精品 九年级数学 反比例函数同步讲义+同步综合练习
精品 九年级数学下册 反比例函数综合练习题

(3)过原点 O 的另一条直线 l 交双曲线 y
顶点组成的四边形面积为 24,求点 P 的坐标.
14.如图,点 A(m,m+1) ,B(m+3,m-1)都在反比例函数 y
k (k 0) 的图象上. x
(1)求 m,k 的值; (2)如果 M 为 x 轴上一点,N 为 y 轴上一点, 以点 A,B,M,N 为顶点的四边形 是平行四边形,试求直线 MN 的函数表达式.
3 的图象交点依次为 Q1 ( x1 ' , y1 ' ) 、 Q2 ( x 2 ' , y 2 ' ) 、 …、 x
5.如图,在 x 轴的正半轴上依次截取 OA1 A1 A2 A2 A3 A3 A4 A4 A5 ,过点 A1、A2、A3、A4、A5 分 别作 x 轴的垂线与反比例函数 y
2 x 0 的 图 象 相 交 于 点 P1、P2、P3、P4、P5 , 得 直 角 三 角 形 x
OP 并设其面积分别为 S1、S 2、S3、S 4、S5, 则 S5 的值为 1A 1、A 1P 2 A2、A2 P 3 A3、A3 P 4 A4、A4 P 5 A5,
6.已知反比例函数 y
12 的图象和一次函数 y=kx—7 的图象都经过点 P(m,2). x (1)求这个一次函数的解析式; (2)如果等腰梯形 ABCD 的顶点 A、B 在这个一次函数的图象上,顶点 C、D 在这个反比例函数的图象上, 两底 AD、BC 与 y 轴平行,且 A 和 B 的横坐标分别为 a 和 a+2,求 a 的值.
k ( x 0) 在第一象限内的交点面积为 R,与 x 轴的交点为 P, x
与 y 轴的交点为 Q;作 RM⊥x 轴于点 M,若△OPQ 与△PRM 的面积是 4:1,则 k=
北师大版九年级数学上册第六章《反比例函数》6.3反比例函数的应用同步练习(典型题含讲解)

6.3反比例函数的应用同步练习1.会根据实际问题中变量之间的关系,建立反比例函数模型;(重点)2.能利用反比例函数解决实际问题.(难点)一、情景导入我们都知道,气球内可以充满一定质量的气体.如果在温度不变的情况下,气球内气体的气压p(kPa)与气体体积V(m3)之间有怎样的关系?你想知道气球在什么条件下会爆炸吗?二、合作探究探究点一:实际问题与反比例函数做拉面的过程中,渗透着反比例函数的知识.一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示:(1)写出y与S之间的函数表达式;(2)当面条的横截面积为1.6mm2时,面条的总长度是多少米?(3)要使面条的横截面积不多于1.28mm2,面条的总长度至少是多少米?解析:由题意可设y与S之间的函数表达式为y=kS,而P(32,4)为函数图象上一点,所以把对应的S,y的值代入函数表达式即可求出比例系数,从而得出反比例函数的表达式,最后根据反比例函数的图象和性质解题.解:(1)由题意可设y与S之间的函数关系式为y=kS.∵点P(4,32)在图象上,∴32=k4,∴k=128.∴y 与S 之间的函数表达式为y =128S (S >0);(2)把S =1.6代入y =128S 中,得y =1281.6=80.∴当面条的横截面积为1.6mm 2时,面条的总长度是80m ; (3)把S =1.28代入y =128S,得y =100.由图象可知,要使面条的横截面积不多于1.28mm 2,面条的总长度至少应为100m. 方法总结:解决实际问题的关键是认真阅读,理解题意,明确基本数量关系(即题中的变量与常量之间的关系),抽象出实际问题中的反比例函数模型,由此建立反比例函数,再利用反比例函数的图象与性质解决问题.探究点二:反比例函数与其他学科知识的综合某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干木块,构筑成一条临时近道.木板对地面的压强p (Pa )是木板面积S (m 2)的反比例函数,其图象如图所示.(1)请直接写出这一函数表达式和自变量的取值范围; (2)当木板面积为0.2m 2时,压强是多少?(3)如果要求压强不超过6000Pa ,木板的面积至少要多大?解析:由于木板对地面的压强p (P a )是木板面积S (m 2)的反比例函数,而图象经过点A ,于是可以利用待定系数法求得反比例函数的关系式,进而可以进一步求解.解:(1)设木板对地面的压强p (Pa )与木板面积S (m 2)的反比例函数关系式为p =kS (S >0).因为反比例函数的图象经过点A (1.5,400),所以有k =600.所以反比例函数的关系式为p =600S(S >0);(2)当S =0.2时,p =6000.2=3000,即压强是3000Pa ;(3)由题意知600S≤6000,所以S ≥0.1,即木板面积至少要有0.1m 2.方法总结:本题渗透了物理学中压强、压力与受力面积之间的关系p =错误!,当压力F 一定时,p 与S 成反比例.另外,利用反比例函数的知识解决实际问题时,要善于发现实际问题中变量之间的关系,从而进一步建立反比例函数模型.三、板书设计反比例函数的应用⎩⎨⎧实际问题与反比例函数反比例函数与其他学科知识的综合经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程,提高运用代数方法解决问题的能力,体会数学与现实生活的紧密联系,增强应用意识.通过反比例函数在其他学科中的运用,体验学科整合思想.6.3 反比例函数的应用教学目标:(一)教学知识点1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程.2.体会数学与现实生活的紧密联系,增强应用意识.提高运用代数方法解决问题的能力(二)能力训练要求通过对反比例函数的应用,培养学生解决问题的能力.(三)情感与价值观要求经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题。
北师大版九年级数学上册 6 1 反比例函数同步练习 (含答案)

北师版九上 6.1 反比例函数一、选择题(共9小题)1. 下列关系式中,y是x的反比例函数的是( )A. y=5xB. yx =3 C. y=−1xD. y=x2−32. 下列函数:①y=x−2,②y=3x ,③y=x−1,④y=2x+1,其中,y是x的反比例函数的个数是( )A. 0B. 1C. 2D. 33. 下列函数是y关于x的反比例函数的是( )A. y=1x+1B. y=1x2C. y=−12xD. y=−x24. 下列关系中,两个量之间为反比例函数关系的是( )A. 正方形的面积S与边长a的关系B. 正方形的周长C与边长a的关系C. 矩形的长为a,宽为20,其面积S与a的关系D. 矩形的面积为40,其长a与宽b之间的关系5. 下列关系式中,不是y关于x的反比例函数的是( )A. xy=2B. y=5x8C. x=57yD. x=5y−36. 下列函数中,y是x的反比例函数的是( )A. y=34x B. y=12x2 C. y=13x D. y=1x27. 函数y=(k2−▫)x k2+k−1是反比例函数,“▫”处在印刷时被油墨盖住了,若要保证k的值有两个,则“▫”处的数字不能是( )A. 1,0B. −1,0C. 2,1D. 2,08. 当k=−1时,下列函数是反比例函数的是( )A. y=k+1xB. y=(k2+k)x−∣k∣C. y=−kx−1D. y=(k−1)x9. 在函数y=−2(m+1)x−m中,y是x的反比例函数,则比例系数为( )A. −2B. 2C. −4D. 0二、填空题(共5小题)的比例系数为.10. 反比例函数y=18x11. 下列函数中,如果是反比例函数,就在括号里打“√”,并写出比例系数k的值;否则打“×”..()(1)y=1x.()(2)y=−2x+1.()(3)y=1xx.()(4)y=32.()(5)y=2x−1.()(6)y=35x12. 若函数y=x m−2是y关于x的反比例函数,则m的值为.+(k2−2k)是反比函数,则k=.13. 如果y=k−2x14. 如果函数y=(m−1)x m2−2是反比例函数,那么m的值是.三、解答题(共4小题)15. 在下列函数关系式中,x均表示自变量,那么哪些是关于x的反比例函数?若是反比例函数,相应的比例系数k是多少?(1)y=5;2x;(2)y=x2(3)xy=2;(4)y=7x−1;.(5)y=0.4x−116. 写出下列问题中两个变量之间的函数表达式,并判断其是不是反比例函数.(1)底边为3cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)一艘轮船从相距200km的甲地驶往乙地,轮船的速度v(km/h)与航行时间t(h)的关系;(3)在检修100m长的管道时,每天能完成10m,剩下的未检修的管道长y(m)随检修天数x的变化而变化.17. 在下列关系式中,x均为自变量,哪些是反比例函数?每一个反比例函数相应的k值是多少?(1)y=5;x(2)y=0.4x−1;;(3)y=x2(4)xy=2;(5)y=6x+3;(6)xy=−7;;(7)y=5x2x.(8)y=15,求a的值,并确定函数解析式.18. 已知y关于x的反比例函数的解析式为y=a+3x∣a∣−2答案1. C【解析】y=5x是一次函数;yx=3可化为y=3x(x≠0),是一次函数;y=−1x是反比例函数;y=x2−3是二次函数.2. C【解析】②③是反比例函数.3. C【解析】A.y=1x+1,是y与x+1成反比例函数,故此选项不合题意;B.y=1x2,是y与x2成反比例,故此选项不合题意;C.y=−12x,符合反比例函数的定义,故此选项符合题意;D.y=−x2是正比例函数,故此选项不合题意.故选C.4. D【解析】A.S=a2,S是a的二次函数;B.C=4a,C是a的正比例函数;C.S=20a,S是a的正比例函数;D.a=40b,故a与b是反比例函数关系.5. B【解析】A选项、C选项、D选项:反比例函数的形式有:y=kx(k≠0,x≠0),变形:xy=k(k≠0),y=kx−1(k≠0,x≠0),故ACD正确;B选项:y=5x8是一次函数,故B错误.6. A【解析】y=34x 可化为y=34x,是反比例函数,符合题意;y=12x2,y=13x,y=1x2都不是反比例函数.故选A.7. A【解析】由题意得k2+k−1=−1,解得k1=0,k2=−1,又∵系数不为0,∴k2−▫≠0,∴k 2≠▫,∵k 的值有两个,∴▫≠0,▫≠1.8. C【解析】A 中,当 k =−1 时,k +1=0,此时 y =k+1x 不是反比例函数;B 中,当 k =−1 时,−∣k ∣=−1,k 2+k =0,此时 y =(k 2+k )x −∣k∣ 不是反比例函数;C 中,当 k =−1 时,函数 y =−kx −1 为 y =1x ,是反比例函数;D 中,当 k =−1 时,函数 y =(k −1)x 为 y =−2x ,不是反比例函数.9. C【解析】由题意得 m =1,则比例系数为 −2×(1+1)=−4.故选C .10. 18【解析】∵y =18x =18x ,∴ 反比例函数 y =18x 的比例系数是 18. 11. √,1,√,−2,×,×,×,√,3512. 1【解析】∵ 函数 y =x m−2 是 y 关于 x 的反比例函数,∴m −2=−1,解得:m =1.13. 0【解析】由题意得:{k −2≠0,k 2−2k =0,解得 k =0,故答案为:0.14. −1【解析】根据题意 m 2−2=−1,m =±1,又 m −1≠0,m ≠1,所以 m =−1.15. (1)y=52x 是反比例函数,k=52.(2)y=x2不是反比例函数.(3)xy=2是反比例函数,k=2.(4)y=7x−1是反比例函数,k=7.(5)y=0.4x−1不是反比例函数.16. (1)根据三角形的面积公式可得y=32x,所以不是反比例函数.(2)因为vt=200,所以两个变量之间的函数表达式为v=200t,是反比例函数.(3)因为y+10x=100,所以两个变量之间的函数表达式为y=100−10x,不是反比例函数.17. (1)(2)(4)(6)是反比例函数,相应的k值分别是5,0.4,2,−7.18. 由反比例函数的解析式y=a+3x∣a∣−2得{∣a∣−2=1,a+3≠0,解得a=3.故函数解析式为y=6x.。
中考数学《反比例函数》专项复习综合练习题-附含答案

中考数学《反比例函数》专项复习综合练习题-附含答案一、单选题1.已知反比例函数y=- 12x,则()A.y随x的增大而增大B.当x>-3且x≠0时,y>4C.图象位于一、三象限D.当y<-3时,0<x<42.甲、乙、丙三位同学分别正确指出了某一个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:每第一个象限内 y值随x值的增大而减小.根据他们的描述这个函数表达式可能是()A.y=2x B.y= 2x C.y=﹣1xD.y=2x23.反比例函数y=kx(k>0)在第一象限内的图象如图,点M是图象上一点 MP垂直x轴于点P 如果△MOP 的面积为1 那么k的值是( )A.1 B.2 C.4 D.√24.如图,反比例函数y=kx(x<0)交边长为10的等边△ OAB的两边于C、D两点,OC=3BD,则k的值()A.−9√3B.9√3C.-10√3D.10√35.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y= a+b+cx在同一坐标系内的图象大致为()A.B.C.D.√3 6.如图,点D是▱OABC内一点,AD与x轴平行,BD与y轴平行,BD=√3∠BDC=120°S△BCD=92 (x<0)的图象经过C、D两点,则k的值是()若反比例函数y=kxA.−6√3B.-6 C.−12√3D.-127.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=1(x<0)图象上一点,AO的延长x(x>0 k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x 线交函数y=k2x轴的对称点为C′,交于x轴于点B 连结AB AA′、 A′C′.若△ABC的面积等于6,则由线段AC CC′C′A′ A′A所围成的图形的面积等于()A.8 B.10 C.3√10D.4√68.如图,反比例函数y=kx与一次函数y=kx﹣k+2在同一直角坐标系中的图象相交于A B两点其中A(﹣1 3)直线y=kx﹣k+2与坐标轴分别交于C D两点下列说法:①k<0;②点B的坐标为(3 ﹣1);③当x<﹣1时kx <kx﹣k+2;④tan∠OCD=﹣1k其中正确的是()A.①③B.①②④C.①③④D.①②③④二、填空题9.已知反比例函数y=﹣2x若y≤1,则自变量x的取值范围是.10.在平面直角坐标系中若一条平行于x轴的直线l分别交双曲线y=﹣6x 和y= 2x于A B两点 P是x轴上的任意一点,则△ABP的面积等于11.如图,在平面直角坐标系中正方形ABCD的面积为20 顶点A在y轴上顶点C在x轴上顶点D在双曲线y=kx(x>0)的图象上边CD交y轴于点E 若CE=ED,则k的值为.12.如图,点 P 是反比例函数图象上的一点 过点 P 向 x 轴作垂线 垂足为 M 连结 PO 若阴影部分面积为 6 ,则这个反比例函数的关系式是 .13.如图,已知A ( 12 y 1) B (2 y 2)为反比例函数y = 1x 图象上的两点 动点P (x 0)在x 轴正半轴上运动 当线段AP 与线段BP 之差达到最大时 点P 的坐标是 .三、解答题14.如图,反比例函数y =kx (x >0)的图像分别交正方形OABC 的边AB 、BC 于点D 、E 若A 点坐标为(1,0) 若△ODE 是等边三角形 求k 的值.15.某水果生产基地在气温较低时 用装有恒温系统的大棚栽培一种新品种水果 如图是试验阶段的某天恒温系统从开启到关闭后 大棚内的温度y(℃)与时间x(ℎ)之间的函数关系 其中线段AB 、BC 表示恒温系统开启后阶段 双曲线的一部分CD 表示恒温系统关闭阶段........... 请根据图中信息解答下列问题:(1)这个恒温系统设定的恒定温度为多少℃;(2)求全天的温度y(℃)与时间x(ℎ)之间的函数表达式;(3)若大棚内的温度低于10℃时 蔬菜会受到伤害.问:这天内恒温系统最多可以关闭多少小时 才能避免水果生长受到影响?16.如图,已知点A在反比函数y=kx(k<0)的图象上点B在直线y=x−3的图象上点B的纵坐标为-1 AB⊥x轴且S△OAB=4.(1)求点A的坐标和k的值;(2)若点P在反比例函数y=kx(k<0)的图象上点Q在直线y=x−3的图象上P、Q两点关于y轴对称设点P的坐标为(m,n)求nm +mn的值.17.如图,点A在反比例函数y=kx(x>0)的图象上AB⊥x轴于点B AB的垂直平分线PD交双曲线与点P.(1)若点A的坐标为(1 8),则点P的坐标为.(2)若AP⊥BP点A的横坐标为m.①求k与m之间的关系式;②连接OA OP若△AOP的面积为6 求k的值.18.如图,一次函数y=k1x+b与反比例函数y=k2x的图象交于A(2 m) B(n ﹣2)两点.过点B作BC⊥x轴垂足为C 且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件请直接写出不等式k1x+b>k2x的解集;(3)若P(p y1) Q(﹣2 y2)是函数y=k2x 图象上的两点且y1≥y2求实数p的取值范围.答案1.D 2.B 3.B 4.A 5.D 6.C 7.B 8.C9.x ≤﹣2或x >0 10.4 11.4 12.y =−12x 13.(52, 0)14.解:由题意可得△OAD ≅△OCE 设AD =x ,则:DB =EB =1−x 因为OD 2=x 2+1 且△ODE 是等边三角形所以 x 2+1=(1−x)2+(1−x)2 x 1=2+√3 x 2=2−√3 2+√3>1舍去 所以x =2−√3则K =1∗(2−√3)=2−√315.(1)解:设线段AB 表达式为y =kx +b(k ≠0) ∵线段AB 过点(0,10) (2,14)∴{b =102k +b =14解得{b =10k =2∴线段AB 的表达式为:y =2x +10(0≤x ≤5) 当x =5时 y =2×5+10=20 ∴恒定温度为:20℃; (2)解:由(1)可知:线段AB 的表达式为:y =2x +10(0≤x ≤5) B 坐标为(5,20) ∴根据图象可知线段BC 的表达式为:y =20(5<x ≤10)设双曲线CD 解析式为:y =m x(m ≠0)∵C(10,20)∴可得:m10=20 解得:m =200∴双曲线CD 的解析式为:y =200x(10<x ≤24)∴y 关于x 的函数表达式为:y ={2x +10(0≤x ≤5)20(5<x ≤10)200x (10<x ≤24);(3)解:把y =10代入y =200x中得10=200x解得:x =20∴20−10=10(小时)∴恒温系统最多可以关闭10小时. 16.(1)解:由题意B(2,−1)∵12×2×AB =4 ∴AB =4∵AB//y 轴∴A(2,−5)∵A(2,−5)在y =kx 的图象上 ∴k =−10.(2)解:设P(m ,−10m ),则Q(−m ,−10m ) ∵点Q 在y =x −3上∴−10m=−m −3 整理得:m 2+3m −10=0 解得m =−5或2 当m =−5 n =2时 n m +m n =−2910 当m =2 n =−5时 nm +m n=−2910故n m +m n=−2910.17.(1)(2 4)(2)解:①由题意得 点A 的纵坐标为km 即AB =km ∵PD 垂直平分AB ∴PA =PB ∵AP ⊥BP∴△PAB 是等腰直角三角形 ∴∠PAB =∠PBA =45° ∵PD ⊥AB∴△DAP 和△DBP 是等腰直角三角形 ∴DA =DB =DP =k2m ∴P (m +k2m ,k 2m )将P (m +k2m ,k2m )代入y =kx 可得:(m +k2m )⋅k2m =k 整理得:k =2m 2;②过点P 作PC ⊥x 轴于点C ,则四边形PABC 是梯形∵S △AOB =S △POC =k2 ∴S △AOE =S 四边形PEBC ∴S △AOP =S 梯形PABC =6 ∴(k 2m +k m )⋅k2m2=6 整理得:k 2=16m 2∵k =2m 2 ∴k 2=8k解得:k =8或k =0(舍去) ∴k =8.18.(1)把 A(2,m) B(n ,−2) 代入 y =k 2x得: k 2=2m =−2n即m=−n则A(2,−n)过A作AE⊥x轴于E过B作BF⊥y轴于F延长AE、BF交于D ∵A(2,−n)B(n,−2)∴BD=2−n AD=−n+2BC=|−2|=2∵SΔABC=12·BC·BD∴12×2×(2−n)=5解得:n=−3即A(2,3)B(−3,−2)把A(2,3)代入y=k2x得:k2=6即反比例函数的解析式是y=6x;把A(2,3)B(−3,−2)代入y=k1x+b得:{3=2k1+b−2=−3k1+b解得:k1=1b=1即一次函数的解析式是y=x+1;(2)∵A(2,3)B(−3,−2)∴不等式k1x+b>k2x的解集是−3<x<0或x>2;(3)分为两种情况:当点P在第三象限时要使y1⩾y2实数p的取值范围是p⩽−2当点P在第一象限时要使y1⩾y2实数p的取值范围是p>0即P的取值范围是p⩽−2或p>0。
北师大版九年级数学上册《6.1反比例函数》同步测试题及答案

北师大版九年级数学上册《6.1反比例函数》同步测试题及答案一、单选题1.下列函数:①y=x−2,②y=3x ,③y=x−1,④y=2x+1,⑤xy=11,⑥y=kx,⑦y=5x2,⑧yx=1.其中y是x的反比例函数的有()A.1个B.2个C.3个D.4个2.下列问题中,两个变量成反比例的是()A.商一定时(不为零),被除数与除数;B.等腰三角形周长一定时,它的腰长与它底边的长;C.一个因数(不为零)不变时,另一个因数与它们的积;D.货物的总价A一定时,货物的单价a与货物的数量x.3.当x=−3时,反比例函数y=−12x的函数值为()A.−14B.4C.−4D.144.下列各点在反比例函数y=−8x的图象上的是()A.(−2,−4)B.(2,4)C.(13,24)D.(−12,16)5.若一个反比例函数的图象经过A(2,−4)、B(m,−2)两点,则m的值为()A.−4B.4C.8D.−86.如果点A(a,−b)在反比例函数y=2x的图象上,则代数式ab−4的值为()A.0B.−2C.2D.−67.已知点A(3,m)和点B(n,2)关于x轴对称,则下列各点不在反比例函数y=mnx的图象上的点是()A.(3,−2)B.(−3,2)C.(−1,−6)D.(−1,6)8.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x、小明掷B立方体朝上的数字为y来确定点P(x,y),那么他们各掷一次所确定的点P落在双曲线y=6x上的概率为()A.19B.23C.118D.16二、填空题9.已知反比例函数y=−8x的图像经过(−2,m),则m=10.已知反比例函数y=8x的图象经过点A(m,−2),则A关于原点对称点A′坐标为.11.已知y与x-2成反比例,且比例系数为k≠0,若x=3时,y=4,则k=.12.已知y−3与x+2成反比例,且x=2时y=7,则当y=1时,x的值为13.已知点A(x1,y1),B(x2,y2)都在反比例函数y=4x的图象上.若x1⋅x2=−2,则y1⋅y2的值为.14.点A(x1,y1),B(x2,y2)在反比例函数y=kx(k≠0)的图象上,若x1+x2=0,则y1+y2=.15.已知点P(a,b)是反比例函数y=1x 图像上异于点(-1,-1)的一个动点,则21+a+21+b=.16.如图,平面直角坐标系中,若反比例函数y=kx(k≠0)的图象过点A和点B,则a的值为.三、解答题17.已知y=(a−2)x a2−a−1,当a为何值时,y为x的正比例函数?当a为何值时,y为x的反比例函数?18.写出下列问题中的函数关系式,并指出其比例系数.(1)当圆锥的体积是150cm³时,它的高ℎ(cm)与底面积S(cm²)的函数关系式;(2)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系式;(3)某实验中学八(2)班同学为校运动会制作小红花1000朵,完成的天数y与该班同学每天制作的数量x 之间的函数关系式;(4)某商场推出分期付款购买电脑的活动,一台电脑售价1.2万元,首期付款4千元后,分x次付清,每次付款相同. 每次的付款数y(元)与付款次数x的函数关系式.19.已知反比例函数y=−12x.(1)说出这个函数的比例系数和自变量的取值范围.(2)求当x=−3时函数的值.(3)求当y=−√3时自变量x的值.20.已知函数y=y1+y2,其中y1与x成正比例,y2与x−3成反比例,当x=2时y=16;当x=4时,y=20.求:(1)y关于x的函数解析式及定义域;(2)当x=5时的函数值.21.已知y−3与x+1成反比例关系,且当x=2时y=1.(1)求y与x的函数表达式.)是否在该函数图象上,并说明理由.(2)试判断点B(3,−1222.在面积为定值的一组矩形中,当矩形的一边长为7.5cm时,它的另一边长为8cm.(1)设矩形相邻的两边长分别为x(cm),y(cm),求y关于x的函数表达式.这个函数是反比例函数吗?如果是,指出比例系数.(2)若其中一个矩形的一条边长为5cm,求这个矩形与之相邻的另一边长.23.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(t>4)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案:题号 1 2 3 4 5 6 7 8答案 C D B D B D C A(k≠0),xy=k(k≠0),y=kx−1(k≠0).1.解:反比例的三种形式分别为:y=kx①中x的次数是1,是一次函数,不是反比例函数;②,③是反比例函数;④中分母是x+1,故不是反比例函数;⑤是反比例函数;⑥中没有k≠0,故不是反比例函数;⑦分母是x2,故不是反比例函数;⑧中x的次数是1,是一次函数,不是反比例函数.故有三个是反比例函数.故选C.2.解:A、商一定时(不为零),被除数和除数成正比例关系,故A错误;B、等腰三角形周长一定时,它的腰长与它底边的长成一次函数关系;故B错误;C 、一个因数(不为零)不变时,另一个因数与它们的积成正比例关系;故C 错误;D 、货物的总价A 一定时,货物的单价a 与货物的数量x 成反比例关系;故D 正确. 故选D3.解:当x =−3时 故选:B .4.解:A.当x =−2时y =−8−2=4,故该点不在反比例函数y =−8x图象上;B. 当x =2时y =−82=−4,故该点不在反比例函数y =−8x 图象上; C. 当x =13时y =−813=−24,故该点不在反比例函数y =−8x 图象上;D. 当x =−12时y =−8−12=16,故该点在反比例函数y =−8x 图象上;故选:D .5.解:设反比例函数的表达式为y =kx(k ≠0)∵反比例函数的图象经过A(2,−4)、B(m ,−2)两点 ∵k =2×(−4)=−2m 解得:m =4 故选:B .6.解:∵点A(a ,−b)在反比例函数y =2x 的图象上 ∵−b =2a ∵ab =−2∵ab −4=−2−4=−6 故选D .7.解:∵点A (3,m )和点B (n,2)关于x 轴对称 ∵{m =−2n =3∵反比例函数解析式为y =mn x=−6x∵在反比例函数图象上的点一定满足横纵坐标的乘积为−6 ∵四个选项中只有C 选项符合题意 故选C .8.解:表格列示所有投掷情况如下小明小莉12345611,11,21,31,41,51,622,12,22,32,42,52,633,13,23,33,43,53,644,14,24,34,44,54,655,15,25,35,45,55,666,16,26,36,46,56,6点P若落在y=6x上,则xy=6.如上表,两人掷的组合情况共有6×6=36种,其中满足要求的有4种:2,3;3,2;1,6;6,1,故概率为436=19;故选:A9.解:把(−2,m)代入y=−8x即m=−8−2=4故答案为:4.10.解:∵反比例函数y=8x的图象经过点A(m,−2)∵−2m=8解得m=−4∴A(−4,−2)则A关于原点对称点A′(4,2)故答案为:(4,2).11.解:由题意知k=y(x-2)∵x=3时,y=4∵k=4×(3-2)=4.故答案为:412.解:∵y −3与x +2成反比例 ∵可设:y −3=k x+2(k ≠0)又∵x =2,y =7 ∵7−3=k 2+2解之得:k =16 ∵得:y −3=16x+2,即:y =16x+2+3∵当y =1时得:1=16x+2+3 解之得:x =−10 故答案为:−10.13.解:∵点A (x 1,y 1),B (x 2,y 2)都在反比例函数y =4x 的图象上∴x 1y 1=4,x 2y 2=4 ∴x 1y 1x 2y 2=16且x 1⋅x 2=−2 ∴y 1⋅y 2=−8. 故答案为:−8.14.解:∵点A(x 1,y 1),B(x 2,y 2)在反比例函数y =k x (k ≠0)的图象上 ∵y 1=k x 1,y 2=k x 2∵y 1+y 2=kx 1+kx 2=k(x 1+x 2)x 1x 2.∵x 1+x 2=0 ∵k(x 1+x 2)x 1x 2=0,即y 1+y 2=0.故答案为:0.15.解:∵点P(a,b)是反比例函数y =1x 图象上异于点(−1,−1)的一个动点∴ab =1∴ 21+a +21+b =2(1+b)(1+a)(1+b)+2(1+a)(1+a)(1+b)=2(1+b+1+a)1+b+a+ab=2(2+a+b)2+a+b=2.故答案为2.16.解:依题意,将点A (1,−3)代入y =kx ,得出k =−3∵反比例数解析式为y =−3x当x =−2时y =32即a =32 故答案为:32.17.解:当y 为x 的正比例函数时{a −2≠0a 2−a −1=1解得:a =−1.所以:当a =−1时,y 为x 的正比例函数. 当y 为x 的反比例函数时{a −2≠0a 2−a −1=−1解得:a =0或a =1.所以:当a =0或a =1时,y 为x 的反比例函数. 18.解:(1)∵hS=450,∵ℎ=450S,∵比例系数为450.(2)∵Fs=W ,∵F =W s,∵比例系数为W . (3)∵xy=1000,∵y =1000x,∵比例系数为1000.(4)∵xy=12000-4000,∵y =8000x,∵比例系数为8000.19.(1)解:∵y =−12x∵k =−12,x ≠0;(2)解:把x =−3,代入y =−12x 得:y =−12−3=4; ∵当x =−3时函数的值为:4;(3)解:把y =−√3,代入y =−12x 得:−√3=−12x ,解得:x =4√3;∵当y =−√3时x 的值为:4√3.20.(1)解:∵ y 1与x 成正比例,y 2与x −3成反比例 ∴设y 1=ax(a ≠0)∴y =y 1+y 2=ax +bx −3∵当x =2时y =16;当x =4时∴{2a +b2−3=164a +b4−3=20解得:a =6∴y =6x −4x −3∵x −3≠0 ∴x ≠3∴y =6x −4x −3(x ≠3) (2)解:由(1)可知y =6x −4x−3,则当x =5时y =6×5−45−3=28. 21.(1)解:设y −3=k x+1∵当x =2时y =1 ∵1−3=k2+1 ∵k =−6 ∵y =−6x+1+3; (2)不在;理由如下: 当x =3时y =−63+1+3=32∵B (3,−12)不在该函数图象上.22.(1)解:设矩形的面积为Scm 2,则S =7.5×8=60 即xy =60,y =60x即y 关于x 的函数解析式是y =60x,这个函数是反比例函数,系数为60;(2)解:当x =5时y =60x=12故这个矩形与之相邻的另一边长为12cm . 23.解:(1)根据题意,得wt =1600 所以w =1600t(t >4);(2)当w=100时1600t=100,解得t=16.即服装厂需要16天能够完成任务.(3)当t=16−6=10时w=1600t =160010=160(件).160−100=60(件)即服装厂每天要多做60件夏凉小衫才能完成任务.。
北师大版九年级数学上册第六章反比例函数 6.1反比例函数同步练习及答案

1 反比例函数知识点 1 反比例函数的概念1.下列函数中,为反比例函数的是( ) A .y =-x3B .y =-1xC .y =8-3xD .y =-x 2+12.下列问题情景中的两个变量成反比例的是( )A .汽车沿一条公路从A 地驶往B 地所需的时间t 与平均速度v B .圆的周长l 与圆的半径rC .圆的面积S 与圆的半径rD .在电阻不变的情况下,电流强度I 与电压U3.在反比例函数y =2x中,自变量x 的取值范围是( )A .x =0B .x ≠0C .x =2D .任何实数 4.若函数y =x 2m -1为反比例函数,则m 的值是( )A .-1B .0 C.12D .1 5.有下列函数:①y =-5x ,②y =-25x ,③y =x2,④xy =2.其中,y 是x 的反比例函数的是________(填序号),它们的k 值分别是____________.知识点 2 反比例函数的表达式6.已知反比例函数y =k x ,当x =2时,y =-12,那么k 等于( )A .1B .-1C .-4D .-147.小华要看一部400页的小说,所需的天数y 是平均每天看的页数x 的________函数,表达式为________.8.下列各选项中所列举的两个变量之间的关系是反比例函数关系的是( ) A .直角三角形中,30°角所对的直角边y 与斜边x 之间的关系 B .等腰三角形中顶角与底角之间的关系 C .圆的面积S 与它的直径d 之间的关系D .面积为20 cm 2的菱形,其中一条对角线长y 与另一条对角线长x 之间的关系 9.函数y =m (m -3)x是反比例函数,则m 必须满足( ) A .m ≠3 B .m ≠0或m ≠3 C .m ≠0 D .m ≠0且m ≠310.已知y 是x 的反比例函数,下面表格给出了x 与y 的一些值,则“☆”和“¤”所表示的数分别为( )A.6,2 B .-6,2 C .6,-2 D .-6,-411.已知y 与2x +1成反比例,且当x =1时,y =2,那么当x =0时,y =________. 12.在温度不变的条件下,一定质量的气体的压强p 与它的体积V 成反比例,当V =200时,p =50,则当p =25时,V =________.13.列出下列问题中的函数关系式,并判断它们是不是反比例函数.(1)某农场的粮食总产量为1500 t ,则该农场人数y (人)与平均每人占有粮食量x (t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y (元)与加油量x (L)的函数关系式;(3)小明完成100 m 赛跑时,跑步所用时间t (s)与他跑步的平均速度v (m/s)之间的函数关系式.14.已知y 与x 成反比例,并且当x =12时,y =12.求:(1)反比例函数的表达式; (2)当x =3时y 的值; (3)当y =2时x 的值.15.在物理学中,压力F(牛顿)不变,压强p(牛顿/米2)与面积S(米2)成反比例,当面积S =5平方米时,压强p =2牛顿/米2.(1)求p 与S 之间的函数表达式;(2)当压强p =0.5牛顿/米2时,求面积S 的值.16.下表反映了x 与y 之间存在的某种函数关系,现给出了几种可能的函数表达式:y =x +7,y =x -5,y =-6x ,y =13x -1.(1)从所给出的几个式子中选出一个你认为满足上表要求的函数表达式:____________; (2)请说明你选择这个函数表达式的理由.17.将x =23代入反比例函数y =-1x 中,所得函数值记为y 1,又将x =y 1+1代入反比例函数y =-1x 中,所得函数值记为y 2,再把x =y 2+1代入反比例函数y =-1x 中,所得函数值记为y 3,…,如此继续下去,求y 2018的值.18.已知函数的表达式为y =1+10x .(1)在下表的两个空格中分别填入适当的数;(2)观察上表可知,当x 的值越来越大时,对应的y 值越来越接近于一个常数,这个常数是什么?详解1.B 2.A3.B [解析] 要使反比例函数y =2x 有意义,分母x ≠0,所以在反比例函数y =2x中,自变量x 的取值范围是x ≠0.故选B.4.B [解析] 因为函数y =x 2m -1为反比例函数,所以指数2m -1=-1,所以m =0.5.①②④ -5,-25,2[解析] 注意②的系数是-25,④要先化为一般形式.6.B [解析] ∵当x =2时,y =-12,∴-12=k2,∴k =-1.故选B.7.反比例 y =400x[解析] ∵总页数400一定,∴所需的天数y 是平均每天看的页数x 的反比例函数,表达式为y =400x.8.D 9.D10.D [解析] 因为y 是x 的反比例函数,观察图表可知,每对x ,y 的对应值的积是常数-2,所以“☆”所表示的数为-6,“¤”所表示的数为-4.11.6 12.[全品导学号:52652207]400 13.解:(1)由题意,得x =1500y ,即y =1500x,是反比例函数.(2)由单价乘油量等于总价,得y =4.75x ,不是反比例函数. (3)由路程与时间的关系,得t =100v,是反比例函数.14.[解析] 已知一对x ,y 的对应值,即可确定反比例函数的表达式,进而确定函数值. 解:(1)∵y 与x 成反比例, ∴设y =kx(k ≠0).∵当x =12时,y =12,∴12= k 12,∴k =6,∴y =6x .(2)把x =3代入y =6x ,得y =63=2 3.(3)把y =2代入y =6x ,得2=6x,∴x =3.15.解:(1)设p 与S 之间的函数表达式为p =F S.则2=F5,∴F =10(牛顿).∴p =10S.(2)当p =0.5牛顿/米2时,S =10p =100.5=20(米2).故面积S 的值为20平方米. 16.解:(1)y =-6x(2)∵xy =(-6)×1=(-5)×1.2=3×(-2)=4×(-1.5)=-6, ∴所给出的几个式子中只有y =-6x符合条件.17.解:由题意,知y 1=-1x =-123=-32,此时x =-32+1=-12;y 2=-1x =-1-12=2,此时x =2+1=3; y 3=-1x =-13,此时x =-13+1=23;y 4=-1x =-123=-32,此时x =-32+1=-12;y 5=-1x =-1-12=2,此时x =2+1=3; …可见每3个数为一个循环. 又∵2018=672×3+2, ∴y 2018=y 2=2.18.解:(1)当x =5时,y =3;当y =1.2时,x =50; 填写表格如下:(2)由上表可知,当x 的值越来越大时,对应的y 值越来越接近于常数1.。
北师大版九年级上册数学《反比例函数》综合练习题

《反比例函数》综合练习题一、选择题(共10小题)1.如图,点A 在反比例函数(0)ky k x=≠的图象上,过点A 作AB x ⊥轴于点B ,若OAB ∆的面积为3,则k 的值为( )A .6-B .6C .3-D .32.已知x 与y 成反比例,z 与x 成正比例,则y 与z 的关系是( ) A .成正比例B .成反比例C .既成正比例也成反比例D .以上都不是3.已知反比例函数(0)ky k x =≠,当21x --时,y 的最大值是3,则当6x 时,y 有()A .最大值12-B .最大值1-C .最小值12-D .最小值1-4.在同一坐标系中(水平方向是x 轴),函数ky x=和3y kx =+的图象大致是( ) A . B .C .D .5.点(2,5)A -在反比例函数(0)ky k x=≠的图象上,则k 的值是( )A .10B .5C .5-D .10-6.如图,边长为4的正方形ABCD 的对称中心是坐标原点O ,//AB x 轴,//BC y 轴,反比例函数2y x =与2y x=-的图象均与正方形ABCD 的边相交,则图中阴影部分的面积之和是( )A .2B .4C .6D .87.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压()P kPa 是气体体积3()V m 的反比例函数,其图象如图所示.当气球内的气压大于120kPa 时,气球将爆炸.为了安全起见,气球的体积应( )A .小于31.25mB .大于31.25mC .不小于30.8mD .大于30.8m8.已知水池的容量为50米3,每时灌水量为n 米3,灌满水所需时间为t (时),那么t 与n 之间的函数关系式是( ) A .50t n =B .50t n =-C .50t n=D .50t n =+9.如图,正比例函数11y k x =和反比例函数22k y x=的图象交于(1,2)A -、(1,2)B -两点,若12y y <,则x 的取值范围是( )A .1x <-或1x >B .1x <-或01x <<C .10x -<<或01x <<D .10x -<<或1x >10.如图,点P 在反比例函数1(0)y x x=>的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P '.则在第一象限内,经过点P '的反比例函数图象的解析式是( )A .5(0)y x x=->B .5(0)y x x=>C .6(0)y x x=->D .6(0)y x x=>二、填空题(共6小题)11.如图,在平面直角坐标系中,O 为坐标原点,ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将AOD ∆沿y 轴翻折,使点A 落在x 轴上的点E 处,点B 恰好为OE 的中点,DE 与BC 交于点F .若(0)ky k x=≠图象经过点C ,且1BEF S ∆=,则k 的值为 .12.已知A ,B 两点分别在反比例函数3(0)m y m x =≠和255()2m y m x -=≠的图象上,若点A 与点B 关于x 轴对称,则m 的值为 . 13.反比例函数22(21)my m x -=-,0x >时,y 随着x 的增大而增大,则m 的值是 .14.已知正比例函数2y x =-与反比例函数ky x=的图象的一个交点坐标为(1,2)-,则另一个交点的坐标为 .15.点P 在反比例函数(0)ky k x=≠的图象上,点(2,4)Q 与点P 关于y 轴对称,则反比例函数的解析式为 . 16.已知函数25(1)ky k x -=+是反比例函数,且正比例函数y kx =的图象经过第一、三象限,则k 的值为 .三、解答题(共8小题)17.如图,直线y x =和双曲线(0)ky k x=≠交于A ,B 两点,AE x ⊥轴,垂足为E ,射线AC AD ⊥,AC 交y 轴于点C ,AD 交x 轴于点D ,且四边形ACOD 的面积为1.(1)求双曲线ky x=的解析式. (2)求A ,B 两点的坐标.18.小明根据学习函数的经验,对函数1y x x=+的图象与性质进行了探究. 下面是小明的探究过程,请补充完整: (1)函数1y x x=+的自变量x 的取值范围是 . (2)下表列出了y 与x 的几组对应值,请写出m ,n 的值:m = ,n = ;(3)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)结合函数的图象,请完成: ①当174y =-时,x = . ②写出该函数的一条性质 . ③若方程1x t x+=有两个不相等的实数根,则t 的取值范围是 . 19.已知矩形ABCD 的长2AB =,AB 边与x 轴重合,双曲线ky x=在第一象限内经过D 点以及BC 的中点E . (1)求A 点的横坐标;(2)连接ED ,若四边形ABED 的面积为6,求双曲线的函数关系式.20.如图,A ,B 是反比例函数(0)ky k x=>图象上的两个点,AC x ⊥轴,垂足为点C ,BD y ⊥轴,垂足为点D ,连接AD ,AB ,BC .比较ADB ∆与ACB ∆面积的大小.21.如图,点(3,1)A -是反比例函数3(0)y x x =-<图象上的一点,过点A 作//AB x 轴,交反比例函数1(0)y x x=>的图象于点B ,P 是x 轴上的一个动点,若PAB ∆为等腰三角形,求点P 的坐标.22.下列函数表达式中的y 是x 的反比例函数吗?如果是,把它写成ky x=的形式,并指出k 的值. (1)4xy =;(2)5x y=-23.在同一个平面直角坐标系中画出函数3y x =与3y x=-的图象.24.写出函数解析式表示下列关系,并指出它们各是什么函数: (1)体积是常数V 时,圆柱的底面积S 与高h 的关系;(2)柳树乡共有耕地面积S (单位:2)hm ,该乡人均耕地面积y (单位:2/hm 人)与全乡总人口x 的关系.参考答案一、选择题 1.【解答】解:根据题意可知:1||32AOB S k ∆==, 又反比例函数的图象位于第二象限,0k <, 则6k =-. 故选:A . 2.【解答】解:x 与y 成反比例,z 与x 成正比例,∴设kx y=,z ax =, 故zx a=,则k z y a =,故yz ka =(常数),则y 与z 的关系是:成反比例. 故选:B . 3.【解答】解:当21x --时,y 的最大值是3, ∴反比例函数经过第二象限,0k ∴<,∴在21x --上,y 值随x 值的增大而增大, ∴当1x =-时,y 有最大值k -,y 的最大值是3,3k ∴-=, 3k ∴=-,3y x∴=-,当6x 时,3y x =-有最小值12-,故选:C . 4.【解答】解:A 、由函数ky x=的图象可知0k >与3y kx =+的图象0k >一致,故A 选项正确;B 、因为3y kx =+的图象交y 轴于正半轴,故B 选项错误;C 、因为3y kx =+的图象交y 轴于正半轴,故C 选项错误;D 、由函数ky x=的图象可知0k >与3y kx =+的图象0k <矛盾,故D 选项错误. 故选:A . 5.【解答】解:点(2,5)A -在反比例函数(0)ky k x=≠的图象上,k ∴的值是:2510k xy ==-⨯=-.故选:D . 6.【解答】解:阴影部分的面积是428⨯=. 故选:D . 7.【解答】解:设球内气体的气压()P kPa 和气体体积3()V m 的关系式为k P v=, 图象过点(1.6,60)96k ∴=即96P v=在第一象限内,P 随V 的增大而减小, ∴当120P 时,9640.85V p ==. 故选:C . 8.【解答】解:由于体积=流速⨯时间,t ∴与n 之间的函数关系式为:50t n=. 故选:C . 9.【解答】解:由图象可得,10x -<<或1x >时,12y y <. 故选:D .10.【解答】解:设反比例函数的解析式为(0)k y k x =≠,函数经过点3(4,)2P ',∴324k=,得6k =, ∴反比例函数解析式为6y x=. 故选:D . 二、填空题 11.【解答】解:连接OC ,BD ,将AOD ∆沿y 轴翻折,使点A 落在x 轴上的点E 处,OA OE ∴=,点B 恰好为OE 的中点,2OE OB ∴=, 2OA OB ∴=,设OB BE x ==,则2OA x =,3AB x ∴=,四边形ABCD 是平行四边形,3CD AB x ∴==, //CD AB , CDF BEF ∴∆∆∽,∴133BE EF x CD DF x ===, 1BEF S ∆=,3BDF S ∆∴=,9CDF S ∆=, 12BCD S ∆∴=, 12CDO BDC S S ∆∆∴==,k ∴的值224CDO S ∆==.12.【解答】解:设(,)A a b ,则(,)B a b -, 依题意得:325m b am b a ⎧=⎪⎪⎨-⎪-=⎪⎩,所以3250m m a+-=,即550m -=, 解得1m =. 故答案是:1. 13.【解答】解:反比例函22(21)m y m x -=-,0x >时,y 随着x 的增大而增大,221m ∴-=-, 21m ∴=,1m =±, 210m -<,12m ∴<, 1m ∴=-.故答案为:1-. 14.【解答】解:根据中心对称的性质可知另一个交点的坐标是:(1,2)-. 故答案为:(1,2)-. 15.【解答】解:点(2,4)Q 和点P 关于y 轴对称,P ∴点坐标为(2,4)-,将(2,4)-解析式ky x=得,248k xy ==-⨯=-,∴函数解析式为8y x=-. 故答案为:8y x=-. 16.【解答】解:25(1)k y k x -=+是反比例函数,∴25110k k ⎧-=-⎨+≠⎩, 解之得2k =±.又因为正比例函数y kx =的图象经过第一、三象限,所以0k >,所以k 的值只能为2.故答案为:2.三、解答题17.【解答】解:(1)作AF y ⊥轴于F ,点A 在直线y x =上,AF AE ∴=,90CAF DAF DAE DAF ∠+∠=∠+∠=︒,CAF DAE ∴∠=∠,在CAF ∆和DAE ∆中,90CAF DAE AFC AED AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()CAF DAE AAS ∴∆≅∆,1AFOE ACOD S S ∴==正方形四边形,1AFOE k S ∴==正方形,∴双曲线的解析式为1y x=;(2)解1y x y x =⎧⎪⎨=⎪⎩得11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩, (1,1)A ∴,(1,1)B --.18.【解答】解:(1)x 在分母上,0x ∴≠. 故答案为:0x ≠.(2)当13x =时,1103y x x =+=; 当3x =时,1103y x x =+=. 故答案为:103;103. (3)连点成线,画出函数图象.(4)①当174y =-时,有1174x x +=-, 解得:14x =-,214x =-. 故答案为:4-或14-. ②观察函数图象,可知:函数图象在第一、三象限且关于原点对称. 故答案为:函数图象在第一、三象限且关于原点对称. ③1x t x+=有两个不相等的实数根, 2t ∴<-或2t >.故答案为:2t <-或2t >.19.【解答】解:(1)设(,0)A a ,则(2,0)B a +,(2,)C a b +,(,)D a b , E 设BC 的中点.1(2,)2E a b ∴+, 双曲线k y x=在第一象限内经过D 点以及BC 的中点E , 1(2)2ab a b ∴=+⨯, 2a ∴=,(2,0)A ∴;(2)AD b =,12BE b =,2AB =,四边形ABED 的面积为6, 112622ABEDS b b ⎛⎫∴=⨯+= ⎪⎝⎭四边形, 4b ∴=, (2,4)D ∴, 双曲线k y x=在第一象限内经过D 点, 248k ∴=⨯=,∴双曲线的函数关系式为8y x =. 20.【解答】解:如图,过A 作AE y ⊥轴于E ,过B 作BF x ⊥轴于F ,根据题意得AEOC BFOD S S =矩形矩形, AEDP BFCP S S ∴=矩形矩形,APD BPC S S ∆∆∴=,APB APD BPC APB S S S S ∆∆∆∆∴+=+, 即ADB ACB S S ∆∆=.21.【解答】解:(3,1)A -,//AB x 轴,(1,1)B ∴, P 是x 轴上的一个动点, ∴设(,0)P b ,当PAB ∆为等腰三角形时,分三种情况:(1)当AB AP =时,13+3b =,(3P ∴,0);(2)当AB PB =时,13+1b =,(1P ∴,0);(3)当AP PB =1b =-, (1,0)P ∴-;综上所述,若PAB ∆为等腰三角形,则点P 的坐标为(3,0),(1,0),(1,0)-. 22.【解答】解:(1)4xy =是反比例函数,4y x=,4k =;(2)5xy=-是反比例函数,5yx=-,5k=-.23.【解答】解:如图所示,24.【解答】解:(1)由题意可得:VSh =;(2)由题意可得:Syx =.。
26.1.1 反比例函数 人教版数学九年级下册同步练习(含答案)

第二十六章 反比例函数26.1 反比例函数26.1.1 反比例函数基础过关全练知识点1 反比例函数的定义1.【新独家原创】下列函数中,属于反比例函数的是( )A.y =-x2 023 B.y =2 023x -1C.y =-x 2 023D.y =x -2 0232.【新独家原创】若y =m ―2mx 是反比例函数,则m 满足的条件是( )A.m ≠0B.m =2C.m =2或m =0D.m ≠2且m ≠03.在函数y =-2(m +1)x -m 中,y 是x 的反比例函数,则比例系数为( )A.-2B.2C.-4D.04.关于正比例函数y =-13x 和反比例函数y =―13x 的说法,正确的是( )A.自变量x 的指数相同B.比例系数相同C.自变量x 的取值范围相同D.函数值y 的取值范围相同5.下列问题中,两个变量成反比例函数关系的是( )A.矩形面积S 一定,长x 和宽y 的关系B.矩形周长l 一定,长x 和宽y 的关系C.正方形面积S 和边长a 之间的关系D.正方形周长C 和边长a 之间的关系6.【新独家原创】若y 与-x 成反比例,x 与2z 成正比例,则y 与z 成 比例.7.【教材变式·P3T2变式】在下列函数关系式中,x 均表示自变量,那么哪些是关于x 的反比例函数?若是反比例函数,相应的比例系数k 是多少?(1)y =52x ;(2)y =x 2;(3)y =7x -1;(4)xy =2;(5)y =0.4x ―1.知识点2 用反比例函数刻画实际问题中的数量关系8.如果等腰三角形的面积为10,底边长为x ,底边上的高为y ,则y 与x 的函数关系式为( )A.y =10xB.y =5x C.y =20x D.y =x 209.已知每个工人一天能做某种型号的防护服x 件,若该厂接到一个生产10 000件的订单,需要y 名工人5天完成,则y 关于x 的函数解析式为 .10.【新独家原创】计划修建一块面积为40 m 2的菱形试验田,试验田的对角线长分别为x m ,y m ,则y 与x 的函数解析式为 . 11.某公司推出一新款折叠屏手机,该手机功能强大,深受消费者推崇,但价格不菲.某电子商场推出分期付款购买手机的活动,一部售价为17 500元的该款手机,前期付款5 000元,后期每个月付相同的金额(不计算利息),则每个月的付款金额y (元)与付款月数x (x 为正整数)之间的函数关系式是 .知识点3 用待定系数法求反比例函数解析式12.【一题多变】(2022四川成都金牛期中)已知y 与x 成反比例,且当x =-1时,y =2,则反比例函数的表达式为( )A.y =-2xB.y =2x C.y =―12x D.y =12x [变式]在反比例函数y =kx 中,当x =2时,y =3,则当y =12时,x = .13.【教材变式·P3T3变式】已知y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =-1时,y =-4;当x =3时,y =4.(1)求y 关于x 的函数解析式;(2)当x =-2时,求y 的值.能力提升全练14.(2022山东德州陵城期末,2,)下列函数中,y 是x 的反比例函数的是( )A.y =2x 2 B.y =2―xxC.y =-1x +1D.y =-2x -115.【跨学科·物理】(2019浙江温州中考,6,)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表.根据表中数据,可得y 关于x 的函数表达式为( )近视眼镜的2002504005001 000度数y(度)镜片焦距x(米)0.500.400.250.200.10A.y=100x B.y=x100C.y=400xD.y=x40016.(2021湖南邵阳邵东期末,13,)函数y=(m+1)·x m2―m―3是y关于x的反比例函数,则m= .17.(2022山东潍坊高密期末,13,)已知y与x-2成反比例,且比例系数k≠0,当x=3时,y=4,则k= .素养探究全练18.【推理能力】定义:[a,b]为反比例函数y=abx(ab≠0,a,b为实数)的“关联数”.反比例函数y=k1x 的“关联数”为[m,m+2],反比例函数y=k2x的“关联数”为[m+1,m+3],若m>0,则k1与k2的大小关系为 .19.【模型观念】已知y=(m2+2m)x m2+m―1.(1)当m为何值时,y是x的正比例函数?(2)当m为何值时,y是x的二次函数?(3)当m为何值时,y是x的反比例函数?答案全解全析基础过关全练1.B y=x-2 023即为y=1x2 023,y=2 023x-1即为y=2 023x,根据反比例函数的定义知y=-x2 023,y=-x2 023,y=x-2 023都不是反比例函数,y=2 023x-1是反比例函数.故选B.2.D 由题意得m―2m≠0,解得m≠0且m≠2.故选D.3.C 由题意得m=1,则比例系数为-2×(1+1)=-4.故选C.4.B 两个函数的比例系数都是-13.故选B.5.A 选项A,∵S=xy,∴y=Sx,y是x的反比例函数;选项B,∵l=2(x+y),∴y=l2-x,y是x的一次函数;选项C,∵S=a2,∴S是a的二次函数;选项D,∵C=4a,∴C是a的正比例函数.故选A.6.反解析 ∵y与-x成反比例,∴设y=m―x(m≠0).∵x与2z成正比例,∴设x=n·2z(n≠0),∴y=m―2nz =m―2n·1z,∴y与z成反比例.7.解析 (1)y=52x 是反比例函数,k=52.(2)y=x2不是反比例函数.(3)y=7x-1是反比例函数,k=7.(4)xy=2是反比例函数,k=2.(5)y=0.4x―1不是反比例函数.8.C ∵等腰三角形的面积为10,底边长为x ,底边上的高为y ,∴12xy =10,∴y 与x 的函数关系式为y =20x .故选C .9.y =2 000x解析 由题意得5xy =10 000,∴y =2 000x.10.y =80x解析 由菱形面积公式可得12xy =40,∴y =80x ,即y 与x 的函数解析式为y =80x .11.y =12 500x解析 由题意得y =17 500―5 000x,即y =12 500x.12.A 设y =kx ,根据题意得2=k―1,解得k =-2,∴y 与x 的函数表达式为y =-2x .故选A.[变式]12解析 将x =2,y =3代入反比例函数y =k x ,得k =6,∴y =6x ,当y =12时,12=6x ,解得x =12.13.解析 (1)∵y 1与x 成正比例,∴设y 1=mx (m ≠0),∵y 2与x 成反比例,∴设y 2=nx (n ≠0),∴y =mx +nx ,把x =-1,y =-4及x =3,y =4代入y =mx +nx 得―m ―n =―4,3m +n3=4,解得m =1,n =3.∴y 与x 的函数解析式为y =x +3x .(2)把x =-2代入y =x +3x ,得y =-2+3―2=―72.能力提升全练14.D A 项,y =2x 2,y 不是x 的反比例函数,不合题意;B 项,y =2―xx,y 不是x 的反比例函数,不合题意;C项,y =-1x +1,y不是x 的反比例函数,不合题意;D 项,y =-2x -1,即y =-2x ,y 是x 的反比例函数,符合题意.故选D.15.A 因为200×0.50=250×0.40=400×0.25=500×0.20=1 000×0.10=100,所以y 是x 的反比例函数,且xy =100,所以y 关于x 的函数表达式为y =100x.故选A.16.2解析 ∵函数y =(m +1)·x m 2―m―3是y 关于x 的反比例函数,∴m +1≠0,m 2―m ―3=―1,解得m =2.17.4解析 由题意知y =kx ―2,∵当x =3时,y =4,∴4=k3―2,∴k =4×1=4.素养探究全练18.k 1<k 2解析 根据题意得k 1=mm +2,k 2=m +1m +3,∵m >0,∴k 1-k 2=mm +2―m +1m +3=m 2+3m ―m 2―3m ―2(m +2)(m +3)=-2(m +2)(m +3)<0,∴k 1<k 2.19.解析 (1)根据题意,得m 2+2m≠0,m2+m―1=1,解得m=1,故当m=1时,y是x的正比例函数.(2)根据题意,得m2+2m≠0,m2+m―1=2,解得m=―1±132,故当m=―1±132时,y是x的二次函数.(3)根据题意,得m2+2m≠0,m2+m―1=―1,解得m=-1,故当m=-1时,y是x的反比例函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 3.如图,已知一次函数 y kx b(k 0) 的图象与 x 轴、y 轴分别交于 A、B两点,且与反比例函数
m (m 0) 的图象在第一象限交于 C 点,CD 垂直于 x 轴,垂足为 D,若 OA=OB=OD=1. x (1)求点 A、B、D 的坐标;(2)求一次函数和反比例函数的解析式. y
九年级数学上册 同步讲义
反比例函数综合复习
网络结构:
解析式: 法,已知直线上任意 点坐标; 解析式求法: 形状:一次函数 是经过( , )和( , )的一条直线; ,b 时,直线经过第 象限; 当k ,b 时,直线经过第 象限; 一次函数图象性质 当k 经过象限: ,b 时,直线经过第 象限; 当k ,b 时,直线经过第 象限; 当k 上下平移:与 有关, 直线y kx b向上或向下平移m个单位后,解析式为 图象平移: 左右平移:与 有关, 直线y kx b向左或向右平移m个单位后,解析式为 1. 一次函数与不等式的关系:步骤: 2. 3.
25.如图,已知直线 y1 x m 与 x 轴、y 轴分别交于点 A、B,与双曲线 y 2 ⑶利用图象直接写出:当 x 在什么范围内取值时, y1 y 2 .
26.已知:如图,在平面直角坐标系 xOy 中,Rt△OCD 的一边 OC 在 x 轴上,∠C=90 ,点 D 在第一象限 OC=3,DC=4,反比例函数的图象经过 OD 的中点 A. (1)求该反比例函数的解析式; (2)若该反比例函数的图象与 Rt△OCD 的另一边 DC 交于点 B,求过 A、B 两点的直线的解析式.
19.如图,直线 y kx(k 0) 与双曲线 y
4 交于 A(x1,y1) ,B(x2,y2)两点,则 2 x1 y 2 7 x 2 y1 =_____ x
第 20 题图 第 21 题图 4 20.函数 y1 x x ≥ 0 ,y2 x 0 的图象如图所示,则结论:①两函数图象的交点 A 的坐标为(2,2); x ②当 x>2 时, y2 y1 ;③当 x=1 时,BC=3;④当 x 逐渐增大时, y1 随着 x 的增大而增大, y2 随着 x 的增大 而减小.其中正确结论的序号是 21.如图,△P1OA1、△P2A1A2 是等腰直角三角形,点 P1、P2 在函数 y 都在 x 轴上,则点 A2 的坐标是_________ 22.已知 y = y1 + y2 , y1与x 成正比例, y2与x 成反比例,且 x=1 时,y=3;x=-1 时,y=1.求 x 时,y 的 值.
C.6.4kg
第 3 页 共 8 页
)
B.5kg
D.7kg
九年级数学上册 同步讲义
11.已知 ( x1 , y1 ), ( x2 , y2 ), ( x3 , y3 ) 是反比例函数 y 小关系是( ) A. y1 0 y2 y3 12.使函数 y (m 4) x m 13.在函数 y 的大小为 14.已知 y
n5 图象经过点(2,3) ,则 n 的值是( ) . x A.-2 B.-1 C.0 D.1 k 2.若反比例函数 y (k 0) 的图象经过点(-1,2) ,则这个函数的图象一定经过点( ) . x 1 1 A.(2,-1) B.(- ,2) C.(-2,-1) D.( ,2) 2 2 3.已知甲、 乙两地相距 s (km) , 汽车从甲地匀速行驶到乙地,则汽车行驶的时间 t (h) 与行驶速度 v (km/h) 的函数关系图象大致是( )
第 1 页 共 8 页
九年级数学上册 同步讲义
例 1.已知 y y1 y 2 , y1 与 x 成反比例, y 2 与 ( x 2) 成正比例, 并且当 x=3 时, y=5; 当 x=1 时, y=-1; 求 y 与 x 之间的函数关系式.
8 与一次函数 y kx b(k 0) 的图象交于 A、B 两点,且点 A 的横坐标和点 x B 的纵坐标都是-2.求: (1)一次函数的解析式; (2)△AOB 的面积.
k 的图象与一次函数 y ax b 的图象交于 M(2,m)和 N(-1,-4)两点. x (1)求这两个函数的解析式; (2)求△MON 的面积; (3)请判断点 P(4,1)是否在这个反比例函数的图象上,并说明理由.
24.如图,已知反比例函数 y
k ( x 0) 分别交于点 C、D, x 且 C 点的坐标为(-1,2).⑴分别求出直线 AB 及双曲线的解析式;⑵求出点 D 的坐标;
( 1) ( , 2) ( , 3) 解析式: 图象形状:是 法,已知双曲线上任意 点坐标; 解析式求法: 时,图象分布在第 象限; 当k 象限分布: 时,图象分布在第 象限; 当k 图象性质 时,y随x的增大而 当x 反比例函数 当k 时, ; 时,y随x的增大而 当x 增减性: 时,y随x的增大而 当x 当 k 时, ; 当x 时,y随x的增大而 点P(x, y)在双曲线 上,过P作x轴、y轴作垂线,围成矩形 k 则该矩形面积S 矩形 k , 则构成的S Rt 2
值是 ( ) A.正数 B.负数 C.非正数 D.不能确定 1 6.函数 y 与函数 y x 的图象在同一平面直角坐标系内的交点的个数是( ) x A.一个 B.二个 C.三个 D.零个 2 7.若点(3,4)是反比例函数 y m 2 m 1 图象上一点,则此函数图象必须经过点( ) x A.(2,6) B.(2,-6) C.(4,-3) D.(3,-4) 8.若 y 与 x 成正比例,x 与 z 成反比例,则 y 与 z 之间的关系是( ) A.成正比例 B.成反比例 C.不成正比例也不成反比例 D.无法确定 9.如图,A 为反比例函数 y A.6
3k 2 2 k 1
) D.(2,-7) ) D.4
4.若反比例函数 y (2k 1) x 的图象位于第二、四象限,则 k 的值是( A.0 B.0 或 1 C.0 或 2 5.已知反比例函数 y
k ( k 0 ) 的图像上有两点 A( x1 , y1 ),B( x 2 , y 2 ),且 x1 x 2 ,则 y1 y 2 的 x
k 满足( ) . x A.当 x>0 时,y>0 B.在每个象限内,y 随 x 的增大而减小 C.图象分布在第一、三象限 D.图象分布在第二、四象限 1 5.如图,点 P 是 x 轴正半轴上一个动点,过点 P 作 x 轴的垂线 PQ 交双曲线 y 于点 Q,连结 OQ,点 P 沿 x x 轴正方向运动时,Rt△QOP 的面积( ) . A.逐渐增大 B.逐渐减小 C.保持不变 D.无法确定
k 图象上一点,AB 垂直 x 轴于 B 点,若 S AOB 3 ,则 k 的值为( x 3 B.3 C. D.不能确定 2
)
10.在一个可以改变容积的密闭容器内,装有一定质量 m 的某种气体,当改变容积 V 时,气体的密度ρ也随 之改变.ρ与 V 在一定范围内满足ρ= A.1.4kg
m ,它的图象如图所示,则该气体的质量 m 为( V
2
4 的图象上三点,且 x1 0 x2 x3 ,则 y1 , y2 , y3 的大 x
C. y1 0 y3 y2 D. y1 0 y3 y2 .
B. y1 0 y2 y3
9 m 19
是反比例函数,m=
,图象在每个象限内 y 随 x 的增大而
1 k2 2 ( - 2,y 1) 的图象上有三个点 ,(-1,y2), ( ,y3) ,函数值 y1 , y 2 ,y 3 (k为常数) 2 x
2
第 19 题图
4 ( x 0 ) 的图象上,斜边 OA1、A1A2 x
1 2
第 4 页 共 8 页
九年级数学上册 同步讲义
8 ( m 0 ) 的图象交于 A,B 两点, x 且 A 点的横坐标与 B 点的纵坐标都是-2.求:(1)一次函数的解析式;(2)△AOB 的面积.
23.如图,已知一次函数 y kx b(k 0) 的图象与反比例函数 y
0
第 5 页 共 8 页
九年级数学上册 同步讲义
k (k 0) 经过直角三角形 OAB 斜边 OA 的中点 D,且与直角边 AB 相交于点 C.若点 x A 的坐标为(-6,4) ,求△AOC 的面积.
27.如图,已知双曲线 y
28.如图,已知点 A 在双曲线 y= 的面积和△ABC 的周长.
16.已知反比例函数 y 17.已知函数 y kx 与 y 的面积为____ 18.已知 A(x1,y2),B(x2,y2)都在 y
4 的图象交于 A、B 两点,过点 A 作 AC 垂直于y轴,垂足为点 C,则△BOC x
6 图像上。若 x1 x 2 3 ,则 y1 y 2 的值为 x
例 4.如图,双曲线 y
5 在第一象限的一支上有一点 C(1,5),过点 C 的直线 y kx b(k 0) 与 x 轴交 x
于点 A(a,0). (1)求点 A 的横坐标 a 与 k 的函数关系式(不写自变量取值范围). (2)当该直线与双曲线在第一象限的另一个交点 D 的横坐标是 9 时,求△COA的面积.
6 上, 且 OA=4,过 A 作 AC⊥x 轴于 C,OA 的垂直平分线交 OC 于 B. 求△AOC x
1 k x 的图象与反比例函数 y (k 0) 在第一象限的图象交于 A 点,过 A 点作 2 x x 轴的垂线,垂足为 M,已知△OAM 的面积为 1. (1)求反比例函数的解析式; (2)如果 B 为反比例函数在第一象限图象上的点(点 B 与点 A 不重合) ,且 B 点的横坐标为 1,在 x 轴 上求一点 P,使 PA+PB 最小.