大学物理7章作业分析

合集下载

大学物理课后习题答案 第七章

大学物理课后习题答案 第七章
解:(1)气体在高温热源等温膨胀吸热,故
Q
RT1
ln
V2 V1
8.31 400 ln 0.005 0.001
5.35 103 J
(2) 根据卡诺循环的效率公式可得
1 T2 A净 T1 Q吸
A净
(1
T2 T1
)Q吸
(1
300 ) 5.35 103 400
1.34 103 J
(3)由能量守恒 Q吸 A净 Q放 可得
Pa Va )
1 2 (Pb
Pa ) (Vb
Va )
9.5 102 J
A 100 10.5% Q吸 950
B
C 2 V (L)
62
大学物理上习题册参考解答
10、一定质量理想气体(摩尔热容比为 γ)的某循环过程的 T-V 图如下,其中 CA 为绝
热过程,状态 A(T1,V1)和状态 B(T2,V2)为已知,试问:
RT2
ln
VA VB
R(T1 T2) ln
VA VB
T2 T1 T2
14、一台家用冰箱放在室温为 300K 的房间内,做一盘 2.09105 J 的热量。设冰箱为理想卡诺制冷机。 (1)求做一盘冰块所需要的功;
℃的冰块需从冷冻室取走
(2)若此冰箱能以 2.09102 J / s 的速率取出热量,求冰箱的电功率。
mR mR
60
大学物理上习题册参考解答
6、某理想气体在 P-V 图上等温线与绝热线相交于 A
点(如图所示)。 已知 A 点的压强 P1=2×105Pa,体积 V1=0.5 P ×10-3m3 ,而且 A 点处等温线的斜率与绝热线斜率之比为
0.714,现使气体从 A 点绝热膨胀至 B 点,其体积 V2=1×10-3m3。

大学物理第7章习题解答

大学物理第7章习题解答

第七章7-1容器内装有质量为0.lkg 的氧气,其压强为l0atm(即lMPa),温度为47C 0。

因为漏气,经过若干时间后,压强变为原来的85,温度降到27C 0。

问:(1)容器的容积有多大?(2)漏去了多少氧气? 解:(1)由RT MmpV =把p =10atm, T=(47+273)K=320K.m =0.1kg, M=32×10-3kg R =8.31J ·mol -1·K -1代入.证V =8.31×10-3m 3(2) 设漏气后,容器中的质量为m ′,则漏去的氧气为kg 103.3kg 301kg )1511.0(2-⨯≈=-='-=m m m ∆ 7-2设想太阳是由氢原子组成的理想气体,其密度可当作是均匀的。

若此气体的压强为Pa 141035.1⨯,试估算太阳的温度。

已知氢原子的质量kg H 271067.1-⨯=μ,太阳半径m R S 81096.6⨯=,太阳质量kg M S 301099.1⨯=。

解: 太阳内氢原子数HSm M N =故氢原子数密度为由P =nkT 知)(1015.11038.1105.81035.17232914K nk p T ⨯=⨯⨯⨯⨯==- 7-3 一容器被中间隔板分成相等的两半,一半装有氮气,温度为1T ,另一半装有氧气,温度为2T ,二者压强相等,今去掉隔板,求两种气体混合后的温度。

解: 如图混合前:2221112222111O He T M m T M m RT M m pV RT M m pV =⇒⎪⎪⎭⎪⎪⎬⎫==气有对气有对 ① 总内能 222111212523RT M m RT M m E E E +=+=前 ② ①代入②证混合后:设共同温度为T()RT M m T T EF RT M m M m E 21210221125231,2523⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=式得又由后 ③ 题7-2图又后前E E =,故由(2)(3)知)/53(8211T T T T +=7-4 设有N 个粒子的系统,速率分布函数如习题7一4图所示,求:(1))(v f 的表达式;(2)a 与0v 之间的关系;(3)速率在之间的粒子数;(4)最概然速率;(5)粒子的平均速率;(6) 0.50v ~0v 区间内粒子的平均速率。

大学物理习题答案解析第七章

大学物理习题答案解析第七章

第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( ) (A ) (B ) (C ) (D )分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比因而正确答案为(C )。

7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A ) (B ) (C ) (D )分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;.因而正确答案为(D ). 7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。

因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )r R B B 2=r R B B =r R B B =2r R B B 4=21==R r n n r R B r 2π2B r 2παB r cos π22αB r cos π2S B ⋅=m Φ(A ) ,(B ) ,(C ) ,(D ) ,分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).*7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )(B ) (C ) (D )分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).7 -6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速。

(完整版)大学物理学(课后答案)第7章

(完整版)大学物理学(课后答案)第7章

第七章课后习题解答一、选择题7-1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[ ](A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强 (C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强分析:理想气体分子的平均平动动能32k kT ε=,仅与温度有关,因此当氦气和氮气的平均平动动能相同时,温度也相同。

又由理想气体的压强公式p nkT =,当两者分子数密度相同时,它们压强也相同。

故选(C )。

7-2 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的[ ](A) 动能为2i kT (B) 动能为2iRT(C) 平均动能为2i kT (D) 平均平动动能为2iRT分析:由理想气体分子的的平均平动动能32k kT ε=和理想气体分子的的平均动能2ikT ε=,故选择(C )。

7-3 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()1/21/21/222::2A B Cv v v =1:2:4,则其压强之比为A B C p :p :p[ ](A) 1:2:4 (B) 1:4:8 (C) 1:4:16 (D) 4:2:1=,又由物态方程p nkT =,所以当三容器中得分子数密度相同时,得123123::::1:4:16p p p T T T ==。

故选择(C )。

7-4 图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。

如果()2p O v 和()2p H v 分别表示氧气和氢气的最概然速率,则[ ](A) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /4v v =(B) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(C) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(D) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /4v v =分析:在温度相同的情况下,由最概然速率公式p ν=质量22H O M M <,可知氢气的最概然速率大于氧气的最概然速率,故曲线a 对应于氧分子的速率分布曲线。

大学物理答案解析第7~8章

大学物理答案解析第7~8章

第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。

解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。

7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。

(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。

解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(4002xL x x d E L--=-=⎰πελξξπελ =)(40L x x L-πελ方向沿ξ轴正向。

(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。

习题7-1图dq ξd ξ习题7-2 图ax θθπελθd y dE E x x ⎰⎰-=-=00sin 4xdx习题7-2 图byθθπελθd y dE E y y ⎰⎰==00cos 400sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。

解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。

大学物理第07章习题分析与解答

大学物理第07章习题分析与解答

r R r REOr(D)E ∝1/r 222第七章 静电场7-1 关于电场强度与电势的关系,描述正确的是[ ]。

(A) 电场强度大的地方电势一定高; (B) 沿着电场线的方向电势一定降低; (C) 均匀电场中电势处处相等; (D) 电场强度为零的地方电势也为零。

分析与解 电场强度与电势是描述静电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零;电场强度等于负电势梯度;静电场是保守场,电场线的方向就是电势降低的方向。

正确答案为(B )。

7-2 半径为R 的均匀带电球面的静电场中各点的电场强度的大小E 与距球心的距离r 之间的关系曲线为[ ]。

7-3、下分析与解 根据静电场的高斯定理可以求得均匀带电球面的电场强度分布为⎪⎩⎪⎨⎧>πε<=R r rQRr E 2040。

正确答案为(B )。

7-3 下列说法正确的是[ ]。

(A )带正电的物体电势一定是正的 (B)电场强度为零的地方电势一定为零 (C )等势面与电场线处处正交 (D)等势面上的电场强度处处相等分析与解 正电荷在电场中所受的电场力的方向与电场线的切线方向相同,电荷在等势面上移动电荷时,电场力不做功,说明电场力与位移方向垂直。

正确答案为(C )。

7-4 真空中一均匀带电量为Q 的球壳,将试验正电荷q 从球壳外的R 处移至无限远处时,电场力的功为[ ]。

(A )24R qQ o πε (B )R Q o πε4 (C ) R q o πε4 (D )R qQ o πε4分析与解 静电场力是保守力,电场力做的功等电势能增量的负值,也可以表示成这一过程的电势差与移动电量的乘积,由习题7-2可知电场强度分布,由电势定义式⎰∞⋅=R rE d V 可得球壳与无限远处的电势差。

正确答案为(D )。

7-5 关于静电场的高斯定理有下面几种说法,其中正确的是[ ]。

大学物理第7章真空中的静电场答案解析

大学物理第7章真空中的静电场答案解析

第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。

解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。

7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。

(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。

解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(40020xL x x d E L--=-=⎰πελξξπελ=)(40L x x L-πελ方向沿ξ轴正向。

(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y习题7-1图0 dqξd ξ习题7-2 图a204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。

θθπελθd ydE E y y ⎰⎰==000cos 4 00sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。

解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。

对称分析E y =0。

θπεθλsin 420RRd dE x =⎰⎰==πθπελ00sin 4RdE E x R02πελ= θθπελθd y dE E x x ⎰⎰-=-=0sin 4xdx习题7-2 图byx习题7-3图2022R q επ=,如图,方向沿x 轴正向。

大学物理习题集答案解析-第七章-磁力

大学物理习题集答案解析-第七章-磁力

解:( 俯视逆时针旋转. )
h 2mv//
eB
eB h
v//
m
2
R
mv eB
eB v m R
B F
v
v2 v/2/
eB m
R2 h 2
2
由洛伦兹力 F ev B 可判断出 B沿螺旋轴竖直向上( 如图示 ).
7-4 如图示,一条任意形状的载流导线位于均匀磁场 中,试证明它所受到的安培力等于载流直导线ab所 受到的安培力。
为I2且AB与ab在同一平面上,ABab,如图8-2所示,a端距离 AB为ra,b端距离AB为rb,求导线ab受到的作用力。
解的:磁感在应ab上强任度取方一向线: 元B dr,d由rAB产生
A
大小: B 0 I1 2r
I1 r ab
d F I2dr sB i9n 0 I2Bd 同向r叠加
I2 dr
Fe12
q1q2
4 0a2
rˆ1(2 向上)
F12Fe12
v1 q 1
v2
qrˆ12 2
8-5 电流由长直导线1沿平行bc边方向经过a点流入一电阻均匀分布
的正三角形线框,再由b点沿cb方向流出,经长直导线2返回电源,
如图8-5所示,已知导线上的电流为I,三角框的每一边长为L,求三
角框中心O点的磁感应强度的大小。
第七章 磁力
7-1 7-5 7-9 7-2 7-6 7-3 7-7 7-4 7-8
7-1 .有一质量为m的倒U形导线,两端浸没在水银槽中,导
线的上段长l 处在均匀磁场B中,如果使一个电流脉冲,即
t
电冲量持续q时间与0导id线t跳通起过时导间线相,这比导非线常就小会,跳试起由来导,线假所定达电高脉度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章机械波
一. 选择题
1. 机械波的表示式为(SI),则
(A) 其振幅为3m (B) 其波速为10m/s (C) 其周期为1/3s (D) 波沿x轴正向传播
2. 一平面简谐波沿x轴正向传播,时波形图如图示,
此时处质点的相位为
(A) 0 (B) π
(C) π/2 (D) - π/2
3. 频率为100Hz、波速为300m/s的简谐波,在传播方向上有两点同一时刻振动相位差为π/3,则这两点相距
(A) 2m (B) 21.9m
(C) 0.5m (D) 28.6m
4. 一平面简谐波在介质中传播,某瞬时介质中某质元正处于平衡位置,此时它的能量为
(A) 动能最大,势能为零 (B) 动能为零,势能最大
(C) 动能为零,势能为零 (D) 动能最大,势能最大
5. 一平面简谐波在弹性介质中传播,下述各结论哪个是正确的?
(A) 介质质元的振动动能增大时,其弹性势能减小,总机械能守恒
(B) 介质质元的振动动能和弹性势能做周期性变化,但二者的相位不相同
(C) 介质质元的振动动能和弹性势的相位在任一时刻都相同,但二者的数值不相等
(D) 介质质元在其平衡位置处弹性势能最大
6. 两相干波源S1、S2发出的两列波长为λ的同相位波列在P点相遇,S1到P点的距离是r1,S2到P点的距离是r2,则P点干涉极大的条件是
(A)
(B)
(C)
(D)
7. 两相干波源S 1和S2相距λ/4(λ为波长),S1的相位比S2的相位超前,在S1、S2连线上,S1外侧各点(例如P点)两波干涉叠加的结果是
(A) 干涉极大
(B) 干涉极小
(C) 有些点干涉极大,有些点干涉极小
(D)无法确定
8. 在波长为λ的驻波中,任意两个相邻波节之间的距离为
(A) λ (B) 3λ/4 (C) λ/2 (D) λ/4
二. 填空题
9. 一声波在空气中的波长是0.25m,传播速度时340m/s,当它进入另一种介质时,波长变成了0.37m,则它在该介质中的传播速度为__________________.
10. 平面简谐波沿x轴正向传播,波动方程为,则处质点的振动方程为_________________,处质点与处质点振动的相位差为_______.
11. 简谐波沿x轴正向传播,传播速度为5m/s ,原点O振动方程为
(SI),则处质点的振动方程为_____________________.
12. 一平面简谐波周期为2s,波速为10m/s,A、B是同一传播方向上的两点,间距为5m,则A、B两点的相位差为_______________.
13. S1、S2是两个相干波源,已知S1初相位为,若使S1S2连线中垂线上各点均干涉相消,S 2的初相位为_______________.
14. 如图,波源S1、S2发出的波在P点相遇,若P点的合振
幅总是极大值,则波源S1的相位比S2的相位领先
_____________________.
三. 计算题
15. 一横波沿绳子传播时的波动表式为 )410cos(05.0x t y ππ-=[SI] . 求:
(1)此波的振幅、波速、频率和波长; (2)绳子上各质点振动的最大速度和最大加速度;
16. 波源做简谐振动,振幅为0.1m ,振动周期为0.01s . 以它经过平衡位置向正方向运动时为计时起点,若此振动以的速度沿直线传播,求距波源8m 处P 点的振动方程.
17. 如图,一平面波在介质中以速度1
s m 20-⋅=u 沿x 轴负方向传播,已知a 点的振动表式为
t y a π4cos 3= [SI].(1)以a 为坐标原点写出波动方程;
(2)以与a 点相距m 5处的b 点为坐标原点,写出波动方程.
18. 如图所示,已知和时的波形曲线分别为图中实线曲线Ⅰ和虚线曲线Ⅱ,波沿x轴正向传播. 根据图中给出的条件,求:(1)波动方程;(2)P点质元的振动方程.
19. 如图所示,两相干波源分别在P、Q两点,它们发出频率为ν,波长为λ,初相相同的两列相干波,振幅分别为A1和A2 ,设2/
=
PQ,R为PQ连线上的一点.求:

(1)自P、Q发出的两列波在R处的相位差;
(2)两波在R处干涉时的合振幅.
第七章机械波参考答案
一. 选择题
1. (C)
2. (C)
3. (C)
4.(D)
5. (D)
6. (C)
7.(B)
8.(C)
二. 填空题 9. ( 503 m/s ) 10. (

)
11. ( )
12. ( π/2 ) 13. ( - π/2 ) 14. ( - 2π/3 ) 三. 计算题
15. 一横波沿绳子传播时的波动表式为 )410cos(05.0x t y ππ-=[SI] . 求: (1)此波的振幅、波速、频率和波长;
(2)绳子上各质点振动的最大速度和最大加速度; 解:(1)波动方程
可得振幅
频率
波长 波速
(2)绳上各质点振动时的最大速度
绳上各质点振动时的最大加速度
16. 波源做简谐振动,振幅为0.1m ,振动周期为0.01s . 以它经过平衡位置向正方向运动时为计时起点,若此振动以的速度沿直线传播,求距波源8m 处P 点的振动方程.
解: 波源振动方程为
简谐波的波动方程为
代入,可得质点振动方程
m
17. 一平面波在介质中以速度1s m 20-⋅=u 沿x 轴负方向传播,已知a 点的振动表式为
t y a π4cos 3= [SI].
(1)以a 为坐标原点写出波动方程;
(2)以与a 点相距m 5处的b 点为坐标原点,写出波动方程.
解:(1)已知A = 3m ,
,
因波沿x 轴负方向传播,以a 点为坐标原点的波动方程为
(2)以a 点为坐标原点时,b 点的坐标为
, 代入上式得b 点的振动方程为
若以b 点为坐标原点,则波动方程为
18. 如图所示,已知

时的波形曲线分别为图中实线曲线Ⅰ和虚线曲线Ⅱ,
波沿x 轴正向传播. 根据图中给出的条件,求:(1)波动方程;(2)P 点质元的振动方程.
解:(1) 设波动方程为
由图知A= 0.1m,λ= 4m
又时,原点处质点的位移,速度,故该质点的初相
波动方程为
(2)将代入波动方程,得点质元振动方程为
19. 如图所示,两相干波源分别在P、Q两点,它们发出频率为ν,波长为λ,初相相同的两列相干波,振幅分别为A1和A2 ,设2/
PQ,R为PQ连线上的一点.求:

=
(1)自P、Q发出的两列波在R处的相位差;
(2)两波在R处干涉时的合振幅.
解:(1)两列波的初相位相同,在R处的相位差为
(2)两波在R处的振动方向相同,频率相同,相位差,则合振幅为。

相关文档
最新文档