数字信号处理的新技术及发展

合集下载

电子工程师中的数字信号处理

电子工程师中的数字信号处理

电子工程师中的数字信号处理随着信息技术的日益发展,数字信号处理已经成为了现代电子工程的基础和重要组成部分。

作为一个电子工程师,掌握数字信号处理是至关重要的。

本文将从数字信号处理的基础概念、应用领域及未来发展趋势等方面介绍数字信号处理在电子工程师中的重要性。

一、数字信号处理基础概念数字信号处理是以数字信号为对象,进行信号的采样、量化、编码、运算等一系列处理的技术。

与模拟信号处理相比,数字信号处理具有精度高、计算速度快等优点。

数字信号处理常用的处理器有DSP、FPGA等。

数字信号的采样是指将模拟信号变为离散的过程。

采样的频率越高,转化后的数字信号越接近原始模拟信号。

量化则是将模拟信号的连续数值转化成离散的数值。

采样和量化后,数字信号将以离散的形式进行处理和传输。

数字信号处理的主要运算包括傅里叶变换、滤波、编码等。

傅里叶变换是将时域信号转换到频域的重要数学工具,可用于信号的频谱分析和滤波器的设计。

滤波是一种常用的数字信号处理方法,用于滤去不需要的信号或保留需要的信号。

编码是将数字信号表示成二进制数的过程,常见的编码方式包括PCM、Delta、ADPCM等。

二、数字信号处理在电子工程师中的应用领域数字信号处理在电子工程师中的应用非常广泛,以下列举几个典型的应用领域。

1、数字通信系统数字信号处理在数字通信系统中扮演着核心作用。

数字通信系统基于数字信号处理技术,能够在不同介质进行高效的数字信号传输。

其中的主要技术包括调制解调、信道编码、信号处理、多路复用等。

2、音视频处理数字信号处理技术在音视频处理中也有广泛应用。

例如数字音频的压缩、编解码、降噪等技术,数字视频的编解码、压缩等技术,以及语音识别、人脸识别、图像处理等技术。

3、医疗影像处理在医疗领域,数字信号处理技术常用于医疗影像的处理和分析。

例如,MRI和CT扫描技术中,数字信号处理用于图像的重新构建和去噪,为医生提供更准确的诊断结果。

4、雷达信号处理雷达信号处理也是数字信号处理的重要应用领域。

浅析数字信号处理的发展与应用

浅析数字信号处理的发展与应用

浅析数字信号处理的发展与应用【摘要】随着我国科学信息技术的不断进步,数字信号处理的发展也取得了显著效果。

在各国信息技术不断更新的背景下,数字信号处理的发展用日新月异来形容也不为过。

数字信号技术被应用于生活的方方面面,人们的各种发展活动也似乎都离不开数字信号处理技术的帮助。

下文就针对数字信号处理技术的发展情况做了具体分析,并且阐述了其相关应用。

【关键词】数字信号处理;发展;应用前言数字信号处理的简称是DSP,是一种通过数字信号芯片,将图片、声音、视频等模拟信息转化为数字信息的一个过程。

在这一过程中,采用数字方式对模拟信号进行压缩、变化、过滤、识别,最终转化为实实在在的数字信号。

21世纪是一个数字化的时代,数字信号处理技术得到广泛应用,为人类生活提供了方便快捷,同时为提高国家综合国力奠定了基础。

1、数字信号处理数字信号处理的原理其实就是利用数字芯片对信号进行分析和处理。

数字信号处理技术被广泛应用的原因不仅是其具备处理速度快和运行灵活的优点,而且具备极强的抗干扰能力,不受乱码影响。

因此,人们要开始重视起数字信号处理技术的发展,利用数字信号处理技术来达到方便生活的目的。

相比一般信号处理技术,数字信号处理技术无论在设备还是技术方面,都具有高效率传播、造价成本低廉、运行方式精确灵活、抗干扰能力强等特点。

对于一些模拟信号来说,数字信号的这些特点是无法超越的。

数字信号处理技术得以快速发展的前提是具有一套完整的数字处理理论,在某种程度上具有提高和促进数字信号处理技术发展的作用。

如果把数字信号处理技术比作一棵树,那么数字理论就是肥沃的土壤,数字信号处理实践就是新鲜的空气。

树木离开了土壤和氧气都不能存活。

只有将数字信号处理的理论与实践结合起来,才能从根本上提高数字信号处理的可靠性和稳定性。

另外,数字信号处理技术能将各种参数存储起来,并且通过微机控制和数字设定对参数进行调整。

这样一来不仅减少了调节量、调节点和调节电位器,而且能够长时间使得参数保持不变,大大提升了系统稳定性。

2024年数字信号处理(DSP)市场发展现状

2024年数字信号处理(DSP)市场发展现状

数字信号处理(DSP)市场发展现状引言数字信号处理(DSP)是一种通过数学和算法处理模拟信号的技术。

随着技术的不断进步,DSP在各个领域的应用越来越广泛。

本文将介绍数字信号处理市场目前的发展现状。

1. 市场规模和趋势数字信号处理市场近年来持续稳步增长,预计将在未来几年内保持较高的增长率。

根据市场研究机构的报道,数字信号处理市场规模预计将在2025年达到XXX亿美元。

这一增长趋势主要受到以下几个因素的推动:1.1 技术进步随着科技的进步,数字信号处理技术不断完善,处理速度和性能得到显著提升。

新的算法和芯片设计使得DSP在音频处理、图像处理、通信等领域具有广泛的应用前景,进一步推动了市场的增长。

1.2 通信领域需求增加随着5G技术的推广和大数据的快速发展,对于高效的信号处理算法和芯片设计的需求也越来越大。

数字信号处理在通信网络的编解码、信道估计和信号调制等方面起着至关重要的作用,因此在通信领域具有巨大的市场潜力。

1.3 智能设备的普及智能手机、智能音箱和智能家居设备等智能设备的普及也推动了数字信号处理市场的增长。

数字信号处理技术可以提供高质量的音频和图像处理功能,为智能设备带来更好的用户体验,因此在智能设备领域有着广泛的应用需求。

2. 应用领域分析数字信号处理在众多领域都有广泛的应用,以下是几个重要的应用领域:2.1 音频处理音频处理是数字信号处理的重要应用领域之一。

数字信号处理技术可以通过消除噪音、增强音频信号的清晰度和音质等方式,提供高质量的音频处理效果。

在音乐产业、语音识别和语音通信等方面都有着广泛的应用。

2.2 图像处理数字信号处理在图像处理方面也有着重要的应用。

通过数字信号处理技术,可以对图像进行去噪、增强和压缩等处理,使得图像质量得到改善。

在医学影像、视频监控和图像识别等领域都有着广泛的应用。

2.3 通信通信领域是数字信号处理的重要应用领域之一。

DSP在通信网络中的编解码、信道估计和信号调制等方面发挥着重要作用。

现代数字信号处理的应用和发展前景

现代数字信号处理的应用和发展前景

现代数字信号处理的应用和发展前景摘要:随着移动通信的发展,数字信号处理技术也得到了进一步的发展和应用,且在我们的日常生活中扮演着越来越重要的角色。

本文对数字信号处理的概念做了相关的概述,回顾了数字信号处理的发展简史,从而归纳出数字信号处理具有灵活、精确、尺寸小、可靠性高、造价低、便于储存、抗干扰能力强等诸多优势和特点。

运用实例分析了数字信号处理在汽车电子系统领域中的应用,并对数字信号处理的发展前景进行了探索,以期为通信工程专业的技术人员提供一些开发与创新的思路。

关键词:数字信号处理;通信工程;发展前景引言随着科学技术的不断发展,数字信号处理技术在生活中的应用变得越来越广泛,其在通讯领域、医学领域、公共交通领域、工程领域应用的越来越多。

极大的提高了各领域处理信息能力,从而提高了工作效率。

而DSP是将模拟信号转换成所需数字信号的的处理器,现在处理器的处理速度是衡量数字转换效率的一个最直接的指标。

数字信号技术是一门实用性很强的技术,其包括数字信号处理的硬件部分,数字信号处理技术的理论部分,软件部分等。

下文将介绍信号处理技术的发展和应用。

一、数字信号处理的相关概述对信号按照信号的自变量和幅度的取值特点可以将信号分为:模拟信号、离散时间信号和数字信号。

模拟信号在时间和幅度上都是连续的,离散时间信号顾名思义它是自变量时间在定义域内是离散的,是非连续的,可以通过对连续时间信号的采样来获得一个离散时间信号。

而离散时间信号又并非数字信号,因为他只是在时间上离散,但在幅度上并没有量化。

若时间上离散且幅度上量化为有限字长的二进制数,则是可以被我们的DSP芯片、计算机所运算和处理的数字信号。

而自然界中存在的信号大多为模拟信号,想要使用数字信号处理方式去处理,就要对模拟信号进行一个模数转换,然后才能对其进行数字处理。

首先,对采集到的模拟信号进行滤波,将模拟信号经过滤波器滤除信号中的杂散分量。

然后,对滤波后的信号进行模数转换(Analog-to-Digital Conversion,ADC),将信号从模拟域转换到数字域。

信号处理技术的新进展和应用领域

信号处理技术的新进展和应用领域

信号处理技术的新进展和应用领域信号处理技术是一种将信号转换为数字格式或进行数字信号处理的技术,常见的应用包括音频、图像和视频处理、电信和无线通信以及医疗图像和信号处理。

信号处理技术的发展使得人们能够获得更多和更准确的信息,使得很多领域的应用都得以发展和创新。

本文将介绍信号处理技术的新进展和应用领域,并探讨它们对社会的影响与未来的发展趋势。

一、基于深度学习的信号处理深度学习技术是近年来人工智能领域的重要发展之一。

在信号处理领域,基于深度学习的信号处理技术正在逐步应用。

传统的信号处理方法通常需要人工提取特征并进行算法设计,而基于深度学习的信号处理方法可以自动学习提取特征,并将其应用于信号处理中,从而提高了处理效率和精度。

这种技术的应用范围非常广泛,包括语音识别、图像处理、语言翻译等等。

例如,在语音识别方面,基于深度学习的方法具有更好的准确性和鲁棒性。

同时,基于深度学习的方法还可以通过自适应学习,实现对不同语种、口音、说话人的适应。

这种技术的应用将会改变人们日常生活中对声音的采集和处理方式。

二、信号处理在视觉领域的应用随着计算机视觉技术的不断发展,基于图像和视频的信号处理也在不断创新和应用。

其中,图像和视频的处理是计算机视觉领域中的重要研究方向之一。

在图像处理方面,利用数字图像处理技术可以对图像进行去噪、增强、分割、识别等处理。

在医学领域中,MRI(磁共振成像)图像需要经过数字信号处理后,才能得到准确的病理诊断结果。

此外,在工业产品设计方面,利用数字图像处理技术可以实现产品尺寸、外观和质量的检测。

在视频处理方面,基于视频的图像处理也正在得到越来越广泛的应用。

例如,利用计算机图像处理技术可以对安保视频进行智能监控,确保公共场所的安全。

在自动驾驶汽车中,图像识别技术可以帮助实现车辆的场景和障碍物识别,从而实现自动转向、刹车等操作。

三、信号处理在无线通信中的应用信号处理在无线通信领域中也有着广泛的应用。

利用数字信号处理技术可以对无线信号进行调制、解调、多路复用等处理,从而提高通讯质量和效率。

数字信号处理技术的应用和发展分析

数字信号处理技术的应用和发展分析

数字信号处理技术的应用和发展分析1. 引言1.1 数字信号处理技术的应用和发展分析数字信号处理技术已经在各个领域得到广泛应用,并且在不断发展壮大。

随着科技的不断进步,数字信号处理技术已成为当今社会的重要组成部分。

本文将对数字信号处理技术的应用和发展进行深入分析,探讨其在通信、医学和图像处理领域的具体应用情况,并对数字信号处理技术的发展趋势进行预测和展望。

通过对数字信号处理技术的研究和应用,我们可以更好地了解其在不同领域中的作用和影响,为未来的发展提供参考和借鉴。

数字信号处理技术的应用前景以及其对社会的影响将成为我们探讨的重要议题,同时也将探讨数字信号处理技术未来的发展方向,为数字化时代的到来做好充分准备。

2. 正文2.1 数字信号处理技术概述数字信号处理技术是指利用数字技术对信号进行处理和分析的一种技术。

它通过将模拟信号转换为数字信号,再经过数字滤波、频谱分析、波形分析等算法处理,最终得到需要的信息。

数字信号处理技术主要包括采样、量化、编码、滤波和变换等步骤。

采样是将连续的模拟信号转换为离散的数字信号的过程。

采样频率越高,信号的还原度就越高。

然后,量化是将连续的信号幅值转换为离散的数值的过程。

量化级数越高,信号的精度就越高。

接着,编码是将量化后的信号用二进制代码表示的过程。

编码方式有不同的选择,影响着信号的传输效果。

滤波是为了去除信号中的噪声或选择特定频率段的信号。

变换是将信号从一个域转换到另一个域,常用的有傅立叶变换、小波变换等。

数字信号处理技术具有高精度、灵活性强、易于实现自动化处理等优点,在通信、医学、图像处理等领域有着广泛的应用。

随着科技的发展,数字信号处理技术将不断完善和创新,为社会带来更多便利和发展机遇。

2.2 数字信号处理技术在通信领域的应用数字信号处理技术在通信领域发挥着重要作用,可以帮助提高通信系统的性能和效率。

数字信号处理技术可以通过数字滤波器和均衡器来消除信号中的噪声和失真,从而提高通信质量。

数字信号处理技术的应用和发展分析

数字信号处理技术的应用和发展分析

数字信号处理技术的应用和发展分析【摘要】本文通过对数字信号处理技术的应用和发展进行分析,首先介绍了数字信号处理技术的基本概念,包括其在通信、医学影像处理、音频处理和雷达信号处理领域的具体应用。

其中数字信号处理技术在通信领域的应用使信息传输更加高效和稳定,在医学影像处理中的应用有助于医学诊断和治疗,在音频处理方面提高了声音质量,而在雷达信号处理中的应用使探测更加精准。

结尾部分展望了数字信号处理技术未来的发展趋势和应用前景,指出数字信号处理技术将在各个领域持续发挥重要作用,促进技术的进步和社会的发展。

本文全面探讨了数字信号处理技术的应用和发展,为读者提供了深入了解该技术领域的参考和展望。

【关键词】数字信号处理技术、应用、发展、基本概念、通信、医学影像处理、音频处理、雷达信号处理、未来发展趋势、应用前景展望1. 引言1.1 数字信号处理技术的应用和发展分析概述数字信号处理技术是一种通过对数字信号进行处理和分析来获取、提取和传输信息的技术,它在各个领域都有广泛的应用。

随着数字技术的不断发展,数字信号处理技术已经成为一种十分重要的工具,为人们提供了更加高效和精确的信息处理手段。

在通信领域,数字信号处理技术被广泛应用于数字通信系统、数据压缩、信号解调和频谱分析等方面,极大地提高了通信效率和质量。

在医学影像处理中,数字信号处理技术可以帮助医生更精确地诊断病症,提高了医学影像的分辨率和清晰度,为医疗诊断提供了重要的支持。

在音频处理领域,数字信号处理技术可以实现声音的数字化处理、噪声抑制和音效增强,为人们提供更加优质的音频体验。

在雷达信号处理中,数字信号处理技术可以对雷达信号进行实时处理和分析,提高了雷达系统的探测和跟踪能力,为国防安全提供了重要支持。

2. 正文2.1 数字信号处理技术的基本概念数字信号处理技术是一种将连续信号转换为离散信号并对其进行数字化处理的技术。

其基本概念包括采样、量化和编码。

采样是指将连续信号在一定时间间隔内取样得到一系列离散数据点;量化是将采样得到的数据转换为离散的幅度值;编码是将量化后的数据进行数字编码,以便于存储和传输。

数字信号处理器DSP的发展及应用

数字信号处理器DSP的发展及应用

评价处理器性能 的指标 有很 多 ,最常用的是速度 ,但能耗和 降低总功耗 ,降低系统成本等 。D S P 和微处理器结合的方法有 : 日益增多 ,系统设计者要想选 出在给定应 用设备上能够提供最佳 已有的微处理器上 、微处理器与 已有 的D S P 集成 在一起 、全部 新
性能的处理器变的比较 困难。 由于DSP 应用程序的特征之一是大 的设计等。
山 西 青 年
信 息 技 术
数字信号处理器D S P 的发展及应用
于聪 梅 曾 勇 许 淑 伟
长春 1 3 0 1 1 7 装 甲兵技 术 学院
摘Leabharlann 要 :本文介绍了 数字信号处理器D P S 的发展状况, D s P 的发展 特 定那些指令要被 同时执 行。超过标量体系结构已经长期用于高性
部 分的处理工作集 中在程序 的一部分 ( 杨 程序 1,因此可 以用 4 DS P 的应 用及 发展趋势
与信号处理相关的基准程序来测试评估D S P 处理 器。
3DS P 结构
D S P 的应用 D S P 的市场正成为半导体 行业关注的热点 ,其应 用 由最初 的军用尖端技术拓展到通信 、计 算机 、家电、办公 自动
有丰富的外设。 D S P 处理器 的性能可分 为三个 档次 :低成本 ,低性能D S P ,
低 能耗 的 中段DS P 和 多样化 的高端 D S P 。 存储能量指标也很重要 。特别是在嵌入系统应 用上。鉴 于DS P的
( 5) D S P 、微控 制器的混合结构 。许 多的应用需要 以控制 为主的软件的D S P 软 件的结合。有一些微处理器生产商开始提供 D S P 增强版本 的微处理器。用单处理器完成两种软件的任务是很 有吸引力 的,因为其可 以潜在 的提供 简化设计 .节省版 面空间 , 在一个节上集成 多种处理器 、D S P 作为协 处理器 、D S P 核移植到
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理的新技术及发展摘要:数字信号处理是一门涉及许多学科而又广泛应用于许多领域的新兴学科。

本文简述了数字信号处理技术的发展过程,分析了数字信号处理技术在多个领域应用状况,介绍了数字信号处理技术的最新发展,对数字信号处理技术的发展前景进行了展望。

关键词:信号数字信号处理信息技术DSP0引言自从数字信号处理(Digital Signal Processor)问世以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生,并到迅速的发展。

由于它具有高速、灵活、可编程、低功耗和便于接口等特点,已在图形、图像处理,语音、语言处理,通用信号处理,测量分析,通信等领域发挥越来越重要的作用。

随着技术成本的降低,控制界已对此产生浓厚兴趣,已在不少场合得到成功应用。

1数字信号处理技术的发展历程DSP的发展大致分为三个阶段:在数字信号处理技术发展的初期(二十世纪50-60年代),人们只能在微处理器上完成数字信号的处理。

直到70年代,有人才提出了DSP的理论和算法基础。

一般认为,世界上第一个单片DSP芯片应当是1978年AMI公司发布的S281l。

1979年美国Intel公司发布的商用可编程器件2920是DSP芯片的一个重要里程碑。

这两种芯片内部都没有现代DSP芯片所必须有的单周期乘法器。

1980年,日本NEC公司推出的mPD7720是第一个具有硬件乘法器的商用DSP芯片,从而被认为是第一块单片DSP器件。

随着大规模集成电路技术的发展,1982年美国德州仪器公司推出世界上第一代DSP芯片TMS32010及其系列产品,标志了实时数字信号处理领域的重大突破。

Ti公司之后不久相继推出了第二代和第三代DSP芯片。

90年代DSP发展最快。

Ti公司相继推出第四代、第五代DSP芯片等。

随着CMOS技术的进步与发展,日本的Hitachi公司在1982年推出第一个基于CMOS工艺的浮点DSP芯片,1983年日本Fujitsu公司推出的MB8764,其指令周期为120ns,且具有双内部总线,从而使处理吞吐量发生了一个大的飞跃。

而第一个高性能浮点DSP芯片应是AT&T公司于1984年推出的DSP32.与其他公司相比,Motorola公司在推出DSP芯片方面相对较晚。

1986年,该公司推出了定点处理器MC56001.1990年推出了与IEEE浮点格式兼容的浮点DSP芯片MC96002。

美国模拟器件公司(AD)在DSP芯片市场上也占有一定的份额,相继推出了一系列具有自己特点的DSP芯片。

自1980年以来,DSP芯片得到了突飞猛进的发展,DSP芯片的应用越来越广泛,并逐渐成为电子产品更新换代的决定因素。

从运算速度来看,MAC(一次乘法和一次加法)时间已经从20世纪80年代初的400ns降低到10ns以下,处理能力提高了几十倍。

DSP芯片内部关键的乘法器部件从1980年占模片区的40%左右下降到5%以下,片内RAM数量增加一个数量级以上。

DSP芯片的引脚数量从1980年的最多64个增加到现在的200个以上,引脚数量的增加,意味着结构灵活性的增加,如外部存储器的扩展和处理器间的通信等。

2数字信号处理技术的广泛应用自然界中存在的各种各样的信息和信号都可以通过传感器转换为电信号,例如:声音、语言和音乐可以通过传声器(如话筒)转换成音频信号;人体器官的运动信息(如心电、脑电、血压和血流)可转换成不同类型的生物医学信号;机器运转产生的一些物理变(如温度、压力、转速、振动和噪声等)可用不同类型的传感器转换成对应于各种物理量的电信号;在人造卫星上用遥感技术可得到地面上的地形、地貌,甚至农田水利和各种建筑设施的信息;雷达、声纳能探测远方飞机和潜艇的距离、方位和运行速度等信息。

总之,在现代社会里,信息和信号与人民生活、经济建设、国防建设等很多方面都有着密切的关系。

使得数字信号处理技术应用的范围不断扩大,现在数字信号处理技术的应用遍及与其相关的各个领域。

典型应用:(1)通用信号处理:卷积,相关,FFT,Hilbert变换,自适应滤波,谱分析,波形生成等。

(2)通信:高速调制/解调器,编/译码器,自适应均衡器,仿真,蜂房网移动电话,回声/噪声对消,传真,电话会议,扩频通信,数据加密和压缩等。

(3)语音信号处理:语音识别,语音合成,文字变声音,语音矢量编码等。

(4)图形图像信号处理:二、三维图形变换及处理,机器人视觉,电子地图,图像增强与识别,图像压缩和传输,动画,桌面出版系统等。

(5)自动控制:机器人控制,发动机控制,自动驾驶,声控等。

(6)仪器仪表:函数发生,数据采集,航空风洞测试等。

(7)消费电子:数字电视,数字声乐合成,玩具与游戏,数字应答机等。

2.1数字信号处理在多媒体通信的应用多媒体是将传统的模拟视频信号和声音信号转换为数字信号来实现的。

视频和声音信号的数字化会产生大量的数据,这些数据要依靠高性能的DSP来减小对存储空间和传输带宽地要求。

需要由DSP来完成的任务包括视频信号和声音信号的编码/解码、彩色空间转换、回音消除、滤波、误码校正、复用、bit流协议处理等。

例如,在网络电话(Voice over IP;VoIP)中,模拟语音信号必须经过处理,转换成适合在IP网络上传输的IP数据包,这个过程需要先进行数字编码,转换为PCM码,然后经过专门的DSP芯片进行数据压缩,最后再打上IP包的标记,形成IP数据包的形式,以适合IP网络上的传输带宽,这涉及PCM、DSP、编码、压缩等内容。

在IP电话中,利用DSP技术进行语音压缩和解码,可以极大地提高语音质量,降低对存储空间的要求,加快系统处理速度,并进一步压缩对带宽的需求。

图4表示VoIP传输的基本过程,可以看出,DSP技术在进行语音压缩和解码时起着至关重要的作用。

近年来,随着计算机辅助设计、制造和超大规模集成电路的发展,各种ASIC 专用芯片,如FFT芯片,数字滤波器芯片语音识别和合成芯片语音和图像压缩编码芯片等大量出现。

最新的发展趋势是进一步提高集成性,将CPU、DSP、大容量存储器、现场可编程门阵列等集成在同一芯片上,这样组成的数字信号处理系统具有很大的灵活性,可以作为多媒体的硬件平台。

DSP技术是现代通信的核心技术之一,未来的通信将越来越依赖数字信号处理技术的发展。

现代通信技术的发展要求将先进的通信技术、微电子技术和计算技术结合在一起。

可以设想,在使用了现代DSP技术的通信系统中,原先不能互联的多种通信体制将综合为一个通用的通信体制,人们可以摆脱终端的束缚,实现“一机在手,漫游天下”的梦想。

这种崭新的通信体制将给我们的生活方式,甚至思维模式带来巨大的变化。

2.2数字信号处理技术在软件无线电的应用软件无线电是利用同样的硬件设备和不同的软件模块,来适应不同频段、不同调制方式下的通信。

软件无线电中,最重要和最具有挑战性的部分就是高性能的A/D、D/A变换器和以DSP为核心的实时信号处理。

软件无线电对DSP提出了实时性很高的要求,它有力的促进着DSP的发展,其中包括单片处理器的性能、多处理器协同工作的能力、DSP软件开发环境和DSP实施操作系统等方面。

软件无线电在通信系统中,特别是在第三代移动通信系统中的应用越来越成为研究的热点。

例如,在欧洲的先进通信技术与业务计划中(ACIS),有多项计划是将软件无线电技术应用在第三代移动通信系统中。

美国也正在研究基于软件无线电技术的第三代移动通信系统的多频带与多模式手机与基站,使软件无线电设备升级的成本大幅度降低,同时,软件无线电技术与计算机技术正在不断融合,为第三代移动通信系统提供良好的用户界面。

我国对软件无线电技术也相当重视,例如,我国提出的第三代移动通信系统方案SCDMA(同步码分多址) 是一种同步的直接扩频CDMA (码分多址)技术,他结合了DSP、智能天线、软件无线电技及全质量语音压缩编码技术等现代通信技术。

图3表示移动通信手持终端中的信号和信息的传输与处理过程,DSP在其中的核心作用是是显而易见的。

2.3数字信号处理技术在电力系统模拟量采集和测量中的应用计算机进入电力系统调度后,引入了EMS/DMS/SCADA的概念,而电力系统数据采集和测量是SCADA的基础部分。

传统的模拟量的采集和获得,通过变送器将一次PT和CT的电气量变为直流量,在进行A/D转换送给计算机。

应用了交流采用技术以后,经过二次PT、CT的变换后,直接对每周波的多点采样值采用DSP处理算法进行计算,得到电压和电流的有效值和相角,免去了变送器环节。

这不仅使得分布布置的分布式RTU很快地发展起来,而且还为变电站自动化提供了功能综合优化的手段。

变电站自动化元件较多,模拟量、开关量比较多而且比较分散,要求的实时性也较高,DSP能快速采集、精确处理各种信息,尤其在并行处理上可实现多机多任务操作,实用十分灵活、方便,片内诸多的接口为通讯及人机接口提供了容易的扩展,由于接口的多样化,使励磁、调速器及继电保护的挂网监控更容易。

由于DSP集成度高,硬件设计方便,使设计起来更容易,而且增加了产品的可靠性,DSP在冗余设计上更容易,为水电站实现无人值班,少人值守的发展方向,提供了可靠的新技术。

2.4数字信号处理技术在家电中的应用DSP擅善于数学运算,嵌入式DSP电机控制芯片把DSP内核与一系列功能强盛的控制外设集成到一个芯片上,这样便能以快速的DSP内核作为计算引擎,加上片内的A/D模块提高了电机控制带宽,而且允许低本钱实现更加复杂垢控制和无传感器的算法,因此能控制交流感应电动机、无刷直流电动机和开关磁阻电机,需不需要速度或位置传感器,甚至特另外电流传感方式。

这些计算能力和优化的外设使它很容易的完成更多的功能,如功率因数的校正;在不增加控制器本钱的情况下,满意某些特别应用的要求,如洗衣机的平衡控制。

新经济将我们带进一个全数字的世界,更多的数字信息将要涌入家庭,如网络冰箱就是量例。

嵌入式DSP使控制器甚至是电器之间建立通信成为易事。

最新的嵌入式DSP带调试用的JTAG和为家庭网络控制用的CAN总线。

DSP计算引擎将与更先进的外设集成,提供一种单片解决方案。

因此优化的外设是可编程的,而且处于软件的实时控制之下,所以嵌入式DSP可提供更加灵活多样的控制特征,且易于升级。

3.数字信号处理技术的发展趋势(1)努力向系统级集成迈进缩小DSP芯片尺寸始终是DSP的技术发展方向。

当前的DSP多数基于RISC (精简指令集计算)结构,这种结构的优点是尺寸小、功耗低、性能高。

各DSP 厂商纷纷采用新工艺,改进DSP芯核,并将几个DSP芯核、MPU芯核、专用处理单元、外围电路单元、存储单元统统集成在一个芯片上,成为DSP系统级集成电路。

这样的集成缩小了整机的体积,缩短了产品上市的时间,是一个重要的发展趋势。

相关文档
最新文档