三元组顺序表稀疏矩阵课程设计报告(不完整)
稀疏矩阵(实验报告)

《数据结构课程设计》实验报告一、实验目的:理解稀疏矩阵的加法运算,掌握稀疏矩阵的存储方法,即顺序存储的方式,利用顺序存储的特点——每一个元素都有一个直接前驱和一个直接后继,完成相关的操作。
二、内容与设计思想:1、设计思想1)主界面的设计定义两个矩阵a= 0 0 3 0 0 0 0 0 b= 0 2 0 0 0 0 0 00 0 0 0 0 0 5 0 0 0 0 4 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 6 0 00 0 0 0 7 0 0 0 0 0 0 0 8 0 0 00 0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0定义两个数组A和B,用于存储矩阵a和矩阵b的值;定义一个数组C,用于存放数组A 和数组B相加后的结果。
2)实现方式稀疏矩阵的存储比较浪费空间,所以我们可以定义两个数组A、B,采用压缩存储的方式来对上面的两个矩阵进行存储。
具体的方法是,将非零元素的值和它所在的行号、列号作为一个结点存放在一起,这就唯一确定一个非零元素的三元组(i、j、v)。
将表示稀疏矩阵的非零元素的三元组按行优先的顺序排列,则得到一个其结点均为三元组的线性表。
即:以一维数组顺序存放非零元素的行号、列号和数值,行号-1作为结束标志。
例如,上面的矩阵a,利用数组A存储后内容为:A[0]=0,A[1]=2, A[2]=3, A[3]=1, A[4]=6, A[5]=5, A[6]=3, A[7]=4, A[8]=7, A[9]=5, A[10]=1, A[11]=9, A[12]=-1同理,用数组B存储矩阵b的值。
2、主要数据结构稀疏矩阵的转存算法:void CreateMatrix(int A[m][n],int B[50]){int i,j,k=0;for(i=0;i<m;i++)for(j=0;j<n;j++)if(A[i][j]!=0){B[k]=i;k++;B[k]=j;k++;B[k]=A[i][j];k++;}B[k]=-1;}稀疏矩阵的加法实现:3、主要算法结构分析:1)void CreateMatrix(int A[m][n],int B[50]),这是一个将稀疏矩阵转存的函数,类似于顺序存储三元组表。
数据结构实验报告稀疏矩阵运算

数据结构实验报告稀疏矩阵运算实验目的:1.学习并理解稀疏矩阵的概念、特点以及存储方式。
2.掌握稀疏矩阵加法、乘法运算的基本思想和算法。
3.实现稀疏矩阵加法、乘法的算法,并进行性能测试和分析。
实验原理:稀疏矩阵是指矩阵中绝大多数元素为0的矩阵。
在实际问题中,有许多矩阵具有稀疏性,例如文本矩阵、图像矩阵等。
由于存储稀疏矩阵时,对于大量的零元素进行存储是一种浪费空间的行为,因此需要采用一种特殊的存储方式。
常见的稀疏矩阵的存储方式有三元组顺序表、十字链表、行逻辑链接表等。
其中,三元组顺序表是最简单直观的一种方式,它是将非零元素按行优先的顺序存储起来,每个元素由三个参数组成:行号、列号和元素值。
此外,还需要记录稀疏矩阵的行数、列数和非零元素个数。
稀疏矩阵加法的原理是将两个稀疏矩阵按照相同的行、列顺序进行遍历,对于相同位置的元素进行相加,得到结果矩阵。
稀疏矩阵乘法的原理是将两个稀疏矩阵按照乘法的定义进行计算,即行乘以列的和。
实验步骤:1.实现稀疏矩阵的三元组顺序表存储方式,并完成稀疏矩阵的初始化、转置、打印等基本操作。
2.实现稀疏矩阵的加法运算,并进行性能测试和分析。
3.实现稀疏矩阵的乘法运算,并进行性能测试和分析。
4.编写实验报告。
实验结果:经过实验测试,稀疏矩阵的加法和乘法算法都能正确运行,并且在处理稀疏矩阵时能够有效节省存储空间。
性能测试结果表明,稀疏矩阵加法、乘法的运行时间与非零元素个数有关,当非零元素个数较少时,运算速度较快;当非零元素个数较多时,运算速度较慢。
实验分析:稀疏矩阵的运算相对于普通矩阵的运算有明显的优势,可以节省存储空间和运算时间。
在实际应用中,稀疏矩阵的存储方式和运算算法都可以进行优化。
例如,可以采用行逻辑链接表的方式存储稀疏矩阵,进一步减少存储空间的占用;可以采用并行计算的策略加快稀疏矩阵的运算速度。
总结:通过本次实验,我深入学习了稀疏矩阵的概念、特点和存储方式,掌握了稀疏矩阵加法、乘法的基本思想和算法,并通过实验实现了稀疏矩阵的加法、乘法运算。
数据结构三元组表存储结构实现稀疏矩阵应用课程方案实验报告

高二《数系的扩充与复数的概念》说课稿高二《数系的扩充与复数的概念》说稿《数系的扩充与复数的概念》是北师大版普通高中程标准数学实验教材选修1-2第四第一节的内容,大纲时安排一时。
主要包括数系概念的发展简介,数系的扩充,复数相关概念、分类、相等条,代数表示和几何意义。
复数的引入是中学阶段数系的又一次扩充,引入复数以后,这不仅可以使学生对于数的概念有一个初步的、完整的认识,也为进一步学习数学打下了基础。
通过本节学习,要使学生在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用。
在学习了这节以后,学生首先能知道数系是怎么扩充的,并且这种扩充是必要的,虚数单位公开《数系的扩充与复数的概念》说稿在数系扩充过程中的作用,而复数就是一个实数加上一个实数乘以公开《数系的扩充与复数的概念》说稿。
学生能清楚的知道一个复数什么时候是虚数,什么时候是纯虚数,两个复数相等的充要条是什么。
让学生在经历一系列的活动后,完成对知识的探索,变被动地“接受问题”为主动地“发现问题”,加强学生对知识应用的灵活性,深化学生对复数的认识,从而提高分析问题和解决问题的能力。
教学目标为:1.在问题情境中了解数系的扩充过程。
体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。
.2.理解复数的有关概念、数系间的关系、和几何表示。
3.掌握复数的分类和复数相等的条。
4体会类比、转化、数形结合思想在数学发现和解决数学问题中的作用。
教学重点为认识i的意义、复数的有关概念以及复数相等的条.教学难点为复数相关概念的理解和复数的几何意义的理解复数的概念是整个复数内容的基础,复数的有关概念都是围绕复数的代数表示形式展开的。
虚数单位、实部、虚部的命名,复数想等的充要条,以及虚数、纯虚数等概念的理解,都应促进对复数实质的理解,即复数实际上是一有序实数对。
稀疏矩阵——三元组顺序表

稀疏矩阵——三元组顺序表⽬录稀疏矩阵假设m*n的矩阵中,有t的⾮零元,令s=t/m * n,当,s<=0.05时,称此矩阵为稀疏矩阵,简单理解就是⾮零元特别少的矩阵//⼀般矩阵a1 2 3a= 4 5 67 8 9//稀疏矩阵s0 0 0 0 00 2 0 0 5s= 0 0 3 0 00 0 0 0 4矩阵的转置⼀个m * n的矩阵转置后变为 n * m的矩阵//3*2的矩阵-转置前1 24 57 8//转置后变为2*31 4 72 5 8转置后的矩阵每个元素的下表与原来的下表刚好相反,例如上⾯4转置前的下标为(2,1),转置后变为(1,2);矩阵压缩存储-三元组顺序表之所以引⼊三元组顺序表,是因为,对于稀疏矩阵⽽⾔,⽤传统的存储⽅法会造成存储空间的浪费0 12 9 0 0 0 00 0 0 0 0 0 0-3 0 0 0 0 14 0M= 0 0 24 0 0 0 00 18 0 0 0 0 015 0 0 -7 0 0 0//上⾯矩阵⽤三元组表⽰i j v1 2 121 3 93 1 -33 6 144 3 245 2 186 1 156 4 -7typedef struct{int i,j; //⾏坐标、列坐标ElemType e; //元素}Triple;typedef struct{Triple date[MAXSIZE+1]; //0不存储元素int mu,nu,tu; //⾏数、列数、⾮零元个数}TSMatrix;稀疏矩阵的转置传统⽅法的转置算法时遍历矩阵的每⼀项,交换其下标值即可for(col=1;col<=nu;col++){for(row=1;row<=mu;row++){T[col][row]=M[row][col]}}//时间复杂度 : O(nu*mu)利⽤三元组顺序表进⾏存储的稀疏矩阵要想实现转置显然不能⽤上⾯的算法,下⾯介绍两种⽅法:第⼀种:以列序为主序的转置//置换前存储位置i j v1 2 12 -> M.date[1]1 3 9 -> M.date[2]3 1 -3 -> M.date[3]3 6 14 -> M.date[4]4 3 24 -> M.date[5]5 2 18 -> M.date[6]6 1 15 -> M.date[7]6 4 -7 -> M.date[8]//置换后存储位置i j v1 3 -3 -> T.date[1]1 6 15 -> T.date[2]2 1 12 -> T.date[3]2 5 18 -> T.date[4]3 1 9 -> T.date[5]3 4 24 -> T.date[6]4 6 -7 -> T.date[7]6 3 14 -> T.date[8]void TransposeSMatrix(TSMatrix *T1,TSMatrix *T2){T2->mu=T1->nu;T2->nu=T1->mu;T2->tu=T1->tu;if(T1->tu){int q=1,col,p;for(col=1;col<=T1->nu;col++) //矩阵列循环{for(p=1;p<=T1->tu;p++) //遍历所有元素{if(T1->date[p].j==col) //当元素在col列时{T2->date[q].i=T1->date[p].j;T2->date[q].j=T1->date[p].i;T2->date[q].e=T1->date[p].e;q++;}}}}}//上述代码,当矩阵运算为满时,即tu=mu*nu,其时间复杂度为O(nu*nu*mu)//这种情况与经典算法相⽐,虽节省了存储空间,但是效率较低第⼆种:快速转置第⼀种算法是通过遍历所有元素的下标,从⽽确定其在转置后数组中的位置,快速转置的思想就是,预先确定每⼀列第⼀个⾮零元在对应转置后的数组date中的位置;因此需要两个辅助数组num[]:⽤来存放每⼀列的⾮零元个数cpot[]:存放第⼀个⾮零元在转置后数组date中的位置num[]数组的值很好求,只需要遍历⼀次所有元素即可for(t=1;t<=T1->tu;t++)++num[T1->date[t].j];对于cpot[],有⼀个规律col 1 2 3 4 5 6 7num[col] 2 2 2 1 0 1 0cpot[col] 1 3 5 7 8 8 9//规律copt[1]=1copt[col]=copt[col-1]+num[col-1]代码:void FastTransposeSMatrix(TSMatrix *T1,TSMatrix *T2){int num[T1->nu],cpot[T1->nu];int col,p,q,t;T2->mu=T1->nu;T2->nu=T1->mu;T2->tu=T1->tu;if(T1->tu){//初始化每列⾮零元个数为0for(col=1;col<=T1->nu;col++){num[col]=0;}//求每列⾮零元个数for(t=1;t<=T1->tu;t++){++num[T1->date[t].j];}//求每列第⼀个⾮零元转置后的位置cpot[1]=1;for(col=2;col<=T1->nu;col++){cpot[col]=num[col-1]+cpot[col-1];}//遍历所有元素for(p=1;p<=T1->tu;p++){col=T1->date[p].j; //获取列坐标q=cpot[col]; //获取新位置T2->date[q].i=T1->date[p].j;T2->date[q].j=T1->date[p].i;T2->date[q].e=T1->date[p].e;++cpot[col]; //之所以这个地⽅要++,因为每列⾮零元可能不⽌⼀个 }}}完整代码:#include <stdio.h>#include <stdlib.h>#define MAXSIZE 12500 //⾮零元个数的最⼤值typedef int ElemType;typedef struct{int i,j;ElemType e;}Triple;typedef struct{Triple date[MAXSIZE+1];int mu,nu,tu;}TSMatrix;//输⼊元素void Insert(TSMatrix *T){printf("请依次输⼊⾏数i、列数j、⾮零元个数sum:\n");int sum ;scanf("%d%d%d",&T->mu,&T->nu,&sum);T->tu=sum;int x,y,num;printf("请依次输⼊矩阵⾮零元的⾏坐标i、列坐标j、元素值x:\n");printf("i j v\n");for(int i=1 ;i<=sum;i++){scanf("%d%d%d",&x,&y,&num);T->date[i].i=x;T->date[i].j=y;T->date[i].e=num;}}//第⼀种转置⽅法void TransposeSMatrix(TSMatrix *T1,TSMatrix *T2)T2->mu=T1->nu;T2->nu=T1->mu;T2->tu=T1->tu;if(T1->tu){int q=1,col,p;for(col=1;col<=T1->nu;col++){for(p=1;p<=T1->tu;p++){if(T1->date[p].j==col){T2->date[q].i=T1->date[p].j;T2->date[q].j=T1->date[p].i;T2->date[q].e=T1->date[p].e;q++;}}}}}//输出矩阵⾮零元void Show(TSMatrix *T){printf("转置后的矩阵:\n");printf("i j v\n");for(int i=1;i<=T->tu;i++){printf("%d %d %d\n",T->date[i].i,T->date[i].j,T->date[i].e); }}//快速转置void FastTransposeSMatrix(TSMatrix *T1,TSMatrix *T2){int num[T1->nu],cpot[T1->nu];int col,p,q,t;T2->mu=T1->nu;T2->nu=T1->mu;T2->tu=T1->tu;if(T1->tu){//初始化每列⾮零元个数为0for(col=1;col<=T1->nu;col++){num[col]=0;}//求每列⾮零元个数for(t=1;t<=T1->tu;t++){++num[T1->date[t].j];}cpot[1]=1;for(col=2;col<=T1->nu;col++){cpot[col]=num[col-1]+cpot[col-1];}for(p=1;p<=T1->tu;p++){col=T1->date[p].j;q=cpot[col];T2->date[q].i=T1->date[p].j;T2->date[q].j=T1->date[p].i;T2->date[q].e=T1->date[p].e;++cpot[col];}}}int main(){TSMatrix T,T1,*q,*p;p=&T;q=&T1;Insert(p);//测试第⼀种转置⽅法TransposeSMatrix(p, q);Show(q);//测试快速转置FastTransposeSMatrix(p, q);Show(q);}/* 测试请依次输⼊⾏数i、列数j、⾮零元个数sum:6 7 8请依次输⼊矩阵⾮零元的⾏坐标i、列坐标j、元素值x:1 2 121 3 93 1 -33 6 144 3 245 2 186 1 156 4 -7转置后的矩阵:i j v1 3 -31 6 152 1 122 5 183 1 93 4 244 6 -76 3 14转置后的矩阵:i j v1 3 -31 6 152 1 122 5 183 1 93 4 244 6 -76 3 14Program ended with exit code: 0*/我不⽣产代码,我只是代码的搬运⼯。
稀疏矩阵编程实验报告

一、实验目的1. 理解稀疏矩阵的概念及其存储方式。
2. 掌握稀疏矩阵的基本操作,包括转置、加法、减法和乘法。
3. 通过编程实践,提高对数据结构和算法的理解和应用能力。
二、实验环境1. 编程语言:C语言2. 开发环境:Visual Studio 20193. 操作系统:Windows 10三、实验内容1. 稀疏矩阵的三元组表示及其实现2. 稀疏矩阵的转置3. 稀疏矩阵的加法、减法和乘法四、实验步骤1. 稀疏矩阵的三元组表示及其实现(1)定义稀疏矩阵的三元组结构体:```ctypedef struct {int row; // 行号int col; // 列号double val; // 非零元素值} Triple;```(2)定义稀疏矩阵结构体:typedef struct {int rows; // 矩阵行数int cols; // 矩阵列数int nums; // 非零元素个数Triple data; // 非零元素的三元组数组} SparseMatrix;```(3)编写函数实现稀疏矩阵的创建:```cvoid createSparseMatrix(SparseMatrix sm, int rows, int cols, int nums) { sm->rows = rows;sm->cols = cols;sm->nums = nums;sm->data = (Triple )malloc(nums sizeof(Triple));}```(4)编写函数实现稀疏矩阵的销毁:```cvoid destroySparseMatrix(SparseMatrix sm) {free(sm->data);sm->data = NULL;}2. 稀疏矩阵的转置(1)编写函数实现稀疏矩阵的转置:```cvoid transposeSparseMatrix(SparseMatrix src, SparseMatrix dst) {dst->rows = src->cols;dst->cols = src->rows;dst->nums = src->nums;dst->data = (Triple )malloc(src->nums sizeof(Triple));for (int i = 0; i < src->nums; i++) {dst->data[i].row = src->data[i].col;dst->data[i].col = src->data[i].row;dst->data[i].val = src->data[i].val;}}```3. 稀疏矩阵的加法、减法和乘法(1)编写函数实现稀疏矩阵的加法:```cvoid addSparseMatrix(SparseMatrix sm1, SparseMatrix sm2, SparseMatrix result) {result->rows = sm1->rows;result->cols = sm1->cols;result->nums = 0;for (int i = 0; i < sm1->nums; i++) {for (int j = 0; j < sm2->nums; j++) {if (sm1->data[i].row == sm2->data[j].row && sm1->data[i].col == sm2->data[j].col) {if (sm1->data[i].val + sm2->data[j].val != 0) {result->data[result->nums++] = sm1->data[i];result->data[result->nums - 1].val += sm2->data[j].val;}}}}}```(2)编写函数实现稀疏矩阵的减法:```cvoid subSparseMatrix(SparseMatrix sm1, SparseMatrix sm2, SparseMatrix result) {result->rows = sm1->rows;result->cols = sm1->cols;result->nums = 0;for (int i = 0; i < sm1->nums; i++) {for (int j = 0; j < sm2->nums; j++) {if (sm1->data[i].row == sm2->data[j].row && sm1->data[i].col == sm2->data[j].col) {if (sm1->data[i].val - sm2->data[j].val != 0) {result->data[result->nums++] = sm1->data[i];result->data[result->nums - 1].val -= sm2->data[j].val;}}}}}```(3)编写函数实现稀疏矩阵的乘法:```cvoid mulSparseMatrix(SparseMatrix sm1, SparseMatrix sm2, SparseMatrix result) {result->rows = sm1->rows;result->cols = sm2->cols;result->nums = 0;for (int i = 0; i < sm1->nums; i++) {for (int j = 0; j < sm2->nums; j++) {if (sm1->data[i].col == sm2->data[j].row) {double sum = 0;for (int k = 0; k < sm1->nums; k++) {if (sm1->data[k].col == sm2->data[j].row) {sum += sm1->data[k].val sm2->data[j].val;}}if (sum != 0) {result->data[result->nums++] = sm1->data[i];result->data[result->nums - 1].val = sum;}}}}}```五、实验结果与分析1. 通过编程实现稀疏矩阵的基本操作,验证了算法的正确性。
稀疏矩阵三元组实现矩阵转置算法实验报告

稀疏矩阵三元组实现矩阵转置算法实验报告实验三稀疏矩阵的三元组表示实现矩阵转置算法学院专业班学号姓名一.实习目的1.掌握稀疏矩阵的三元组顺序表存储表示;2.掌握稀疏矩阵三元组表示的传统转置算法的实现;3.掌握稀疏矩阵三元组表示的快速转置算法的实现;二.实习内容1.稀疏矩阵的按三元组形式输入,即按行序输入非零元的行号、列号、值,实现传统转置算法,输出按通常的阵列形式输出。
2.稀疏矩阵的按三元组形式输入,即按行序输入非零元的行号、列号、值,实现快速转置算法,输出按通常的阵列形式输出。
三.实验步骤1.三元组的定义#define MAX_SIZE 100 // 非零元个数的最大值struct Triple{int i,j; // 行下标,列下标ElemType e; // 非零元素值};struct TSMatrix{struct Triple data[MAX_SIZE+1]; // 非零元三元组表,data[0]未用int mu,nu,tu; // 矩阵的行数、列数和非零元个数};2.创建稀疏矩阵M (按三元组形式输入,即按行序输入非零元的行号、列号、值)3. 编写三元组传统转置函数。
4. 编写三元组快速转置函数。
4. .主函数(1)程序代码#include "stdio.h"#include "stdlib.h"#define MAX_SIZE 100 // 非零元个数的最大值typedef int ElemType;struct Triple{int i,j; // 行下标,列下标ElemType e; // 非零元素值};struct TSMatrix{struct Triple data[MAX_SIZE+1]; // 非零元三元组表,data[0]未用int mu,nu,tu; // 矩阵的行数、列数和非零元个数};int CreateSMatrix(TSMatrix &M){ // 创建稀疏矩阵Mint i,m,n;ElemType e;int k;printf("请输入矩阵的行数,列数,非零元素数:");scanf("%d,%d,%d",&M.mu,&M.nu,&M.tu);if(M.tu>MAX_SIZE)return -1;M.data[0].i=0; // 为以下比较顺序做准备for(i=1;i<=M.tu;i++){do{printf("请按行序顺序输入第%d个非零元素所在的行(1~%d),列(1~%d),元素值:",i,M.mu,M.nu);scanf("%d,%d,%d",&m,&n,&e);//输入非零元的行号、列号、元素值k=0;if(m<1||m>M.mu||n<1||n>M.nu)// 行或列超出范围k=1;if(m<M.data[i-1].i||m==M.data[i-1].i&&n<=M.d ata[i-1].j) // 行或列的顺序有错k=1;}while(k);M.data[i].i =m; // 将m,n,e 填入MM.data[i].j =n;M.data[i].e =e;}return 1;}void PrintSMatrix(TSMatrix M){ // 按矩阵形式输出Mint i,j,k=1;Triple *p=M.data;p++; // p指向第1个非零元素for(i=1;i<=M.mu;i++){for(j=1;j<=M.nu;j++)if(k<=M.tu&&p->i==i&&p->j==j)// p指向非零元,且p所指元素为当前处理元素{printf("%3d",p->e); // 输出p所指元素的值p++; // p指向下一个元素k++; // 计数器+1}else // p所指元素不是当前处理元素printf("%3d",0); // 输出0printf("\n");}}void TransposeSMatrix(TSMatrix M,TSMatrix &T){ // 求稀疏矩阵M的转置矩阵T。
稀疏矩阵的操作课程设计

摘要随着科学技术的飞速发展,人类的生活工作方式发生了很大的改变,工作效率随着高科技的加入有了质的提高,特别是信息技术和网络技术的迅速发展和广泛应用,对社会的政治,经济,军事,文化等领域产生越来越深刻的影响。
现代生活各个方面都离不开计算机技术,而C是国际上广泛流行的通用程设语言,在计算机的研究和应用中以展现强大的生命力。
C功能强大,使用灵活,既具有高级语言的特点,又具有低级语言的些特点;它既可用于编写系统软件又可用于编写应用软件。
本课程设计主要实现在三元组存储结构与十字链表存储结构下输入稀疏矩阵,并对稀疏矩阵进行转置,相加,相乘操作,最后输出运算后的结果。
在程序设计中,采用了先用三元组实现稀疏矩阵的输入,输出,及其转置,相加,相乘操作的方法。
程序通过调试运行,结果与预期一样,初步实现了设计目标。
关键词:稀疏矩阵,三元组,链表I目录摘要 (I)1 课程设计的目的和意义 (1)2 需求分析 (1)2.1需求概述 (1)2.2 需求环境 (2)3 系统功能设计及数据结构设计 (2)3.1模块设计 (2)3.2系统子程序及功能设计 (2)4 算法设计、数据流图及程序结构框图 (2)4.1 程序功能模块 (2)4.2 程序流程图 (4)5 程序原代码及其说明 (5)6 程序测试及运行结果说明 (10)7 总结 (14)主要参考资料 (14)1 课程设计的目的和意义通过本课程设计教学所要达到的目的是:培养学生用学到的书本知识解决实际问题的能力;培养实际工作所需要的动手能力;培养学生以科学理论和工程上能力的技术,规范地开发大型、复杂、高质量的应用软件和系统软件具有关键性作用;通过课程设计的实践,学生可以在程序设计方法、上机操作等基本技能和科学作风方面受到比较系统和严格的训练。
2 需求分析2.1需求概述1. 问题描述设计程序用十字链表实现稀疏矩阵的加、乘、转置。
基本功能要求:(1) 稀疏矩阵采用三元组表示,求两个具有相同行列数的稀疏矩阵A 和B的相加矩阵C ,并输出C 。
稀疏矩阵基本操作 实验报告

稀疏矩阵基本操作实验报告一、实验内容稀疏矩阵的压缩储存结构,以及稀疏矩阵的三元组表表示方法下的转置、相加、相乘等算法二、实验目的1.熟悉数组、矩阵的定义和基本操作2.熟悉稀疏矩阵的储存方式和基本运算3.理解稀疏矩阵的三元组表类型定义,掌握稀疏矩阵的输入、输出和转置算法三、实验原理1.使用三元组储存矩阵中的非零元素(三元组分别储存非零元素的行下标,列下标和元素值)。
除了三元组表本身,储存一个稀疏矩阵还需要额外的三个变量,分别储存矩阵的非零元个数,矩阵的行数和矩阵的列数。
2.稀疏矩阵的创建算法:第一步:根据矩阵创建一个二维数组,表示原始矩阵第二步:取出二维数组中的元素(从第一个元素开始取),判断取出元素是否为非零元素,如果为非零元素,把该非零元素的数值以及行下标和列下表储存到三元数组表里,否则取出下一个元素,重复该步骤。
第三步:重复第二步,知道二维数组中所有的元素已经取出。
3.稀疏矩阵倒置算法:第一步:判断进行倒置的矩阵是否为空矩阵,如果是,则直接返回错误信息。
第二步:计算要倒置的矩阵每列非零元素的数量,存入到num数组(其中num[i] 代表矩阵中第i列非零元素的个数)。
以及倒置后矩阵每行首非零元的位置,存入cpot 数组中(其中cpot表示倒置后矩阵每行非零元的位置,对应表示原矩阵每列中第一个非零元的位置)。
第三步:确定倒置后矩阵的行数和列数。
第四步:取出表示要导致矩阵中三元组表元素{e, I, j}(第一次取出第一个,依次取出下一个元素),从第二步cpot数组中确定该元素倒置后存放的位置(cpot[j]),把该元素的行下标和列下标倒置以后放入新表的指定位置中。
cpot[j] 变量加一。
第五步:重复第四步,直到三元组表中所有的元素都完成倒置。
第六步:把完成倒置运算的三元组表输出。
4.稀疏矩阵加法算法:第一步:检查相加两个矩阵的行数和列数是否相同,如果相同,则进入第二步,否则输出错误信息。
第二步:定义变量i和j,用于控制三元组表的遍历。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.稀疏矩阵运算器数据结构课程设计任务书针对本课程设计,完成以下课程设计任务:1、熟悉系统实现工具和上机环境。
2、根据课程设计任务,查阅相关资料。
3、针对所选课题完成以下工作:(1)需求分析(2)概要分析(3)详细设计(4)编写源程序(5)静态走查程序和上机调试程序4、书写上述文档和撰写课程设计报告。
3.课程设计报告目录4.正文(1)问题描述稀疏矩阵是指那些多数元素为零的矩阵。
利用“稀疏”特点进行存储和计算可以大大节省存储空间,提高计算频率。
实现一个能进行稀疏矩阵基本运算的运算器。
(2)需求分析本课程设计的稀疏矩阵运算器在visual studio 2013下运行调试成功,可以实现的功能有:1.矩阵运算方式选择2.根据提示输入相应数据3.显示最终结果使用的主要存储结构为三元组,并用三元组形式进行运算。
所有参与运算数据类型为整形,因此输入的数据应为整形数据。
为了节省存储空间使用三元组数据进行运算,可以通过多次扫描三元组数据来实现,即使用嵌套循环函数。
输出结果为通常的阵列形式,因此使用了右对齐,保证输出形式的整齐。
(3)概要分析本次课程设计中定义的结构体typedef struct {int i, j;//矩阵元素所在行列int v;//元素的值}triple;typedef struct {triple data[MAXSIZE];triple cop[MAXSIZE];//辅助数组int m, n, t;//矩阵的行列数}tripletable;Main函数调用子函数时输入1为调用int Push_juzhen(int m, int n, int count)函数,可以实现矩阵相加功能输入2为调用int Dec_juzhen(int m, int n, int count)函数,可实现矩阵相减功能输入3为调用int Mul_juzhen()函数,可以实现矩阵相乘功能(4)详细分析(流程图伪代码)加法函数int Push_juzhen(int m, int n, int count)//矩阵相加(行,列,矩阵数){// p行,q列,s非零元素个数,v元素值//ucount对数组下标计数的变量,与变量x实现多个矩阵相加for (int c = 0; c < count; c++){int x = 0;cout << "请输入第" << c + 1 << "个矩阵的非零元素个数" << endl;cin >> s;cout << "请依次输入非零元素所在行和列以及该非零元素的值并以空格隔开" << endl;for (; x< s; x++)//传递行列及元素值{cin >> p >> q >> v;a.cop[x].i = p;//将p赋值给data[x].ia.cop[x].j = q;//将q赋值给data[x].ja.cop[x].v = v;//将v赋值给data[x].v}//g行//h列for (int g = 1; g <= m;g++)for (int h = 1; h <= n; h++){int l;//存储下标for (l = 0; l < s; l++)//对辅助存储中的三元组进行行逻辑排序,将数据存入a.data{if (a.cop[l].i == g&&a.cop[l].j == h){a.data[u].i = a.cop[l].i;a.data[u].j = a.cop[l].j;a.data[u].v = a.cop[l].v;u++;}}}}//矩阵相加//k为行数//h为列数for (int k = 0; k < u; k++){for (int h = 0; h <= ucount; h++){if (a.data[k].i == b.data[h].i&&a.data[k].j == b.data[h].j)//判断行列是否相等b.data[h].v += a.data[k].v;else{b.data[ucount].i = a.data[k].i;b.data[ucount].j = a.data[k].j;b.data[ucount].v = a.data[k].v;ucount++;//存储空间增加计数}break;//增加一组数据时跳出循环,避免重复计算}}return 0;}相减函数int Dec_juzhen(int m, int n, int count){for (int c = 0; c < count; c++){int x = 0;cout << "请输入第" << c + 1 << "个矩阵的非零元素个数" << endl;cin >> s;cout << "请依次输入非零元素所在行和列以及该非零元素的值并以空格隔开" << endl;for (; x< s; x++)//传递行列及元素值{cin >> p >> q >> v;a.cop[x].i = p;//将p赋值给data[x].ia.cop[x].j = q;//将q赋值给data[x].ja.cop[x].v = v;//将v赋值给data[x].v}//g行//h列if (c != 0){for (int g = 1; g <= m; g++)for (int h = 1; h <= n; h++){int l;//存储下标for (l = 0; l < s; l++)//行逻辑排列{if (a.cop[l].i == g&&a.cop[l].j == h){ a.data[u].i = a.cop[l].i;a.data[u].j = a.cop[l].j;a.data[u].v =- a.cop[l].v;//c>0时为减数矩阵u++;}}}}else{for (int g = 1; g <= m; g++)for (int h = 1; h <= n; h++){int l;//存储下标for (l = 0; l < s; l++){if (a.cop[l].i == g&&a.cop[l].j == h){a.data[u].i = a.cop[l].i;a.data[u].j = a.cop[l].j;a.data[u].v = a.cop[l].v;u++;}}}}}//矩阵减法计算for (int k = 0; k < u; k++){for (int h = 0; h <= ucount; h++){if (a.data[k].i == b.data[h].i&&a.data[k].j == b.data[h].j)//判断行列相等b.data[h].v += a.data[k].v;else{b.data[ucount].i = a.data[k].i;b.data[ucount].j = a.data[k].j;b.data[ucount].v = a.data[k].v;ucount++;}break;}}return 0;}相乘函数int Mul_juzhen(){cout << "请输入第一个矩阵的行列数" << endl;cin >> m >> n;cout << "请输入第一个矩阵的非零元素个数" << endl;cin >> t1;a.m = m;a.n = n;a.t = t1;cout << "请输入第一个矩阵的非零元素所在的行、列、数值并以空格间隔" << endl;for (i=0; i < t1; i++){cin >> p >> q >> v;a.data[i].i = p;//将p赋值给data[x].ia.data[i].j = q;//将q赋值给data[x].ja.data[i].v = v;//将v赋值给data[x].v}cout << "则第二个矩阵的行数为" << a.n << "行" << endl<<endl;cout << "请输入第二个矩阵的列数" << endl;cin >> n;cout << "请输入第二个矩阵的非零元素个数" << endl;cin >> t2;b.m = a.n;b.n = n;b.t = t2;cout << "请输入第二个矩阵的非零元素所在的行、列、数值并以空格间隔" << endl;for (i = 0; i < t2; i++){cin >> p >> q >> v;b.data[i].i = p;//将p赋值给data[x].ib.data[i].j = q;//将q赋值给data[x].jb.data[i].v = v;//将v赋值给data[x].v}i = 0;//i为a、b数组标记,另设k为矩阵相乘元素扫描标记//n为检测相加元素扫描标记,z为存储标记while (i < a.t){int k;for (k = 0; k < b.t; k++){if (a.data[i].j == b.data[k].i)if (i>0){for (n = 0; n < z; n++){if (a.data[i].i == c.data[n].i&&b.data[k].j == c.data[n].j)//判断是否符合相加条件c.data[n].v += a.data[i].v*b.data[k].v;else{c.data[z].i = a.data[i].i;c.data[z].j = b.data[k].j;c.data[z].v = a.data[i].v*b.data[k].v;z++;}}}else{c.data[z].i = a.data[i].i;c.data[z].j= b.data[k].j;c.data[z].v = a.data[i].v*b.data[k].v;z++;}}i++;}return 0;}(5)调试分析(遇到的问题,修改,解决办法,时空复杂度)刚开始,程序仅使用三元组存储,计算过程使用了二维数组,但矩阵相乘会出现错误,矩阵乘法时间复杂度为矩阵一的行数乘以矩阵二的列数(m1*n2)。