩的大小为 。 3.刚体的转动惯量取决于刚体的质量、质量的空间分布和 。 4.一物体沿x 轴运动,受到F =3t (N)的作用,则在前1秒内F 对物体的冲量是 (Ns )。 5. 一个质点的动量增量与参照系 。(填“有关”、“无关”) 6. 由力对物体的做功定义可知道功是个过程量,试回答:在保守力场中,当始末位置确定以后,场力做功与路径 。(填“有关”、“无关”) 7.狭义相对论理论中有2个基本原理(假设),一个是相对性原理,另一个是 原理。 8.在一个惯性系下,1、2分别代表一对因果事件的因事件和果事件,则在另一个惯性系下,1事件的发生 2事件的发生(填“早于”、“晚于”)。 9. 一个粒子的固有质量为m 0,当其相对于某惯性系以0.8c 运动时的质量m = ;其动能为 。 10. 波长为λ,周期为T 的一平面简谐波在介质中传播。有A 、B 两个介质质点相距为L ,则A 、B 两个质点的振动相位差=?φ____;振动在A 、B 之间传播所需的时间为_ 。 11. 已知平面简谐波方程为cos()y A Bt Cx =-,式中A 、B 、C 为正值恒量,则波的频率为 ;波长为 ;波沿x 轴的 向传播(填“正”、“负”)。 12.惠更斯原理和波动的叠加原理是研究波动学的基本原理,对于两列波动的干涉而言,产生稳定的干涉现象需要三个基本条件:相同或者相近的振动方向,稳定的位相差,以及 。 13. 已知一个简谐振动的振动方程为10.06cos(10/5)()X t SI π=+,现在另有一简谐振动,其振动方程为20.07cos(10)X t =+Φ,则Φ= 时,它们的合振动振幅最 大;Φ= 时,它们的合振动振幅最小。 14. 平衡态下温度为T 的1mol 单原子分子气体的内能为 。 15. 平衡态下理想气体(分子数密度为n ,分子质量为m ,分子速率为v )的统计压强P= ;从统计角度来看,对压强和温度这些状态量而言, 是理想气体分子热运动激烈程度的标志。

大学物理(上)课后习题标准答案

大学物理(上)课后习题答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2 m ⑵ 1 t s,2 t s 时,j i r 5.081 m ;2114r i j v v v m ∴ 213 4.5r r r i j v v v v v m ⑶0t s 时,054r i j v v v ;4t s 时,41716r i j v v v ∴ 140122035m s 404r r r i j i j t v v v v v v v v v ⑷ 1 d 3(3)m s d r i t j t v v v v v ,则:437i j v v v v 1s m (5) 0t s 时,033i j v v v v ;4t s 时,437i j v v v v 24041 m s 44 j a j t v v v v v v v v v (6) 2d 1 m s d a j t v v v v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x ,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x v v v v 得:2 d d (26)d a x x x v v 两边积分 210 d (26)d x x x v v v 得:2322250x x v ∴ 31225 m s x x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2 ⑴ s 2 t 时,2 s m 362181 R a 2 222s m 1296)29(1 R a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a 即: R R 2 ,亦即t t 18)9(2 2 ,解得:9 2 3 t 则角位移为:32 2323 2.67rad 9 t 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为 =0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2 t 时,4.02 2.0 t 1s rad 则0.40.40.16R v 1s m 064.0)4.0(4.022 R a n 2 s m 0.40.20.08a R 2 s m 22222s m 102.0)08.0()064.0( a a a n 与切向夹角arctan()0.0640.0843n a a

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3 ,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间合力作功为 A 1,32t t →时间合力作功为A 2,43t t → 3 C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间,其平均 速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D ) T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?,速率由0增加到υ;在2t ?, 由υ增加到υ2。设该力在1t ?,冲量大小为1I ,所作的功为1A ;在2t ?,冲量大小为2I , 所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线 运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的 大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

大学物理课后习题解答(第五章) 北京邮电大学出版社

习题五 5-1 振动和波动有什么区别和联系?平面简谐波动方程和简谐振动方程有什么不同?又有什么联系?振动曲线和波形曲线有什么不同? 解: (1)振动是指一个孤立的系统(也可是介质中的一个质元)在某固定平衡位置附近所做的往复运动,系统离开平衡位置的位移是时间的周期性函数,即可表示为)(t f y =;波动是振动在连续介质中的传播过程,此时介质中所有质元都在各自的平衡位置附近作振动,因此介质中任一质元离开平衡位置的位移既是坐标位置x ,又是时间t 的函数,即),(t x f y =. (2)在谐振动方程)(t f y =中只有一个独立的变量时间t ,它描述的是介质中一个质元偏离平衡位置的位移随时间变化的规律;平面谐波方程),(t x f y =中有两个独立变量,即坐标位置x 和时间t ,它描述的是介质中所有质元偏离平衡位置的位移随坐标和时间变化的规律. 当谐波方程 ) (cos u x t A y -=ω中的坐标位置给定后,即可得到该点的振动方程,而波源持续不断地振动又是产生波动的必要条件之一. (3)振动曲线)(t f y =描述的是一个质点的位移随时间变化的规律,因此,其纵轴为y ,横轴为t ;波动曲线),(t x f y =描述的是介质中所有质元的位移随位置,随时间变化的规律, 其纵轴为y ,横轴为x .每一幅图只能给出某一时刻质元的位移随坐标位置x 变化的规律,即只能给出某一时刻的波形图,不同时刻的波动曲线就是不同时刻的波形图. 5-2 波动方程y =A cos [ω( u x t - )+0?]中的u x 表示什么?如果改写为y =A cos (0?ωω+-u x t ),u x ω又是什么意思?如果t 和x 均增加,但相应的[ω( u x t - )+0?]的值不变,由此能从波动方程说明什么? 解: 波动方程中的u x /表示了介质中坐标位置为x 的质元的振动落后于原点的时间;u x ω则表示x 处质元比原点落后的振动位相;设t 时刻的波动方程为 ) cos(0φωω+-=u x t A y t 则t t ?+时刻的波动方程为 ] ) ()(cos[0φωω+?+-?+=?+u x x t t A y t t 其表示在时刻t ,位置x 处的振动状态,经过t ?后传播到t u x ?+处.所以在 ) (u x t ωω-中,当t ,x 均增加时, ) (u x t ωω-的值不会变化,而这正好说明了经过时间t ?,波形即向前传播了t u x ?=?的距离,说明) cos(0φωω+-=u x t A y 描述的是一列行进中的波,故谓之行 波方程. 5-3 波在介质中传播时,为什么介质元的动能和势能具有相同的位相,而弹簧振子的动能和势能却没有这样的特点? 解: 我们在讨论波动能量时,实际上讨论的是介质中某个小体积元dV 内所有质元的能量.波动动能当然是指质元振动动能,其与振动速度平方成正比,波动势能则是指介质的形

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理(北邮大)答案习题6

习题六 6-1 气体在平衡态时有何特征?气体的平衡态与力学中的平衡态有何不同? 答:气体在平衡态时,系统与外界在宏观上无能量和物质的交换;系统的宏观性质不随时间变化. 力学平衡态与热力学平衡态不同.当系统处于热平衡态时,组成系统的大量粒子仍在不停地、无规则地运动着,大量粒子运动的平均效果不变,这是一种动态平衡.而个别粒子所受合外力可以不为零.而力学平衡态时,物体保持静止或匀速直线运动,所受合外力为零. 6-2 气体动理论的研究对象是什么?理想气体的宏观模型和微观模型各如何? 答:气体动理论的研究对象是大量微观粒子组成的系统.是从物质的微观结构和分子运动论出发,运用力学规律,通过统计平均的办法,求出热运动的宏观结果,再由实验确认的方法. 从宏观看,在温度不太低,压强不大时,实际气体都可近似地当作理想气体来处理,压强越低,温度越高,这种近似的准确度越高.理想气体的微观模型是把分子看成弹性的自由运动的质点. 6-3 何谓微观量?何谓宏观量?它们之间有什么联系? 答:用来描述个别微观粒子特征的物理量称为微观量.如微观粒子(原子、分子等)的大小、质量、速度、能量等.描述大量微观粒子(分子或原子)的集体的物理量叫宏观量,如实验中观测得到的气体体积、压强、温度、热容量等都是宏观量. 气体宏观量是微观量统计平均的结果. 2 8642150 24083062041021++++?+?+?+?+?= = ∑∑i i i N V N V 7.2141890== 1s m -? 方均根速率 2 8642150240810620410212 23222 2 ++++?+?+?+?+?= =∑∑i i i N V N V 6.25= 1s m -? 6-5 速率分布函数)(v f 的物理意义是什么?试说明下列各量的物理意义(n 为分子数密度, N 为系统总分子数).

大学物理期末考试试卷(含答案) 2

2008年下学期2007级《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) (2717) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分)(2391) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分)(2594) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分)(2314) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分)(2125) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分)(2421) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

大学物理学第版修订版邮电大学出版社上册第五章习题答案

大学物理学第版修订版邮电大学出版社上册第 五章习题答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

习 题5 选择题 (1)一物体作简谐振动,振动方程为)2cos(π ω+=t A x ,则该物体在0=t 时 刻的动能与8/T t =(T 为振动周期)时刻的动能之比为: (A)1:4 (B )1:2 (C )1:1 (D) 2:1 [答案:D] (2)弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的 功为 (A)kA 2 (B) kA 2/2 (C) kA 24A ±2A ±23A ±22A ±4cm2cm2cm 23 s 2A cos(2//2)x A t T ππ=-cos(2//3)x A t T ππ=+O θsin mg -S ?R R S ?=θθmg -中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上有 令R g =2ω,则有 弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度 和最大加速度等物理量将如何变化 解:弹簧振子的振动周期、振动能量、最大速度和最大加速度的表达式分别为 所以当振幅增大到原振幅的两倍时,振动周期不变,振动能量增大为原来的4倍,最大速度增大为原来的2倍,最大加速度增大为原来的2倍。 单摆的周期受哪些因素影响把某一单摆由赤道拿到北极去,它的周期是否变化

解:单摆的周期为 因此受摆线长度和重力加速度的影响。把单摆由赤道拿到北极去,由于摆线长度不变,重力加速度增大,因此它的周期是变小。 简谐振动的速度和加速度在什么情况下是同号的在什么情况下是异号的加速度为正值时,振动质点的速率是否一定在增大 解:简谐振动的速度和加速度的表达式分别为 当00sin()cos()t t ω?ω?++与同号时,即位相在第1或第3象限时,速度和加速度同号;当00sin()cos()t t ω?ω?++与异号时,即位相在第2或第4象限时,速度和加速度异号。 加速度为正值时,振动质点的速率不一定增大。 质量为kg 10103-?的小球与轻弹簧组成的系统,按20.1cos(8)(SI)3x t ππ=+ 的规律 作谐振动,求: (1)振动的周期、振幅和初位相及速度与加速度的最大值; (2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等 (3)s 52=t 与s 11=t 两个时刻的位相差; 解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知: 又 πω8.0==A v m 1s m -? 51.2=1s m -? (2) 0.63N m m F ma == 当p k E E =时,有p E E 2=, 即 )2 1(212122kA kx ?= ∴ m 20 222±=±=A x (3) ππωφ32)15(8)(12=-=-=?t t

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

相关文档
最新文档