大学物理 章作业解

合集下载

大学物理(下)十一章十二章作业与解答

大学物理(下)十一章十二章作业与解答

⼤学物理(下)⼗⼀章⼗⼆章作业与解答第⼗⼀章恒定磁场⼀. 选择题1.在⼀平⾯内,有两条垂直交叉但相互绝缘的导线,流经两条导线的电流⼤⼩相等,⽅向如图,在哪些区域中有可能存在磁感应强度为零的点?(A) 在Ⅰ、Ⅲ象限(B) 在Ⅰ、Ⅳ象限(C) 在Ⅱ、Ⅲ象限(D) 在Ⅱ、Ⅳ象限[ ]2. 载流导线在同⼀平⾯内,形状如图,在圆⼼O处产⽣的磁感应强度⼤⼩为(A)(B)(C)(D) [ ]注意见第11章课件最后的总结的那个图,半圆载流回路在圆⼼处的磁感强度是多少?3. ⼀圆形回路1及⼀正⽅形回路2,圆的直径与正⽅形边长相等,⼆者中通有⼤⼩相同电流,则它们在各⾃中⼼处产⽣的磁感应强度⼤⼩之⽐为(A) 0.90(B) 1.00(C) 1.11(D) 1.22 [ ]注意教材page304,及课件最后总结的那个图4. 在磁感应强度为的均匀磁场中做⼀半径为r的半球⾯S,S边线所在平⾯的法线⽅向单位⽮量与的夹⾓为θ,则通过半球⾯S 的磁通量(取半球⾯向外为正)为(A)(B)(C)(D)[ ]5. 如图,⽆限长载流直导线附近有⼀正⽅形闭合曲⾯S,当S向导线靠近时,穿过S的磁通量和S上各点的磁感应强度的⼤⼩B 将(A) 增⼤,B增强(B) 不变,B不变(C) 增⼤,B不变(D) 不变,B增强[ ]6. 取⼀闭合积分回路L,使若⼲根载流导线穿过它所围成的⾯,若改变这些导线之间的相互间隔,但不越出积分回路,则(A) 回路L内的电流的代数和不变,L上各点的不变(B) 回路L内的电流的代数和不变,L上各点的改变(C) 回路L内的电流的代数和改变,L上各点的不变(D) 回路L内的电流的代数和改变,L上各点的改变[ ]7. 如图,两根导线ab和cd沿半径⽅向被接到⼀个截⾯处处相等的铁环上,恒定电流I 从a端流⼊⽽从d端流出,则磁感应强度沿闭合路径L的积分等于(A)(B)(C)(D)[ ]8. ⼀电荷为q的粒⼦在均匀磁场中运动,下列说法正确的是(A) 只要速度⼤⼩相同,粒⼦所受的洛仑兹⼒就相同(B) 在速度不变的前提下,若电荷q变为 -q,则粒⼦受⼒反向,数值不变(C) 粒⼦进⼊磁场后,其动能和动量都不变(D) 洛仑兹⼒与速度⽅向垂直,所以带电粒⼦运动的轨迹必定是圆[ ]9. 质量为m、电量为q的粒⼦,以速度v垂直射⼊均匀磁场中,则粒⼦运动轨道包围范围的磁通量与磁感应强度的⼤⼩之间的关系曲线为[ b ]注意见P317,(11.30)10. 如图,长直载流导线与⼀圆形电流共⾯,并与其⼀直径相重合(两者间绝缘),设长直电流不动,则圆形电流将(A) 向上运动(B) 绕旋转(C) 向左运动(D) 向右运动(E) 不动[ ]11. 磁场中有⼀载流圆线圈,其既不受⼒也不受⼒矩作⽤,这说明(A) 该磁场⼀定均匀,且线圈的磁矩⽅向⼀定与磁场⽅向平⾏(B) 该磁场⼀定不均匀,且线圈的磁矩⽅向⼀定与磁场⽅向平⾏(C) 该磁场⼀定均匀,且线圈的磁矩⽅向⼀定与磁场⽅向垂直(D) 该磁场⼀定不均匀,且线圈的磁矩⽅向⼀定与磁场⽅向垂直[ ]注意见P325 第⼆段表述,11.36式12. ⽤细导线均匀密绕成长为l、半径为a(l >>a)、总匝数为N的螺线管,管内充满相对磁导率为的均匀磁介质,线圈中载有电流I,则管中任⼀点(A) 磁感应强度⼤⼩为(B) 磁感应强度⼤⼩为(C) 磁场强度⼤⼩为(D) 磁场强度⼤⼩为[ ]⼆. 填空题13.如图,电流元在P点产⽣的磁感应强度的⼤⼩为___________________.14. 真空中有⼀载有电流I的细圆线圈,则通过包围该线圈的闭合曲⾯S的磁通量Φ=________________. 若通过S⾯上某⾯元的磁通为,⽽线圈中电流增加为2I时,通过该⾯元的磁通为,则_______________.0 ; 1︰215. 如图,两平⾏⽆限长载流直导线中电流均为I,两导线间距为a,则两导线连线中点P的磁感应强度⼤⼩,磁感应强度沿图中环路L的线积分_______________________.0 ;16. 恒定磁场中,磁感应强度对任意闭合曲⾯的积分等于零,其数学表⽰式是____________,这表明磁感应线的特征是_________________________. ;闭合曲线17. ⼀长直螺线管是由直径的导线密绕⽽成,通以的电流,其内部的磁感应强度⼤⼩B =_____________________.(忽略绝缘层厚度)18. 带电粒⼦垂直磁感应线射⼊匀强磁场,它做______________运动;带电粒⼦与磁感应线成300⾓射⼊匀强磁场,则它做__________________运动;若空间分布有⽅向⼀致的电场和磁场,带电粒⼦垂直于场⽅向⼊射,则它做__________________运动.圆周;螺旋线;变螺距的螺旋线19. 在霍尔效应实验中,通过导电体的电流和的⽅向垂直(如图).如果上表⾯的电势较⾼,则导电体中的载流⼦带___________电荷;如果下表⾯的电势较⾼,则导电体中的载流⼦带___________电荷.正;负20. 如图,⼀载流导线弯成半径为R的四分之⼀圆弧,置于磁感应强度为的均匀磁场中,导线所受磁场⼒⼤⼩为______________,⽅向为_____________.; y轴正向注意:积分IRBdθ,θ的积分上下限?21. 如图,半径为R的半圆形线圈通有电流I,线圈处在与线圈平⾯平⾏指向右的均匀磁场中,该载流线圈磁矩⼤⼩为___________,⽅向____________;线圈所受磁⼒矩的⼤⼩为_________________,⽅向_____________.;垂直纸⾯向外;;向上22. 磁场中某点,有⼀半径为R、载有电流I的圆形实验线圈,其所受的最⼤磁⼒矩为M,则该点磁感应强度的⼤⼩为_________________.注意见教材324页三. 计算题23. 如图,两长直导线互相垂直放置,相距为d,其中⼀根导线与z轴重合,另⼀与x轴平⾏且在Oxy平⾯内,设导线中皆通有电流I,求y轴上与两导线等距的P点处的磁感应强度.解:长直载流导线在距其r处的磁感应强度为两长直载流导线在P点产⽣的磁感应强度⽅向⼀沿z轴⽅向,⼀沿x轴负⽅向且⽅向平⾏于Oxz平⾯与Oxy⾯成45o,如图⽰。

大学物理第6章作业解答

大学物理第6章作业解答

r
的电势分布。
当 0 r R1 时;
V1

E dl
r
R1 r
E1

dl

R2 R1
E2 dl


R2 E3 dl
R1 0 dr q R2 dr Q q dr
r
4 0 r R1 2 4 0 r R2 2
qQ
得到, U AC

C C AC
U AB
4F 12V 12 F
4V
U CD

C CCD
U AB
4F 12V 8 F
6V
U CB

C CCB
U AB
4F 12V 24 F
2V
1 R3

(2.0 3.0) 108
4 8.854 1012

1 0.10
4500(V )
(2)将球壳B接地后断开时, 达到静电平衡时,球壳B的外表面上 的电荷Q外全部都跑到地球去了,球壳 壳B的外表面上不再有净电荷存在。 但由于金属球A的表面上有电荷QA存 在,使得球壳B的内表面上仍有电荷 Q内 QA 存在,这两部分的电荷相互
B
VA VB E dl
A
R2
E2dr
R1
QA R2 dr
40 R1 r 2
即:VA
VB

QA
4 0

1 R1

1 R2

Q外
R3 + R2 QA


R1 B
+ A+
+QA
由于金属球A接地,故金属球A的电势为:VA 0

大学物理作业--电势二解答

大学物理作业--电势二解答

Qd R 2 0 Rd
电势二
第五章 静电场
5. 如图,两个平行放置的均匀带电圆环,它们的半径 为R,电量分别为+q和-q,其间距为l,并有l<<R。1)求 两环的对称中心O为坐标原点时,垂直于环面的x轴上 的电势分布;(2)证明:当x>>R时,U ql 2 。 解: 由电势的叠加原理有,


We we dV
R=6370km
Rh

R
0E2
2
4r dr
2
2 3 2 3 0 E R h R 3 6.28104 kW h


电势二
第五章 静电场
2. 在一次典型的闪电中,两个放电点之间的电势差约 为109V,被迁移的电荷约为30C,如果释放出的能量都 用来使0℃的冰融化为0℃的水,则可融化的冰有 Kg. (冰的融化热L=3.34×105J· kg)
R
x DL
o
电势二
第五章 静电场
二、填空题
1.地球表面上晴空时,地球表面以上10km范围内的 电场强度都约为100V/m。此电场的能量密度为 ; 在该范围内电场所储存的能量共有 kw· h。
1 1 2 we 0 E 8.85 10 12 100 2 4.425 10 8 J/m 3 2 2
4. 电荷-Q均匀分布在半径为R、长为L的圆弧上,圆弧 的两端有一小空隙,空隙长为DL(DL<<R),则圆弧中 心O点的电场强度和电势分别是 [ ]
QDL Q i, (A) 2 4 0 R L 4 0 R
QDL Q i, (B) 2 3 8 0 R L 4 0 R
电势二

大学物理第一章作业

大学物理第一章作业

at d v / d t g t / v g t 法向加速度方向与 at 垂直,大小为
2 2 0
2 2
an g a
2
2 1/2 t

2 v0 g / v0 g 2t 2
2.一质点沿半径为R的圆周运动.质点所经过的 S bt ct 2 2 ,其中b、c是 弧长与时间的关系为 大于零的常量,求从 t 0 开始到切向加速度与法 向加速度大小相等时所经历的时间. ds 解: v b ct dt 2 则有 dv v 2 at c an b ct / R dt R 根据题意,当 at an 时有 2 c b ct / R 可解得
d r a 2 (1)i (2t ) j dt
2 x 2 y
2
a
-1
y -arctan4 4 ay

则加速度的大小为
ax
x
at 2 s a a 1 4t 17 4.12m s 2
加速度的方向
ay
2 arctan(1 4) y
dv 2 v 2 6x dx
v d v (2 6x )d x
2
两边同时积分,即

可得
v
0
vd v 2 6 x 2 d x
x 0
1 2 v 2 x 2 x3 2
v 2 x x
3

1
2
一 选择题 质点作半径为R的变速圆周运动时的加速度大 小为(v表示任一时刻质点的速率) 2 d (A) v d t . (B) v R .
a
ay

4 arctan arctan arctan(4) 104 ax 1

大学物理78章作业解

大学物理78章作业解

7-3.在体积为2.0×10-3m 3 的容器中,有内能为 6.75×102J 的刚性双原子分子理想气体。

求:(1)气体的压强;(2)设分子总数为 5.4×1022 个,则分子的平均平动动能及气体的温度。

[解] (1)理想气体的内能 kT i N E 2⋅= (1) 理想气体的压强 kT VN nkT p == (2) 由(1)、(2)两式可得 5321035.110251075.6252⨯=⨯⨯⨯⨯==-V E p Pa (2)由 kT i N E 2⋅= 则 362104.51038.151075.625222232=⨯⨯⨯⨯⨯⨯==-kN E T K 又 2123105.73621038.12323--⨯=⨯⨯⨯==kT w J 7-4.容器内储有氧气,其压强为 p = 1.01×10 5 Pa ,温度为 t = 27℃。

试求:(1)单位体积内的分子数;(2)分子的平均平动动能。

解:(1)由nkT p = (2)J 1021.63001038.123232123--⨯=⨯⨯⨯==kT w 7-5.容器内某理想气体的温度T =273K ,压强p =1.00 ×10-3atm ,密度为31.25g m ρ-=⋅,求:(1)气体的摩尔质量;(2)气体分子运动的方均根速率;(3)气体分子的平均平动动能和转动动能;(4)单位体积内气体分子的总平动动能;(5)0.3mol 该气体的内能。

[解] (1)由 RT pV ν=所以 4931025.110013.11000.13333532=⨯⨯⨯⨯⨯===--ρp m kT v m (2) 气体的摩尔质量所以该气体是2N 或CO(3)气体分子的平均平动动能气体分子的转动动能(4)单位体积内气体分子的总平动动能(5)该气体的内能8-3.一定量的理想气体,其体积和压强依照V=a 的规律变化,其中a 为已知常数。

(完整版)大学物理章节习题9原子结构固体能带理论

(完整版)大学物理章节习题9原子结构固体能带理论

©物理系_2015_09《大学物理AII 》作业 No.9 原子结构 固体能带理论班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、判断题:(用“T ”表示正确和“F ”表示错误)[ F ] 1.根据量子力学理论,氢原子中的电子是作确定的轨道运动,轨道是量子化的。

解:教材227.电子在核外不是按一定的轨道运动的,量子力学不能断言电子一定 出现在核外某个确定的位置,而只能给出电子在核外各处出现的概率。

[ F ] 2.本征半导体是电子与空穴两种载流子同时参与导电,N 型半导体只有电子导 电,P 型半导体只有空穴导电。

解:N 型半导体中依然是两种载流子参与导电,不过其中电子是主要载流子;P 型半导体也是两种载流子参与导电,其中的主要载流子是空穴。

[ T ] 3.固体中能带的形成是由于固体中的电子仍然满足泡利不相容原理。

解:只要是费米子都要遵从泡利不相容原理,电子是费米子。

[ T ] 4.由于P 型和N 型半导体材料接触时载流子扩散形成的PN 结具有单向导电性。

解:教材244.[ F ] 5.施特恩-盖拉赫实验证实了原子定态能级的存在。

解:施特恩-盖拉赫实验验证了电子自旋的存在,弗兰克—赫兹实验证实了原子定态能级的存在.二、选择题:1.下列各组量子数中,哪一组可以描述原子中电子的状态? [ D ] (A) n = 2,l = 2,m l = 0,21=s m (B) n = 3,l = 1,m l =-2,21-=s m(C) n = 1,l = 2,m l = 1,21=s m (D) n = 3,l = 2,m l = 0,21-=s m解:根据原子中电子四个量子数取值规则和泡利不相容原理知D 对。

故选 D2.与绝缘体相比较,半导体能带结构的特点是 [ D ] (A) 导带也是空带 (B) 满带与导带重合(C) 满带中总是有空穴,导带中总是有电 子 (D) 禁带宽度较窄解:教材241-242.3. 在原子的L 壳层中,电子可能具有的四个量子数(n ,l ,m l ,m s )是(1) (2,0,1,21)(2) (2,1,0,21-)(3) (2,1,1,21)(4) (2,1,-1,21-) 以上四种取值中,哪些是正确的? [ ] (A) 只有(1)、(2)是正确的 (B) 只有(2)、(3)是正确的 (C) 只有(2)、(3)、(4)是正确的 (D) 全部是正确的解:原子的L 壳层对应主量子数2=n ,角量子数可为2,1,0=l ,磁量子数可为2,1,0±±=l m ,自旋量子数可为21,21-=s m ,根据原子中电子四个量子数取值规则和泡利不相容原理知只有(2)、(3)、(4)正确。

大学物理第3章作业解答

大学物理第3章作业解答

第三章刚体的定轴转动选择题3-1 如图所示,四个质量相同、线度相同而形状不同的物体,它们对各自的几何对称轴的转动惯量最大的是( A )(A) (B) (C) (D)3-2 在上题中,它们对各自的几何对称轴的转动惯量最小的是( C )3-3 如图所示,P、Q、R、S是附于刚体轻细杆上的四个质点,它们的质量分别为4m、3m、2m和m,PQ QR RS l===,该系统对O O'轴的转动惯量为( A )(A) 29m l.10m l; (D) 214m l; (C) 250m l; (B) 23-4 均匀细棒O A,可绕通过点O与棒垂直的光滑水平轴转动,如图所示.如果使棒从水平位置开始下落,在棒到竖直位置的过程中,下列陈述正确的是( A )(A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.3-5 几个力同时作用在一个具有固定转轴的刚体上.如果这几个力的矢量和为零,则下列陈述正确的是( D )(A) 刚体必然不会转动; (B) 刚体的转速必然不变;(C) 刚体的转速必然会变; (D) 刚体的转速可能变,也可能不变.3-6 在光滑的桌面上开一个小孔,把系在绳的一端质量为m的小球置于桌面上,绳的另一端穿过小孔而执于手中.设开始时使小球以恒定的速率v 在水平桌面上作半径为1r 的圆周运动,然后拉绳使小球的轨道半径缩小为2r ,新的角速度2ω和原来的角速度1ω的关系为( B ) (A) 1212r r ωω⎛⎫ ⎪⎝⎭=; (B) 21212r r ωω⎛⎫⎪⎝⎭=;(C) 2211r r ωω⎛⎫ ⎪⎝⎭=; (D) 22211r r ωω⎛⎫⎪⎝⎭=.3-7 在上题中,新的动能和原来的动能之比为 ( A )(A) 212r r ⎛⎫ ⎪⎝⎭; (B) 12r r ; (C) 21rr ; (D) 221r r ⎛⎫ ⎪⎝⎭.3-8 刚体绕定轴高速旋转时,下列陈述正确的是 ( D )(A) 它受的外力一定很大; (B) 它受的外力矩一定很大;(C) 它的角加速度一定很大; (D) 它的角动量和转动动能一定很大. 3-9 芭蕾舞演员绕通过脚尖的竖直轴旋转,当她伸长手臂时的转动惯量为J ,角速度为ω.她将手臂收回至前胸时,转动惯量减小为3J ,此时她的角速度为 ( A )(A) 3ω; (D) 13ω.3-10 三个完全相同的转轮绕一公共轴旋转.它们的角速度大小相同,但其中一轮的转动方向与另外两个轮相反.今沿轴的方向施力,将三者靠在一起,使它们获得相同的角速度.此时靠在一起后系统的动能与原来三转轮的总动能相比是 ( B )(A) 减少到13; (B) 减少到19;(C) 增大到3倍; (D) 增大到9倍.计算题3-11 一电动机的电枢转速为11800r min -⋅,当切断电源后,电枢经20s 停下.求:(1) 切断电源后电枢转了多少圈;(2) 切断电源后10s 时,电枢的角速度以及电枢边缘上一点的线速度、切向加速度和法向加速度(设电枢半径为10cm ).解 (1) 切断电源时,电枢的转速为11018002πrad s60πrad s60ω--⨯=⋅=⋅电枢的平均角加速度为22060πrad s3.0πrad s20tωα----==⋅=-⋅∆由2202ωωαθ-=∆,且0ω=,可得切断电源后电枢转过的角度为()()22060πrad 600πrad 223πωθα--∆===⨯-转过的圈数为600πr 300r 2π2πN θ∆===(2) 切断电源后10s 时,电枢的角速度为()11060π 3.0π10rad s30πrad s t ωωα--=+=-⨯⋅=⋅此时电枢边缘上一点的线速度、切向加速度和法向加速度分别为()111222t 222222n 0.1030πm s3.0πm s9.42m s0.10 3.0πm s0.30πm s0.942m s0.1030πm s90πm s888m sr a r a r ωαω---------==⨯⋅=⋅=⋅==-⨯⋅=-⋅=-⋅==⨯⋅=⋅=⋅v3-12 一飞轮由直径为0.30m 、厚度为22.010m -⨯的圆盘和两个直径为0.10m 、长为28.010m -⨯的圆柱体组成.设飞轮的密度为337.810kg m -⨯⋅,求飞轮对转轴的转动惯量.解 飞轮上的圆盘的半径为10.15m r =,圆柱体的半径为20.05m r =. 飞轮上的圆盘质量为2322111π7.810π0.15 2.010kg 11.0kg m r h ρ-==⨯⨯⨯⨯=圆柱体的质量为2322222π7.810π0.058.010kg 4.90kgm r h ρ-==⨯⨯⨯⨯⨯=飞轮的转动惯量是圆盘和两个圆柱体的转动惯量之和为22222211221111.00.15 4.900.05kg m 0.136kg m 22J m r m r ⎛⎫=+=⨯⨯+⨯⋅=⋅ ⎪⎝⎭3-13 如图所示,质量分别为2m 、3m 和4m 的三个小球,用长均为l 、质量均为m 的三根均匀细棒相连,如图所示(小球的半径r l <<,可视为质点).求该物件对通过点O 垂直于图面的转轴的转动惯量.解 该物件的转动惯量是三个小球和三根细棒的转动惯量之和为2222212343103J m l m l m l m l m l =+++⨯=3-14 细棒长为l ,质量为m ,设转轴通过棒上离中心为h 的一点并与棒垂直.求棒对此轴的转动惯量.解 由平行轴定理,细棒的转动惯量为22222c 111212J J m h m l m h m l h ⎛⎫=+=+=+ ⎪⎝⎭3-15 一个半径为R 质量为m 的均匀圆盘,挖去直径为R 的一个圆孔,如图所示.求剩余部分对通过圆心O 且与盘面垂直的轴的转动惯量.解 开孔圆盘的转动惯量等于完整圆盘的转动惯量减去位于圆孔部位的被挖去的小圆盘的转动惯量:2222111322424232m R m R J m R m R ⎡⎤⎛⎫⎛⎫=-+=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ 3-16 如图所示,某飞轮的直径为0.50m 、转动惯量为22.4k g m ⋅、转速为311.010r min-⨯⋅.如果制动时闸瓦对轮的压力为490N ,闸瓦与轮之间的滑动摩擦因数为0.4,求制动后飞轮转多少圈才停止.解 制动前,飞轮的转速为31102π 1.010rad s105rad s60ω--⨯⨯=⋅=⋅飞轮所受的制动力矩为n 0.44900.25N m 49N m M F R μ=-=-⨯⨯⋅=-⋅根据转动定律,M J α=,可得制动后飞轮的角加速度为2249rad s20.4rad s2.4M J α---==⋅=-⋅由2202ωωαθ-=∆,且0ω=,可得制动后飞轮转过角度为220105rad 270rad 22(20.4)ωθα--∆===⨯-转过的圈数为270r 43.0r 2π2πN θ∆===3-17 如图所示,一物体质量为5kg ,从一倾角为o 37的斜面滑下,物体与斜面的摩擦因数为0.25.一滑轮装在固定轴O 处,轻绳的一端绕在滑轮上,另一端与物体相连.若滑轮可视为是实心圆盘,其质量为20kg 、半径为0.2m ,绳与轮间无相对滑动,且轮轴的摩擦阻力矩忽略不计.求:(1) 物体沿斜面下滑的加速度; (2) 绳中的张力.解 物体和滑轮的示力图以及坐标选取如图所示.图中P 为重力,N F 为正压力,r F 为摩擦力,T F 为张力,T T F F '=.O x 轴沿斜面向下,Oy 垂直于斜面.设物体的质量为1m ,滑轮的质量为2m ,滑轮的半径为r .对物体,根据牛顿第二定律,在O x 和Oy 方向分别有o1T r 1sin 37m g F F m a --=oN 1cos 370F m g -=重力2P 和轮轴对滑轮的压力N 2F 均通过转轴,对转轴的力矩为零.以垂直纸面向里为正方向,滑轮所受的力矩为T T M F r F r '=⋅=⋅.对滑轮,根据转动定律,有T F r J α⋅=而a r α=r N F F μ=2212J m r =联立解以上方程,可得物体沿斜面下滑的加速度和绳中的张力分别为()oo11222sin 37cos 3712345 0.259.8 m s 1.31 m s1555202m a gm m μ--=-+⎛⎫=-⨯⨯⨯⋅=⋅ ⎪⎝⎭+⨯T 21120 1.31 N 13.1 N 22F Jm a rα===⨯⨯=3-18 如图所示,长为l 、质量为m 的均匀细棒可绕点O 转动.此棒原先静止在竖直位置,受微小扰动而倒下.若不计摩擦和空气阻力,求细棒倒至与竖直位置成θ角时的角加速度和角速度.解 细棒的倒下,可看成定轴转动,其转轴通过地面上细棒端点,垂直于细棒的转动平面.在细棒倒下的过程中,细棒与地球组成的系统机械能守恒.以地面为势能零点,设细棒倒至与竖直方向成θ角时,角速度为ω,有21cos 222l l J m gm gωθ+=而213J m l =由此可得,角速度为ω=只有细棒所受的重力对转轴有力矩.以垂直纸面向里为正方向,细棒倒至与竖直方向成θ角时,重力对转轴的力矩为sin 2l M m g θ=.设此时的角加速度为α,则对细棒,根据转动定律,有sin 2l m gJ θα= 将213J m l =代入上式,可得角加速度为3sin 2g lαθ=3-19 如图所示,两个物体质量分别为1m 和2m .定滑轮的质量为m 、半径为R ,可视为圆盘.已知2m 与桌面间的摩擦因数为μ.设轻绳与轮间无相对滑动,且可不计滑轮轴的摩擦力矩,求1m 下落的加速度和滑轮两边绳中的张力.解 两个物体和滑轮的示力图以及坐标选取如图所示.图中P 为重力,N F 为正压力,r F 为摩擦力,T F 为张力,T1T1F F '=,T 2T 2F F '=.O x 轴水平向右,Oy 轴竖直向下.两个物体的加速度虽方向不同,但大小相同,12a a a ==.对物体1m ,根据牛顿第二定律,在Oy 方向有1T 11m g F m a -=对物体2m ,根据牛顿第二定律,在O x 方向有T 2r 2F F m a -=滑轮所受的重力和转轴对滑轮的压力都通过转轴,对转轴的力矩为零.以垂直纸面向里为正方向,滑轮所受的力矩为T 1T 2M F R F R =-.对滑轮,根据转动定律,有T 1T 2F R F R J α-=而212J m R =a R α=r 2F m gμ=联立解以上方程,可得物体的加速度与绳中的张力分别为()1212222m m a g m m mμ-=++()2T 11122122m m F m gm m m μ++=++()1T 22122122m m F m gm m mμ++=++3-20 一圆盘状的均匀飞轮,其质量为100kg 、半径为0.5m ,绕几何中心轴转动.在30s 内,由起始转速13000r m in-⋅均匀地减速至11000r m in -⋅.求阻力矩所做的功.解 飞轮初、末角速度分别为1102π3000rad s100πrad s60ω--⨯=⋅=⋅112π1000100rad sπrad s603ω--⨯=⋅=⋅飞轮的转动惯量为2222111000.5kg m 12.5kg m 22J m R ==⨯⨯⋅=⋅根据动能定理理,外力矩对飞轮所做的功等于飞轮转动动能的增量,可得在飞轮减速的过程中,阻力矩对飞轮所做的功为()222200225111()2221100π 12.5100πJ 5.4810J23A J J J ωωωω=-=-⎡⎤⎛⎫=⨯⨯-=-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦3-21 质量为m '、半径为R 的转台,可绕过中心的竖直轴转动.质量为m 的人站在转台的边缘.最初人和转台都静止,后来人在转台的边缘开始跑动.设人的角速度(相对于地面)为ω,求转台转动的角速度(转台可看成质量均匀分布的圆盘,并忽略转轴处的摩擦力矩和空气的阻力).解 人和转台组成的系统对中心轴角动量守恒.以人的角速度的方向为正方向,设转台的角速度为1ω,有210J m R ωω+=而212J m R '=由此可得12m m ωω-='式中的负号表明,转台的转动方向与人的转动方向相反.3-22 如图所示,一个转动惯量为J 、半径为R 的圆木盘,可绕通过中心垂直于圆盘面的轴转动.今有一质量为m 的子弹,在距转轴2R 的水平方向以速度0v 射入,并嵌在木盘边缘.求子弹嵌入后木盘转动的角速度.解 子弹和木盘组成的系统,对转轴角动量守恒.以垂直于纸面向外为正方向,设子弹嵌入后,木盘转动的角速度为ω,有2()2R J m R m ω+=v由此可得022()m R J m R ω=+v3-23 如图所示,一均匀细棒长为l 、质量为m ,可绕经过端点O 的水平轴转动.棒被拉到水平位置由静止轻轻放开,下落至竖直位置时,下端与放在地面上的静止物体相撞.若物体的质量也为m ,物体与地面间的摩擦因数为μ,物体滑动s 距离后停止.求: (1) 棒与物体碰撞后,物体的速度;(2) 棒与物体碰撞后,棒的角速度.解 (1)根据动能定理,摩擦力对滑块所做的功等于滑块动能的增量.设物体因碰撞而获得的速度为v ,有2102m gs m μ-=-v由此可得=v (2) 细棒下落的过程中,细棒与地球组成的系统机械能守恒定律.以地面为势能零点,设细棒下落至竖直位置时的角速度为0ω,有20122l J m gω=而213J m l =由此可得0ω=.碰撞过程中角动量守恒.以垂直纸面向外为正方向,设碰撞后,细棒的角速度为ω,有0J m l J ωω+=v将213J m l =、=v 和0ω=代入上式,可得lω=若0ω>,碰撞后细棒继续向右转动, 若0ω<,碰撞后细棒向左转动.。

攀枝花学院大学物理第11章 作业答案(最新修改)

攀枝花学院大学物理第11章  作业答案(最新修改)

第11章 光的干涉、衍射和偏振11-10 如图所示,由S 点发出的λ=600nm 的单色光,自空气射人折射率n =1.23的透明物质,再射人空气.若透明物质的厚度e =1.0cm ,入射角030θ=0,且SA=BC=5cm ,求:(1)折射角1θ为多少? (2)此单色光在这层透明物质里的频率、速度和波长各为多少? (3)S 到C 的几何路程为多少?光程又为多少?解 (1)由折射定律1sin sin θθ=n 可得 00124)23.130sin arcsin()sin arcsin(===n θθ(2)单色光在透明介质中的速度n v ,波长n λ和频率ν分别为812.4410()n cv m s n-==⨯⋅74.8810488()n m nm nλλ-==⨯=145.010()z cH νλ==⨯(3)S 到C 的几何路程为10.111()cos eSC SA AB BC SA BC m θ=++=++= S 到C 的光程为110.114()i inlSA AB n BC m =⨯+⨯+⨯=∑。

11-11 在双缝干涉实验中,两缝间距为0.30mm ,用单色光垂直照射双缝,在离缝1.20m 的屏上测得中央明纹两侧第五条暗纹间的距离为22.78mm ,问所用光波长多少,是什么颜色的光?解法一 屏上暗纹的位置(21)2D x k d λ=-,把5k =,m x 310278.22-⨯=以及d 、D 值代人,可得632.8()nm λ=,为红光。

解法二 屏上相邻暗纹(或明纹)间距D x d λ∆=,把322.78109x m -∆=⨯,以及d 、D 值代人,可得632.8()nm λ=。

11-12 一双缝装置的一个缝被折射率为1.40的薄玻璃片所遮盖,另一个缝被折射率为1.70的薄玻璃片所遮盖。

在玻璃片插入以后,屏上原来的中央极大所在点,现变为第五级明纹。

假定λ=480nm ,且两玻璃片厚度均为d ,求d 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7-3.在体积为2.0×10-3m 3的容器中,有内能为6.75×102
J 的刚性双原子分子理想气体。

求:
(1)气体的压强;(2)设分子总数为5.4×1022个,则分子的平均平动动能及气体的温度。

[解](1)理想气体的内能kT i
N E 2
⋅=(1)
理想气体的压强kT V
N
nkT p =
=(2) 由(1)、(2)两式可得53
2
1035.110251075.6252⨯=⨯⨯⨯⨯==-V E p Pa (2)由kT i
N E 2
⋅=则362104.51038.151075.625222232=⨯⨯⨯⨯⨯⨯==-kN E T K
又2123105.73621038.12
323--⨯=⨯⨯⨯==kT w J
7-4.容器内储有氧气,其压强为p =1.01×105Pa ,温度为t =27℃。

试求:
(1)单位体积内的分子数;
(2)分子的平均平动动能。

解:(1)由nkT p =
(2)J 1021.63001038.12
3232123--⨯=⨯⨯⨯==kT w
7-5.容器内某理想气体的温度T =273K ,压强p =1.00×10-3atm ,密度为3
1.25g m ρ-=⋅,
求:(1)气体的摩尔质量;(2)气体分子运动的方均根速率;(3)气体分子的平均平动动能和转动动能;(4)单位体积内气体分子的总平动动能;(5)0.3mol 该气体的内能。

[解](1)由RT pV ν=
所以4931025.110013.11000.13333
5
32
=⨯⨯⨯⨯⨯===--ρp m kT v m
(2)气体的摩尔质量 所以该气体是2N 或CO (3)气体分子的平均平动动能 气体分子的转动动能
(4)单位体积内气体分子的总平动动能 (5)该气体的内能
8-3.一定量的理想气体,其体积和压强依照V
=a 的规律变化,其中a 为已知常
数。

试求:
(1)气体从体积V 1膨胀到V 2所作的功;
(2)体积为V 1时的温度T 1与体积为V 2时的温度T 2之比。

解:⎪⎪⎭
⎫ ⎝⎛-===⎰
⎰21222112
1
21
V V a dv v a pdv A v v v V
(2)由状态方程RT M
m
PV =
得 8-4. 0.02kg 的氦气(视为理想气体),温度由17℃升为27℃,假设在升温过程中(1)体积保持不变;(2)压强保持不变;(3)不与外界交换热量。

试分别求出气体内能的改变,吸收的热量,外界对气体所作的功。

解:氦气为单原子分子理想气体,i =3 (1)定容过程,V=常量,A=0
据Q=ΔE+A 可知J T T C M
E Q V 623)(m
12m =-=
=,∆ (2)定压过程,P=常量, ΔE 与(1)同
外界对气体所做的功为:A?=-A=-417J
(3)Q=0,ΔE 与(1)同
气体对外界做功:623J A E =-∆=- 外界对气体所做的功为:A’=-A=623J.
8-7.1mol 单原子分子理想气体的循环过程如图8-7的T —V 图所示,其中c 点的温度为T c =600K ,试求:
(1)ab 、bc 、ca 各个过程系统吸收的热量;
(2)经一循环系统所做的净功;(3)循环的效率。

(注:循环效率=A /Q 1,A 为循环过程系统对外作的净功,Q 1为循环过程系统从外界吸收的热量,ln2=0.693) 解:(1)由图可知,ab 过程中V 和T 成正比,因此为等压过程,bc 为等容过程,ca 为等温过程。

根据图所示和理想气体的状态方程,可得各转折点的状态参量(P,V,T )分别为:a 点:
225
2
831600210m 600K 249310Pa 210
.,,.a a a RT
V T P V
ν--⨯=⨯==
=
=⨯⨯, b 点:225110m 300K 249310Pa ,,.a a b a V T P P -=⨯===⨯ c 点:225c 110m 600K 2498610Pa ,,.a c a V T P P -=⨯===⨯ 设在ab 、bc 、ca 三个过程中所吸收的热量分别为123,,Q Q Q (2)根据热力学第一定律,在整个循环过程中有 (3)次循环的效率为
8-8.热容比=1.40的理想气体,进行如习题8-8图所示的ABCA
循环,状态A 的温度为300K 。

试求:
(1)状态B 和C 的温度;(2)各过程中气体吸收的热量、气体所
作的功和气体内能的增量。

解:根据题意和图有,对A 点:
32m 400a T =300A A A V P P K ==,,,因此摩尔数为4002
=
032mol 831300
..A A A P V RT ν⨯==⨯ 习题8-8图
对B 点:31006
6m 100a T =
==225032083..B B B PV V P P K R ν⨯==⨯,, 对C 点:32m 100a T =T =75C
C C C B B
V V P P K V ==,,
(2)AB 过程:2
=
14.i i
γ+=,可得5i =, ()15
=032183175500J 22
..i E R T ν∆∆=⨯⨯⨯-=-,()1400+1004=
=1000J 2AB A S ⨯=下 BC 过程:
()25
=03218311501000J 22
..i E R T ν∆∆=⨯⨯⨯-=-;2-=-1004=-400J BC A S =⨯下;
CA 过程:35=03218312251500J 22
..i
E R T ν∆∆=⨯⨯⨯=;30A =;。

相关文档
最新文档