(完整)小学数学圆的知识点归纳、复习,推荐文档
圆知识点总结大全 小学

圆知识点总结大全小学一、圆的基本属性1. 圆的定义:圆是由平面上距离某一点(圆心)等距禨大于固定值(半径)的所有点的集合。
2. 圆的元素:圆由圆心、半径、周长、直径和弧度等元素构成。
3. 圆的圆心和半径:圆心是圆的中心点,通常用O表示;半径是圆心到圆上任何一点的距离,通常用r表示。
4. 直径和周长:直径是圆的任意两点之间经过圆心的线段的长度的两倍,通常用d表示;周长是圆的边界长度,通常用C表示,周长的计算公式为C=2πr。
二、圆的测量1. 圆的直径和半径的关系:直径是半径的两倍,即d=2r。
2. 圆周率π的概念:圆周率π是一个无理数,其值约为3.14159,它是圆的周长与直径之比,通常用π表示。
3. 圆的周长计算:圆周长的计算公式为C=2πr,其中r为圆的半径。
4. 圆的直径计算:直径可以通过周长或者半径计算得出,即d=2r或者d=C/π。
三、圆与其他几何图形的关系1. 圆与正方形、长方形的关系:正方形和长方形可以围成圆,圆的周长与正方形和长方形的周长相等时,它们互相等价。
2. 圆与三角形、四边形的关系:圆与三角形和四边形之间可以有外切圆和内切圆,圆可以包围外接三角形和外接四边形,也可以被内接三角形和内接四边形包围。
四、圆的应用1. 圆的面积:圆的面积是圆内部的平面区域大小,通常用A表示,计算公式为A=πr²。
2. 圆环的面积:圆环是指一个圆中去掉内圆后形成的区域,圆环的面积可以通过两个圆的面积计算得出。
3. 圆的角度与弧长的关系:圆的角度与弧长之间存在一定的对应关系,通常用弧度制中圆周角来表示。
4. 圆的应用实例:圆的应用包括钟表、轮胎、水泵、建筑设计等各个领域,圆的性质在日常生活中有着广泛的应用。
通过本文的总结,相信学生们能够全面掌握关于圆的基本概念、测量方法、与其他几何图形的关系以及应用领域。
掌握这些知识将对学生今后学习中学阶段的几何学知识打下坚实的基础。
同时,学生们也能更好地理解和应用圆的概念,从而更好地理解世界和解决实际问题。
小学圆知识点总结

小学圆知识点总结一、圆的基本概念1.圆的定义:平面上所有到一个固定点的距离都相等的点的集合称为圆。
2.圆的要素:圆心、半径和直径。
圆心是圆上的一个点,半径是圆心到圆上任意一点的距离,直径是通过圆心的一条直线段,且两端点都在圆上。
二、圆的性质1.圆心角和弧:以圆心为顶点的角称为圆心角;圆心角所对的弧称为圆心角弧。
2.圆周角和弦:圆上的两条弧所对的角称为圆周角;弦是圆上的一条线段,其两个端点在圆上。
3.圆的周长和面积:圆的周长是圆周长的长度,公式为周长=2πr,其中r为半径;圆的面积是圆内部区域的大小,公式为面积=πr²。
三、圆的位置关系1.同心圆:具有相同圆心但半径不同的圆称为同心圆。
2.相交圆:具有不同圆心但有交点的圆称为相交圆。
3.内切圆和外切圆:一个圆与一个三角形、四边形等图形的内部相切,称为内切圆;一个圆与一个三角形、四边形等图形的外部相切,称为外切圆。
四、圆的构造和等分1.通过半径构造圆:以一个点为圆心,以半径为线段,在平面上画一个圆。
2.通过圆心角构造圆:选择圆上一点,以该点为圆心,圆心角度数为圆心角,在平面上画一个圆。
3.圆的等分:可以使用直线段和圆弧进行圆的等分,如将圆分成2等份、3等份等。
五、判断圆与图形的性质1.判断圆内、外、边:通过点到圆心的距离与半径的关系,可以判断一个点是在圆内、在圆外、还是在圆上。
2.判断一个点是否在线段上:若该点到线段的两个端点的距离之和等于线段的长度,则该点在线段上。
3.判断直线与圆的位置关系:圆与直线有三种位置关系,即相离、相切和相交。
相离是指直线与圆没有交点;相切是指直线与圆有且仅有一个切点;相交是指直线与圆有两个切点或者部分直线在圆内。
4.判断弧与直线的位置关系:弧与直线有三种位置关系,即离开线、部分在线上、完全在线上。
完全在线上是指弧上的所有点都在直线上;部分在线上是指弧上的一部分点在直线上;离开线是指弧上的所有点都不在直线上。
5.判断两个圆的位置关系:两个圆之间有四种位置关系,即相离、外切、相交和内切。
(完整版)六年级上册数学知识点复习:圆(人教版),推荐文档

六年级上册数学知识点复习:圆(人教版)圆一、认识圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母表示。
它到圆上任意一点的距离都相等3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r=8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数。
3圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π表示。
、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时,一般取π≈314。
、在判断时,圆周长与它直径的比值是π倍,而不是314倍。
、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式:=πdd=÷π或=2πrr=÷2π、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
六年级《圆》知识点总结

六年级《圆》知识点总结一、认识圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等。
3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:(d=2r)8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;二、圆的周长1.圆的周长:围成圆的曲线的长度,叫做圆的周长,一般用字母C表示。
2.圆周率:圆的周长与它的直径的比值叫做圆周率,一般用字母π表示。
π是一个无限不循环小数,π≈3.14. ①π=3.1415926…②π=3.14(×)π=3.14159>6(×)应该是≈②π是一个定值.永远不改变3.圆的周长的计算公式: C=πd 或C=2πr d=c÷π r=C÷2π4.周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
半径扩大a倍→直径扩大a倍→周长扩大a倍→面积扩大a²倍半径增加a厘米→周长增加2πa厘米直径增加b厘米→周长增加πb厘米C半圆=1/2πd+d5.半圆的周长:半圆的周长=圆周长的一半加上一条直径的长度或两条半径的长度,即或C半圆=πr+2r三、圆的特征(1)一个圆里有无数条半径和无数条直径。
圆的知识点总结(优质16篇)

圆的知识点总结(优质16篇)圆的知识点总结(1)1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的`距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两个圈是分开的,此时有四个公切线。
当时两圆外切,连线过切点,有两条外切和一条内公切线。
当时两圆相交,连心线垂直平分公共弦,有两条外公切线。
当时,两圆内切,连心线经过切点,只有一条公切线。
当时,两圆内含;当时,为同心圆。
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线。
圆的辅助线一般为连圆心与切线或者连圆心与弦中点。
数学集合的运算知识点运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).学数学的方法学习方法很多女生在学习数学的时候喜欢按部就班,注重基础,但是却很少做难题,所以便导致了解题能力薄弱。
完整版)圆的知识点归纳总结大全

完整版)圆的知识点归纳总结大全
圆的知识点归纳总结:
圆的定义:圆是以定点为圆心,定长为半径的点组成的图形;在同一平面内,到一个定点的距离都相等的点组成的图形。
圆的各元素:半径、直径、弦、弧、圆心角、圆周角和弦心距。
圆的基本性质:圆具有轴对称、中心对称和旋转对称性;垂径定理可以推导出平分弦的直径、平分弧的直径和垂直于弦的直径;圆心角的度数等于它所对弧的度数,圆周角的度数等于它所对弧度数的一半;在同圆或等圆中,五对量中只要有一对量相等,其余四对量也分别相等;夹在平行线间的两条弧相等;过两点的圆的圆心一定在两点间连线段的中垂线上,不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等;直线与圆的位置关系可以分为相交、相切和相离三种情况;圆的切线判定可以通过计算圆心到直线的距离和半径的大小关系来确定。
改写建议:将每个知识点分成一个小标题,使得文章更加清晰易懂。
同时,可以适当增加一些例子或图示,帮助读者更好地理解。
1) 计算圆的弧长、圆心角和半径时,我们使用以下公式:
弧长L = n/180 × 2πR
其中,n表示圆心角的度数,R表示圆的半径。
2) 计算扇形的面积时,我们使用以下公式:
扇形面积S = n/360 × πR²
或者,S = 1/2 × l × R
其中,l表示扇形的弧长,R表示圆的半径。
3) 圆锥的侧面展开图是扇形。
我们可以使用以下公式来
计算扇形的面积:
扇形面积S = πar
其中,r表示底面圆的半径,a表示母线长,α表示扇形的圆心角,其计算公式为:
α = r/a × 360。
【小学数学】六年级上册数学《圆》知识点整理

【小学数学】六年级上册数学《圆》知识点整理1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次;折痕相交于圆中心的一点;这一点叫做圆心。
如下图中;中心的一点O 。
一般用字母O 表示。
它到圆上任意一点的距离都相等.(画圆切忌别忘记标圆心0)3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r 表示。
如下图红色线。
把圆规两脚分开;两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d 表示。
如下图蓝色线。
直径是一个圆内最长的线段。
85、圆心确定圆的位置;半径确定圆的大小。
如果已知的是直径;我们要把直径除以2换成半径,确定圆心;然后才开始画圆。
(画圆给出半径标半径r=?;给出直径标直径d=?) 要比较两圆的大小;就是比较两个圆的直径或半径。
6、在同圆或等圆内;有无数条半径;有无数条直径。
同圆中所有的半径、直径都相等。
7.在同圆或等圆内;直径的长度是半径的2倍;半径的长度是直径的21。
用字母表示为:d = 2r 或r =2d 或r=d ÷2 8、轴对称图形:如果一个图形沿着一条直线对折;两侧的图形能够完全重合;这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
9、长方形、正方形和圆都是对称图形;都有对称轴。
这些图形都是轴对称图形。
10、常见图形的对称轴:只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形 只有3条对称轴的图形是:等边三角形 只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。
圆是轴对称图形;有无数条对称轴;对称轴就是直径所在的直线。
11、正方形里最大的圆。
两者联系:边长=直径;圆的面积=78.5%正方形的面积画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心;以边长为直径画圆。
12、长方形里最大的圆。
两者联系:宽=直径画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心;以宽为直径画圆。
小学数学中的圆知识点总结

小学数学中的圆知识点总结一、圆的定义和性质1. 圆的定义圆是平面上与给定点距离相等的点的集合。
给定点叫做圆心,距离叫做半径。
用圆形符号表示为⭕。
例如,在坐标系中,圆的方程可以表示为(x-a)² + (y-b)² = r²,其中(a,b)是圆心的坐标,r是半径的长度。
2. 圆的性质(1)圆的直径是经过圆心两点的线段,长度等于圆的半径的两倍。
(2)圆心到圆上任意一点的距离都是相等的,等于半径的长度。
(3)圆被分成的两部分叫做扇形,扇形的两边是圆的两条半径。
(4)圆的周长叫做圆的周长,通常用C表示,可以用公式C=2πr计算出来,其中r是半径的长度,π是圆周率,约等于3.14。
二、圆的相关图形1. 圆的切线给定一个圆和一点P在圆外,通过点P有且仅有一条与圆相交于P的直线,这条直线叫做圆的切线。
切线与半径的夹角是直角。
2. 圆的切点切线与圆相切的点叫做圆的切点。
圆的切点与圆心连线垂直于切线。
3. 圆内接四边形如果一个四边形的四个顶点都在同一个圆上,那么这个四边形叫做圆内接四边形。
圆内接四边形的两组对边和相等。
4. 圆外接四边形如果一个四边形的四个顶点都在同一个圆的圆周上,那么这个四边形叫做圆外接四边形。
圆外接四边形的对角线相交于一点,这个点叫做四边形的对角点。
三、圆的相关定理和公式1. 圆的面积圆的面积叫做圆的面积,一般用S表示,可以用公式S=πr²计算出来。
2. 圆心角的性质(1)圆心角的度数等于所对弧的中心角的角度。
(2)一个圆的圆心角的度数等于圆的周长除以半径的长度。
3. 圆的圆心角的度数和弧长的关系(1)圆心角的度数等于弧长的度数。
(2)圆心角的弧度数等于弧长除以半径的长度。
4. 弧长和扇形面积的计算(1)弧长的计算可用公式L=2πr计算,其中r是半径的长度。
(2)扇形面积的计算可用公式S=πr² × (θ/360)计算,其中r是半径的长度,θ是圆心角的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学圆的知识点归纳复习
1、基本知识点
(1)圆的初步认识
圆中心的一点叫圆心,用o 表示。
一端在圆心,另一端在圆上的线段叫半径,用r 表示。
两端都在圆上,并过圆心的线段叫直径,用d 表示。
圆有无数条半径,无数条直径,所有的半径都相等,所有的直径也都相等 ,在同圆或
等圆中,直径是半径的2倍,字母关系式为2d r =。
或半径是直径的一半,字母关系式为12r d =。
圆规两脚尖所叉开的距离为圆的半径。
在圆内最长的线段是直径。
将一张圆形纸片至少
对折2次,就能确定圆心的位置 。
圆是轴对称图形,直径所在的直线是圆的对称轴。
圆有无数条对称轴。
圆心决定圆的位置,半径决定圆的大小。
(2)圆的周长(用C 来表示)
圆一周的长度就是圆的周长。
任何圆的周长除以它的直径的商是一个固定的数,我们把它叫做圆周率, 所以任何一个
圆的圆周率,都不随圆的大小而变化。
用字母π表示,计算时通常取3.14,注意π是一个固定值,而3.14是一个近似值。
公式:
==
÷圆的周长圆周率圆的周长圆的直径圆的直径。
圆的周长公式:C=πd 或 C=2πr 一个圆的周长是直径的π倍,是半径的2π倍。
(3)圆的面积(用S 来表示)
圆所占地方的大小就是圆的面积。
把一个圆,经若干等分后,再拼成一个近似的长方形:
长方形的长 = 圆周长的一半 = πr ,长方形的宽=半径= r 。
长方形的面积= πr 2
即圆的面积
圆的面积公式: S=πr 2
(4)半圆的周长和面积
将一个圆沿着任何一条直径剪开分成两个相同的半圆,其中的一个就叫做半圆。
半圆是
由一条半圆弧和一条直径围成。
那么 半圆
C 半圆的周长公式:C =22d d r r ππ+=+半圆 半圆C 半圆的面积公式:2=2
C r π÷半圆 (5)圆环的周长和面积
两个同心圆形成一个圆环。
设小圆和大圆(或内圆和外圆)的半径和直径分别为r 和R 。
(R ﹥r )
圆环的周长:
=22C r R ππ+圆环 圆环的面积:()
2222=R -R S r r πππ=-圆环 (6)圆的相关结论
一个圆的半径扩大若干倍,则它的直径也扩大相同的倍数,周长也扩大相同
的倍数,而面积扩大倍数的平方倍。
在周长相等的长方形,正方形和圆中,( 圆 )的面积大一些。
1 3.14π=
2 6.28π= 39.42π= 412.56π= 515.7π=
618.84?π= 721.98π=
825.12π= 9π=28.26 10 3.14π= 211121= 212144= 213169= 214196= 215225=
216256= 217189= 218324= 219361=
2、典型例题
例1、画圆时,圆规两脚之间的距离为4cm ,那么这个圆的直径是( )cm ,周长是( )cm ,面积是( )平方厘米。
点评:考察圆的基本要素半径、直径、周长、面积之间的相互转化。
跟踪例1、一个圆形花坛的周长是25.12米,这个花坛的直径是()米,半径是()米,面积是()米²。
例2、试求出这个图形的周长和面积
6dm
4dm
点评:组合图形的周长和面积可以通过计算基本图形的周长和面积来得到。
跟踪例2、计算出下列图中阴影部分的面积和周长
例3、一个圆环,外圆半径是8厘米,内圆半径是3厘米,圆环面积是()平方厘米,周长是()厘米。
点评:圆环的面积:
()
2222
=R-R
S r r
πππ
=-
圆环
跟踪例3、一个圆环,面积是34.54平方米,内圆半径是5米,求外圆直径。
例4、一个半圆形舞台的周长是41.12米,你能求出它的直径和面积各是多少吗?
点评:千万注意半圆的周长是由一段半圆弧和一条直径组成,计算时不能遗漏。
跟踪例4、一个半圆形舞台的面积是14.13平方米,求它的半径和面积。
例5、一个圆形的桌面,直径为70厘米,现在要在桌面上安放一个同样大小的玻璃,求这个桌面玻璃的面积。
如果玻璃每平方米价格为110元,这个玻璃要花多少钱?
点评:圆的知识在实际生活中的应用。
跟踪例5、在一个直径为18米的圆形草地周围铺一条宽4米的环形道路,求这
条环形路的面积是多少? 如果道路每平方米需要的铺地价格是110元,完成这件
事需要多少钱?
3、典型例题
一、填空。
1、从圆心到圆上任意一点的线段叫()。
通过()并且()都在()的线段叫()。
圆的位置由()确定,圆的大小决定于圆的()长短。
2、在同一个圆里,所有的()都相等,所有的()都相等。
直径等于半径的()倍。
3、圆是()图形,它有()条对称轴。
正方形有()条对称轴,长方形有()条对称轴,等边三角形有()条对称轴。
4、圆周率表示同一圆内()和()的倍数关系,它用字母()表示,保留两位小数后的近似值是()。
5、在同一个圆内可以画()直径;如果用圆规画一个直径是10CM的圆,圆规两脚间的距离是()厘米。
6、画圆时,圆规两脚间的距离是4CM,那么这个圆的周长是()CM,面积是()平方厘米。
7、在长6厘米,宽4厘米的长方形内画一个最大的圆,那么这个圆的周长是()CM,面积是()平方厘米。
还剩()平方厘米。
8、一辆汽车的车轮半径是0.5米,它滚动一周前进()米。
9、一根长12.56米的绳子把一个圆刚好可以绕10圈,这个圆的直径大约是()米。
10、大圆的半径等于小圆直径,则大圆面积是小圆面积的()倍,小圆周长是大圆周长的()。
11、一个圆形花坛的周长是25.12米,这个花坛的直径是()米。
12、一个圆环外圆半径是6分米,内圆半径是4分米,圆环的面积是()。
二、判断题。
1、圆的周长是它直径的∏倍。
()
2、半径为一厘米的圆的周长是
3.14 。
()
3、一个圆的周长是12.56厘米,面积是12.56平方厘米。
()
4、车轮滚动一圈,求路程就是求车轮直径的长度。
()
5、当长方形、正方形、圆的周长相等时,圆的面积最大。
()
6、圆的半径都相等,直径都相等。
()
7、半圆的周长就是圆周长的一半。
()
8、圆周率就是圆的周长与直径的比值。
()
9、圆周率=3.14。
()
10、大圆的圆周率比小圆的圆周率大。
()
三、画一画。
1、以O为圆心画一个直径为4厘米的圆。
2、在正方形内画一个最大的圆。
3、画出下列图形的所有的对称轴。
四、计算下列各圆的面积。
5分
1、半径是8CM。
2、周长是9.42米
五、计算下列各圆的周长。
4分
1、直径是6厘米。
2、半径是5分米。
六、观察并计算。
(单位:cm)6分
1、求下面图中阴影部分的面积。
正方形边长为12。
2、求下面阴影部分的周长。
大圆直径是8,小圆直径是6。
七、应用题:每题4分,共32分。
1、一种压路机的前轮直径是1.5米,每分钟转8圈,压路机每分钟前进多少米?
2、一个圆形养鱼池,直径是4米,这个养鱼池的周长是多少米?占地面积是多少平方米?
3、一辆自行车的前轮半径是40厘米,车轮每分钟转100圈,要通过2512米的桥,大约需要几分钟?
4、一根铁丝可以围成一个半径是3厘米的半圆,这根铁丝有多长?它所围成的半圆的面积有多大?
5、用席子围成一个地面周长是18.84米的圆柱形粮囤。
这个粮囤占地面积有多大?
6、一个圆的半径是2米,如果把这个圆的半径增加1米,那么它的面积增加多少平方米?
7、一块正方形草地,边长8米。
用一根长3.5米的绳拴住一只羊到草地上吃草,羊最多能吃到多少面积的草?
8、一个铁环直径60厘米,从操场东端沿直线滚到西端转了90圈,另一个铁环的直径是40厘米,它从操场东端沿直线滚到西端要转多少圈?。