九年级一元二次方程专题复习.doc

合集下载

《一元二次方程》总复习、练习、中考真题【题型解析】

《一元二次方程》总复习、练习、中考真题【题型解析】

一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0〕。

注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

考点2:一元二次方程的解法1.直接开平方法:对形如(x+a〕2=b〔b≥0〕的方程两边直接开平方而转化为两个一元一次方程的方法。

x+a= ± b ∴ x1 =-a+ b x2 =-a- b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0〕的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a〕2=b 的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,那么原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是x = - b ± b 2 - 4ac (b2-4ac≥0)。

步骤:①把方程转化为一般形2a式;②确定 a,b,c 的值;③求出 b2-4ac 的值,当 b2-4ac≥0时代入求根公式。

4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:假设ab=0,那么 a=0 或b=0。

步骤是:①将方程右边化为 0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。

5.一元二次方程的考前须知:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0 时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c 的值;②假设b2-4ac<0,那么方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4) 2 =3〔x+4〕中,不能随便约去 x+4。

人教版九年级数学上册 第21章 《一元二次方程》 单元复习题

人教版九年级数学上册 第21章 《一元二次方程》  单元复习题

《一元二次方程》单元复习题一.选择题1.一元二次方程x2﹣3x﹣4=0的一次项系数是()A.1 B.﹣3 C.3 D.﹣42.关于x的一元二次方程x2+(k+1)x+k﹣2=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断3.关于一元二次方程x2﹣2x+1﹣a=0无实根,则a的取值范围是()A.a<0 B.a>0 C.a<D.a>4.某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,设平均每次增长的百分数为x,那么x应满足的方程是()A.x=B.100(1+40%)(1+10%)=(1+x)2C.(1+40%)(1+10%)=(1+x)2D.(100+40%)(100+10%)=100(1+x)25.菱形ABCD的一条对角线长为6cm,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD 的周长等于()A.10cm B.12 cm C.16cm D.12cm或16cm 6.若关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,则k的取值范围是()A.k<且k≠﹣2 B.k C.k≤且k≠﹣2 D.k7.用配方法解方程x2﹣4x=0,下列配方正确的是()A.(x+2)2=0 B.(x﹣2)2=0 C.(x+2)2=4 D.(x﹣2)2=48.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6 B.8 C.14 D.169.现代互联网技术的广泛应用,促进快递行业高速发展,据调查,某家快递公司,今年5月份与7月份完成投递的快递总件数分别为8.5万件和10万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.8.5(1+2x)=10B.8.5(1+x)=10C.8.5(1+x)2=10D.8.5+8.5(1+x)+8.5(1+x)2=1010.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.32x+2×20x﹣2x2=570B.32x+2×20x=32×20﹣570C.(32﹣2x)(20﹣x)=32×20﹣570D.(32﹣2x)(20﹣x)=570二.填空题11.关于x的一元二次方程x2﹣4x+m2=0有两个相等的实数根,则m=.12.关于x的一元二次方程x2+(2k+1)x+k2=0有两个不相等的实数根.设方程的两个实数根分别为x1,x2,且(1+x1)(1+x2)=3,则k的值是.13.设m、n是方程x2+x﹣2020=0的两个实数根,则m2+2m+n的值为.14.已知关于x的一元二次方程kx2﹣(k﹣1)x+k=0有两个不相等的实数根,求k的取值范围.15.如图,有一块矩形铁皮,长为100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的无盖方盒的底面积为1400cm2,那么铁皮各角切去的正方形的边长为cm.三.解答题16.(1)解方程:x(x﹣3)=x﹣3;(2)用配方法解方程:x2﹣10x+6=017.某中学课外兴趣活动小组准备围建一个矩形苗圃,其中边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃垂直于墙的一边长为x米.(1)若苗圃的面积为72平方米,求x的值;(2)这个苗圃的面积能否是120平方米?请说明理由.18.已知关于x的方程(x﹣m)2+2(x﹣m)=0.(1)求证:无论m为何值,该方程都有两个不相等的实数根;(2)若该方程的一个根为﹣1,则另一个根为.19.某服装店出售某品牌的棉衣,进价为100元/件,当售价为150元/件时,平均每天可卖30件;为了增加利润和减少库存,商店决定降价销售.经调査,每件每降价1元,则每天可多卖2件.(1)若每件降价20元,则平均每天可卖件.(2)现要想平均每天获利2000元,且让顾客得到实惠,求每件棉衣应降价多少元?20.关于x的一元二次方程x2+2mx+m2+m=0有两个不相等的实数根.(1)求m的取值范围.(2)设出x1、x2是方程的两根,且x12+x22=12,求m的值.21.因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2019至2021年春节长假期间接待游客人次的平均增长率.(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯,2021年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?参考答案一.选择题1.解:一次项是:未知数次数是1的项,故一次项是﹣3x,系数是:﹣3,故选:B.2.解:∵△=(k+1)2﹣4(k﹣2)=(k﹣1)2+8>0,∴关于x的一元二次方程x2+(k+1)x+k﹣2=0一定有两个不相等的实数根.故选:A.3.解:∵一元二次方程x2﹣2x+1﹣a=0无实根,∴△=(﹣2)2﹣4×1×(1﹣a)<0,解得,a<0,故选:A.4.解:设平均每次增长的百分数为x,∵某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,∴商品现在的价格为:100(1+40%)(1+10%),∵某商品原价为100元,经过两次涨价,平均每次增长的百分数为x,∴商品现在的价格为:100(1+x)2,∴100(1+40%)(1+10%)=100(1+x)2,整理得:(1+40%)(1+10%)=(1+x)2,故选:C.5.解:解方程x2﹣7x+12=0得:x=3或4,即AB=3或4,∵四边形ABCD是菱形,∴AB=AD=DC=BC,当AD =DC =3cm ,AC =6cm 时,3+3=6,不符合三角形三边关系定理,此时不行; 当AD =DC =4cm ,AC =6cm 时,符合三角形三边关系定理,即此时菱形ABCD 的周长是4×4=16,故选:C .6.解:∵关于x 的一元二次方程(k +2)x 2﹣3x +1=0有实数根,∴k +2≠0且△=(﹣3)2﹣4(k +2)•1≥0,解得:k且k ≠﹣2, 故选:C .7.解:x 2﹣4x +4=4,(x ﹣2)2=4.故选:D .8.解:∵x 1,x 2是一元二次方程x 2﹣2x ﹣5=0的两根,∴x 1+x 2=2,x 1x 2=﹣5∴原式=(x 1+x 2)2﹣2x 1x 2=4+10=14故选:C .9.解:设该快递公司这两个月投递总件数的月平均增长率为x ,根据题意,得8.5(1+x )2=10,故选:C .10.解:设道路的宽为xm ,则草坪的长为(32﹣2x )m ,宽为(20﹣x )m ,根据题意得:(32﹣2x )(20﹣x )=570.故选:D .二.填空题(共5小题)11.解:∵关于x 的一元二次方程x 2﹣4x +m 2=0有两个相等的实数根,∴△=(﹣4)2﹣4×1×m 2=0,解得:m =±2.故答案为:±2.12.解:由题意知x 1+x 2=﹣(2k +1),x 1x 2=k 2,∵(1+x1)(1+x2)=3,∴1+x1+x2+x1x2=3,即1﹣(2k+1)+k2=3,解得k=﹣1或k=3,∵方程x2+(2k+1)x+k2=0有两个不相等的实数根,∴△=(2k+1)2﹣4k2>0,解得:k>﹣,∴k=3,故答案为:3.13.解:∵m、n是方程x2+x﹣20200的两个实数根,∴m+n=﹣1,并且m2+m﹣2020=0,∴m2+m=2020,∴m2+2m+n=m2+m+m+n=2020﹣1=2019.故答案为:201914.解:根据题意知[﹣(k﹣1)]2﹣4k×k>0且k≠0,解得:k<且k≠0.故答案为:k<且k≠0.15.解:设切去的正方形的边长为xcm,则盒底的长为(100﹣2x)cm,宽为(50﹣2x)cm,根据题意得:(100﹣2x)(50﹣2x)=1400,展开得:x2﹣75x+900=0,解得:x1=15,x2=60(不合题意,舍去),则铁皮各角应切去边长为15cm的正方形.故答案是:15.三.解答题(共6小题)16.解:(1)∵x(x﹣3)=x﹣3,∴x(x﹣3)﹣(x﹣3)=0,则(x﹣3)(x﹣1)=0,∴x ﹣3=0或x ﹣1=0,解得x =3或x =1;(2)∵x 2﹣10x +6=0,∴x 2﹣10x =﹣6,则x 2﹣10x +25=﹣6+25,即(x ﹣5)2=19,∴x ﹣5=±, 则x =5.17.解:(1)根据题意得x (30﹣2x )=72,化简得x 2﹣15x +36=0,即(x ﹣12)(x ﹣3)=0∴x ﹣12=0或x ﹣3=0∴x 1=12,x 2=3当x =12时,平行于墙的一边为30﹣2x =6<18,符合题意;当x =3时,平行于墙的一边为30﹣2x =24>18,不符合题意,舍去.故x 的值为12;(2)根据题意得x (30﹣2x )=120,化简得x 2﹣15x +60=0∵△=(﹣15)2﹣4×1×60=﹣15<0,∴方程无实数根故这个苗圃的面积不能是120平方米.18.(1)证明:原方程可化为(x ﹣m )(x ﹣m +2)=0,x ﹣m =0或x ﹣m +2=0.解得x 1=m ,x 2=m ﹣2,∵m >m ﹣2,∴无论m 为何值,该方程都有两个不相等的实数根;(2)当m =﹣1时,另一个根为m ﹣2=﹣1﹣2=﹣3;当m ﹣2=﹣1时,解得m =1,另一个根为m =1,即方程的另一个根为1或﹣3.19.解:(1)30+20×2=70件,故答案为:70;(2)设每件棉衣降价x 元,则日销售量是(30+2x )件依题意可得:(150﹣100﹣x )(30+2x )=2000解得x 1=10,x 2=25为了使顾客得到实惠,舍去x 1=10答:每件棉衣降价25元.20.解:(1)根据题意得:△=(2m )2﹣4(m 2+m )>0,解得:m <0.∴m 的取值范围是m <0.(2)根据题意得:x 1+x 2=﹣2m ,x 1x 2=m 2+m ,∵x 12+x 22=12,∴﹣2x 1x 2=12,∴(﹣2m )2﹣2(m 2+m )=12,∴解得:m 1=﹣2,m 2=3(不合题意,舍去),∴m 的值是﹣2.21.解:(1)设年平均增长率为x ,由题意得:20(1+x )2=28.8,解得:x 1=20%,x 2=﹣2.2(舍去).答:东部华侨城景区2019至2021年春节长假期间接待游客人次的平均增长率为20%.(2)设每杯售价定为a 元,由题意得:(a ﹣6)[300+30(25﹣a )]=6300,解得:a 1=21,a 2=20.∴为了能让顾客获得最大优惠,故a 取20.答:每杯售价定为20元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额.。

北师大版九年级数学上册第二章 一元二次方程 专题复习练习题

北师大版九年级数学上册第二章 一元二次方程 专题复习练习题

北师大版九年级数学上册第二章一元二次方程专题复习练习题专题一、一元二次方程的解法1、用直接开平方法解方程:(1)x2﹣=0;(2)2x2+3=﹣2x2+4;(3)(2x﹣1)2﹣121=0;(4)(2x+3)2 =(x﹣1)2.2、用配方法解方程:(1)x2﹣4x=7;(2)2x2﹣4x-1=0.(3)(4x﹣1)(3﹣x)=5x+1.3、用因式分解法解方程:(1)2x2﹣5x=0;(2)(x﹣2)2=3x﹣6;(3)4x2+1=-4x;(4)(x﹣1)(x+3)=12.4、用公式法解方程:(1)x2x﹣14=0;(2)3x2=4x+2.5、当x取何值时,代数式3x2+6x﹣8的值与1﹣2x2的值互为相反数?专题二、一元二次方程的应用:增长率及利润问题1、某旅游景区今年5月份游客人数比4月份增加了44%,6月份游客人数比5月份增加了21%,求5月、6月游客人数的平均增长率.2、去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.3、某种病毒传播非常快,如果一个人被感染,经过两轮感染后就会有81个人被感染.(1)请你用学过的知识分析,每轮感染中平均一个人会感染几个人?(2)若病毒得不到有效控制,3轮感染后,被感染的人会不会超过700人?4、阿里巴巴电商扶贫对某贫困地区一种特色农产品进行网上销售,按原价每件300元出售,一个月可卖出100件,通过市场调查发现,单价每降低10元,月销售件数增加20件.已知该农产品的成本是每件200元,在保持月利润不变的情况下,尽快销售完毕,则售价应定为多少元?5、适逢中高考期间,某文具店平均每天可卖出30支2B铅笔,卖出1支铅笔的利润是1元,经调查发现,零售单价每降0.1元,每天可多卖出10支铅笔,为了使每天获取的利润更多,该文具店决定把零售单价下降x元(0<x<1).(1)当x为多少时,才能使该文具店每天卖2B铅笔获取的利润为40元?(2)该文具店每天卖2B铅笔获取的利润可以达到50元吗?如果能,请求出x的值;如果不能,请说明理由.6、某科技公司为提高经济效益,近期研发一种新型设备,每台设备成本价为2万元.经过市场调研发现,该设备的月销售量y(台)和销售单价x(万元)对应的点(x,y)在函数y =kx+b的图象上,如图.(1)求y与x的函数关系式;(2)根据相关规定,此设备的销售单价不高于5万元,若该公司要获得80万元的月利润,则该设备的销售单价是多少万元?专题三、一元二次方程的应用:面积问题1、如图,有一块宽为16 m的矩形荒地,某公园计划将其分为A、B、C三部分,分别种植不同的植物.若已知A、B地块为正方形,C地块的面积比B地块的面积少40 m2,试求该矩形荒地的长.2、如图,幼儿园某教室矩形地面的长为8m,宽为5m,现准备在地面正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,求四周未铺地毯的条形区域的宽度是多少米.3、在某校园建设过程中,规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%,求广场中间小路的宽.4、如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料做了宽为1米的两扇小门.若花圃的面积刚好为45平方米,则此时花圃的AB段长为多少?5、如图①,有一张长40cm,宽20cm的长方形硬纸片,裁去角上2个小正方形和2个小长方形(图中阴影部分)之后,恰好折成如图②的有盖纸盒.(1)若纸盒的高是3cm,求纸盒底面长方形的长和宽;(2)若纸盒的底面积是150cm2,求纸盒的高.图①图②6、如图所示,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A出发,沿AB 边以1cm/s的速度向点B移动;点Q从点B出发,沿BC边以2cm/s的速度向点C移动.如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后,△PBQ的面积等于8cm2?(2)经过几秒后,P,Q两点间的距离是cm?专题1参考答案1.解:(1)x1=,x2=﹣.(2)x1=,x2=﹣.(3)x1=6,x2=﹣5.(4)x1=﹣4,x2=﹣2.解:(1)x1=x2=2.(2)x1=1+,x2=1﹣.(3)x1=x2=1.3.解:(1)x1=0,x2=52.(2)x1=2,x2=5.(3)x1=x2=-.(4)x1=3,x2=﹣5.4.解:(1)x1=,x2=.(2)x1=,x2=.5.解:根据题意,得3x2+6x﹣8+1﹣2x2=0,整理,得x2+6x﹣7=0,则(x+7)(x﹣1)=0,∴x+7=0或x﹣1=0,解得x1=﹣7,x2=1.∴当x取﹣7或1时,代数式3x2+6x﹣8的值与1﹣2x2的值互为相反数.专题2答案:1.解:设5月、6月游客人数的平均增长率是x,依题意有(1+x)2=(1+44%)×(1+21%),解得:x1=32%,x2=﹣2.32(舍去).答:5月、6月游客人数的平均增长率是32%.2.解:(1)450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:350(1+x)2=504,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.3.解:(1)设每轮感染中平均一个人会感染x个人,依题意,得:1+x+x(1+x)=81,解得:x1=8,x2=﹣10(不合题意,舍去).答:每轮感染中平均一个人会感染8个人.(2)81×(1+8)=729(人),729>700.答:若病毒得不到有效控制,3轮感染后,被感染的人会超过700人.4.解:当售价为300元时月利润为(300﹣200)×100=10000(元).设售价应定为x元,则每件的利润为(x﹣200)元,月销售量为100+=(700﹣2x)件,依题意,得:(x﹣200)(700﹣2x)=10000,整理,得:x2﹣550x+75000=0,解得:x1=250,x2=300(舍去).答:售价应定为250元.5.解:(1)根据题意得:(1﹣x)(100x+30)=40,整理得:10x2﹣7x+1=0,解得:x1=0.2,x2=0.5.答:当x为0.2或0.5时,才能使该文具店每天卖2B铅笔获取的利润为40元.(2)根据题意得:(1﹣x)(100x+30)=50,整理得10x2﹣7x+2=0, =b2﹣4ac=(﹣7)2﹣4×10×2=﹣31<0.答:该文具店每天卖2B铅笔获取的利润不可以达到50元.6.解:(1)依题意有,解得.故y与x的函数关系式是y=﹣10x+80.(2)设该设备的销售单价为x万元/台,依题意有(x﹣2)(﹣10x+80)=80,整理方程,得x2﹣10x+24=0.解得x1=4,x2=6.∵此设备的销售单价不高于5万元,∴x2=6(舍去),∴x=4.答:该设备的销售单价是4万元.专题3答案:1.解:设B地块的边长为x m,根据题意得:x2﹣x(16﹣x)=40,解得:x1=10,x2=﹣2(不符题意,舍去),∴10+16=26 m.答:矩形荒地的长为26 m.2.解:设四周未铺地毯的条形区域的宽度是x m,依题意,得:(8﹣2x)(5﹣2x)=18,整理,得2x2﹣13x+11=0,解得x1=1,x2=.又∵5﹣2x>0,∴x<,∴x=1.答:四周未铺地毯的条形区域的宽度是1 m.3.解:设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=18×10×80%,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18.又∵18﹣2x>0,∴x<9,∴x=1.答:广场中间小路的宽为1米4.解:设AB=x米,则BC=(22﹣3x+2)米,依题意,得:x(22﹣3x+2)=45,整理,得:x2﹣8x+15=0,解得:x1=3,x2=5.当x=3时,22﹣3x+2=15>14,不合题意,舍去;当x=5时,22﹣3x+2=9,符合题意.答:若花圃的面积刚好为45平方米,则此时花圃的AB段长为5米.5.解:(1)纸盒底面长方形的长为(40﹣2×3)÷2=17(cm),纸盒底面长方形的宽为20﹣2×3=14(cm).答:纸盒底面长方形的长为17cm,宽为14cm.(2)设当纸盒的高为x cm时,纸盒的底面积是150cm2,依题意,得×(20﹣2x)=150,化简,得:x2﹣30x+125=0,解得x1=5,x2=25.当x=5时,20﹣2x=10>0,符合题意;当x=25时,20﹣2x=﹣30<0,不符合题意,舍去.答:若纸盒的底面积是150 cm2,则纸盒的高为5 cm.6.解:(1)设经过x秒后,△PBQ的面积等于8 cm2,则BP=(6﹣x)cm,BQ=2x cm,依题意,得(6﹣x)×2x=8,化简,得x2﹣6x+8=0,解得x1=2,x2=4.答:经过2秒或4秒后,△PBQ的面积等于8 cm2.(2)设经过y秒后,P,Q两点间距离是cm,则BP=(6﹣y)cm,BQ=2y cm,依题意,得:(6﹣y)2+(2y)2=()2,化简,得:5y2﹣12y﹣17=0,解得:y1=,y2=﹣1(不合题意,舍去).答:经过秒后,P,Q两点间的距离是cm.。

专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

专题复习】九年级数学上册一元二次方程解法练习100题(含答案)1.解方程:$2x^2-8x+3=0$,使用公式法。

2.解方程:$(2x-1)(x+3)=43$。

3.解方程:$4y^2+4y-1=-10-8y$。

4.解方程:$(x-1)(x-3)=8$。

5.解方程:$5x^2-8x+2=0$。

6.解方程:$x(x-3)=10$。

7.解方程:$x^2-2=-2x$。

8.解方程:$3x(7-x)=18-x(3x-15)$。

9.解方程:$4x(3x-2)=6x-4$。

10.解方程:$x^2+12x+27=0$。

11.解方程:$2x^2-4x+1=0$,使用配方法。

12.解方程:$4(x-1)^2=9(x-5)$。

13.解方程:$x^2-6=-2(x+1)$。

14.解方程:$x^2+4x-5=0$。

15.解方程:$2x^2+5x-1=0$。

16.解方程:$3(x-2)^2=x(x-2)$。

17.解方程:$2x^2-3x-2=0$。

18.解方程:$2x^2-7x+1=0$。

19.解方程:$x^2-6x-4=0$,使用配方法。

20.解方程:$x^2-4x-3=0$。

21.解方程:$x^2-5x+2=0$。

22.解方程:$x^2-4x+8=0$。

23.解方程:$3x^2-6x+4=0$。

24.解方程:$(x-2)(x-3)=12$。

25.解方程:$(x-3)(x+7)=-9$。

26.解方程:$3x^2+5(2x+1)=0$,使用公式法。

27.解方程:$x^2-12x-4=0$。

28.解方程:$(x-5)(x-6)=x-5$。

29.解方程:$x^2-8x-10=0$。

30.解方程:$x(x-3)=15-5x$。

31.解方程:$5x(x-3)=(x+1)(x-3)$。

32.解方程:$x^2+8x+15=0$。

33.解方程:$25x^2+10x+1=0$。

34.解方程:$x^2+6x-7=0$,使用配方法。

35.解方程:$x^2+4x-5=0$,使用配方法。

人教版九年级数学-一元二次方程全章知识点专题复习(含答案)

人教版九年级数学-一元二次方程全章知识点专题复习(含答案)

一元二次方程全章知识点专题复习【课标要点】1. 理解一元二次方程定义;2. 会解一元二次方程;3. 会根据根的判别式24b ac -判断一元二次方程的根的情况; 4. 会列一元二次方程解决实际问题.⎧⎪⎪⎪⎨⎪⎪⎪⎩解法根的判别式一元二次方程二次三项式的分解因式根与系数的关系实际应用问题第1讲 一元二次方程的概念【知识要点】1、一元二次方程的一般形式:200),,,ax bx c a a b c ++=≠(其中是常数. 2、在一般式中,当b =0时,则有220c 00ax c ax bx +=+=或当=时,则有,这两种情况都是一元二次方程.【典型例题】 例1判断下列关于x 的方程是不是一元二次方程.22222222213;(2)50;(3)235;(5)2(3)21;511(6)33;(7)2;(8)()10;(9)40:1(10)0.(0)x x x xy x x x x x x x x abx a b x x x x px qx m p =-=--==-=+++=-=+++=-+=+++=≠() 分析:一元二次方程,必须满足:(1)整式方程;(2)含有一个未知数,并且最高次数是2.解:方程(1)、(6)、(7)的左边是分式,不属于整式方程,方程(3)含有两个未知数,方程(4)的左边不是整式,方程(5)经整理候,得-6x =1,方程(8)中未确定ab≠0,因此,只有(2)、(9)、(10)是一元二次方程.例2方程25)(3)(3)50.m m m x m x ---+-+=((1) m 为何值时,此方程为一元二次方程? (2) m 为何值时,此方程为一元一次方程?分析:形如0nax bx c ++=的方程,当n =2且a≠0时为一元二次方程;当a =0时且b≠0时为一元二次方程.解:(1)当m -2=2时,m =4,这时5)(3)0.m m --≠(当m =4时,此方程为一元二次方程.(2)5)(3)0,20,2m 30m m m m --=->-≠当(为自然数,且-时,方程为一元一次方程.由5)(3)0m 5m 3m m m --=≠(得=或=,又因为3,∴当m =5时,此方程为一元一次方程.例3 为加强防汛工作,市工程队准备对苏州河一段长为2240米的河堤进行加固,由于采用了新的加固模式,现在计划每天加固的长度比原计划增加了20米,因而完成此段加固工程所需天数将比原计划缩短2填,为进一步缩短该段加固工程的时间,如果要求每天加固224米,那么在现在计划的基础上,每天加固的长度还应再增加多少米?(只需列出方程,并整理成一般一元二次方程形式.)分析:根据题意本题有两个关系式:一是计划每天加固的长度比原计划增加了20米,而是实际完成工程任务所需时间比原计划缩短2天,由时间关系列出方程.解:设现在计划每天加固河堤x 米,则原来计划每天加固河堤(x -20)米.根据题意德22402240220x x-=-,整理,得 22022400x x --=【知识运用】 一、选择题1.一元二次方程得一般形式是( )A.20x bx c ++= `B.20ax bx c ++=C. 20()ax bx c a o ++== D.以上都不对 2.下列方程为一元二次方程的有( )A.21102x x-+= B. 252ax bx c +=C.()219x -=D.x+y=03.关于x 的方程232232(m n m x mx m x nx px q +=+-+≠其中),经化简整理,化为200)ax bx c a ++=≠(的形式后,二次项系数、一次项系数及常数项分别是( )A.m -n ,p ,qB. m -n ,-p ,qC.m -n ,-p ,-qD.m -n ,p ,-q4.将一元二次方程21x 2x 302-+=-的二次项系数变为正整数,且使方程的根不变的是( )A. 2x 2x 30+=- B. 2x x 60+=-4C 2x x 60=-4-D 2x x 60-=+4二、填空题5.方程24x 0=是_____元______次方程,二次项系数是______,一次项系数是____,常数项是_______.6.当m__________时,方程2m-1)x 21)x 0m m -+=(-(不是关于x 的一元二次方程;当m___________时,上述方程才是关于x 的一元二次方程;7.若方程22x 3x 1k x +=+是一元二次方程,则k 的取值范围是_________; 三、解答题 8.若方程1(3)x230k k x --+-=是关于x 的一元二次方程,求k 的值.9.若关于x 的一元二次方程22(a-1)x +x+a 10-=的一个根是0,求a 的值.10.某大学改善校园环境,计划在一块长80米,宽60米的矩形场地中央建一矩形网球场,网球场占地面积为3500平方米,四周为宽度相等的步行道,求步行道的宽度,根据题意列出泛称,并将其化为一般形式.第2讲 配方法【知识要点】1、直接开平方法解一元二次方程:将方程化成()2b(0)x a b +=≥的形式,则x=0)a b -±≥.2、配方法解一元二次方程:利用公式222a 2()ab b a b ±+=±,把一元二次方程转化为2()(0)x a b b +=≥,再利用直接开平方法解方程.【典型例题】例1 用配方法解关于x 的一元二次方程: x 0px q ++=2分析:配方法解一元二次方程,关键要搞清配方的目的是什么,即配方要使方程能运用直接开平方法解决,该题是一种字母系数的一元二次方程,故可按上述步骤进行求解,先将其整理成一般形式,二次项系数化为1.因二次项系数为1,所以移项得2x x p q +=-,方程两边配方,然后利用完全平方公式,直接开平方法解出方程.解:22221212x ,x (),244qx ,244q p 400,4x (2)p 40x 23p 40px q p p px q p p p q x pq x q +=-++=-+--->>---<222222移项,得配方,得整理,得(+)=(1)当时,方程两边直接开平方,得当=时,==;()当时,原方程无实数解.例2 用配方法解方程(1)2x 6x 50+-=; (2)24x 7x 20-+=分析:方程经过移项,配方后变为形如2().ax b c +=的方程 解:(1)(2)移项,得24x 7x 2-=-化二次项系数为1,例3 试证:不论x 为何实数,多项式424224124x x x x ----的值总大于的值. 分析:比较两个代数式大小通常用做差的方法. 解:∴多项式424224124x x x x ----的值总大于的值. 【知识运用】 一、选择题1. 已知代数式2224x 228x 5x x +-+-的值为3,则代数式的值为( ) A.5B. -5C. 5或-5D.02.将二次三项式22x 4x 6-+进行配方,正确的结果是( )A.24-2(x-1) B.24+2(x-1)C.22-2(x-2)D. 22+2(x-2) 3.方程2(1)9x +=的解是( ) A.2x =B. 4x =-C. 122,4x x ==-D. 122,4x x =-=221265,6959,314333x x x x x x x +=++=+=∴+=∴=-+=--2移项,得配方,得即(x +)2222127717x ()()48287177x x 864877x x 88x x x -+=-+-∴-∴--∴得即()=,===4242424222224242(241)(24)23(21)2(1)2x (1)20(241)(24)0x x x x x x x x x x x x x x -----=-+=-++=-+-+>----->对于任何实数,总有即4.已知11120,19,21202020a xb xc x =+=+=+,则代数式222a b c ab bc ac ++---的值是( ) A.4 B.3C. 2D. 1二、填空题5.224___9(___3)x -+=-6.将二次三项式2x 2x 2--进行配方,其结果等于__________.7.已知m 是方程2x x 20--=的一个根,则代数式2m m -的值等于______. 三、解答题8.用配方法解下列方程2(1)2360;x x --= 221(2)20;33y y --=2(3)0.40.81;x x -= 2(4)1)0;y y ++=9.用配方法证明21074x x -+-的值恒小于0.10.来自信息产业部的统计数字显示,2019年1月至4月份我国手机产量为4000万台,相当于2018年全年手机产量的80%,预计到2020年年底收机产量将达到9800万台,试求这两年手机产量平均每年的增长率.第3讲公式法【知识要点】1.公式法:一般地,对于一元二次方程221200),b 4ac 0x ax bx c a ++=≠≥,(当-时, 2.2b 4ac 0≥V 当=-,方程可用公式法求解;当2b 4ac 0<V 当=-时,方程无解.【典型例题】例1 用公式法解下列方程21x 100-+=() 2(2)221x x +=(3)(1)(1)x x +-=分析:首先把每个方程化成一般式,确定a 、b 、c 的值,在2b 4ac 0≥-的前提下,代入求根公式求出方程的根.解:2221222212(2)2210,2,2,1,424?2?(1122(3)10,1,2,1,44?1?(2(4)x x a b c b ac x x x a b c b ac x x +-====--=-±∴=⨯-+-∴===--===-=--=-±∴==⨯∴==Q 移项,得-1)=12>0,-2x=22原方程可化为(-1)=12>0,-(x=222221210,1,1,1,414?1?(x x a b c b ac x x +-====--=-∴=∴===Q 将原方程可化为-1)=5>0,x例2 阅读下面一段材料,并解答问题.22(1)1,4,10,4(411080,(212x x a b c b ac x ==-=-=-⨯⨯>--∴===⨯∴=Q 1=2-=22220(0)40,4200(0,,,)ax bx c a x b ac b ac b x aa ax bx c a abc ++=≠=-≥--∆=≠∆≥++=≠ 我们知道由一元二次方程运用配方法得其求根公式由平方根的意义知:当时即负数,没有平方根,故代数式就决定了方程根的情况,称它为一元二次方程根的判别式,用记号“”表示,故公式符合条件且0,方可用于求实数根.此外,若均为整数应当222121242,(1)10,:4,?,,?:,b ac b a k x x k x k x x x x k ∆=-∆--+++==∆≥注意当是完全平方时,方程根为有理根;当是完全平方且(是的整数倍时方程的根为整数根. 根据上面得出的结论,请你解答下列问题: 已知关于的方程试求 ⑴为何值时方程有两个实数根 ⑵若方程的两个实数根满足则为何值 分析根据上面材料分析当0时方程有实数根,从而确定k 的取值,对[]1222121121212121.:(1),1)4(1)043230.2(2)0,,0,2k-3=0,35k=,0,240,010,10,,x x k k k k x x x x x x x x x x x k k x =∆≥+-+≥-≥∴≥=≥=∆===><-=+=∴+==-∆≥Q 1于⑵中需分类讨论 解方程有实数根故0,即-( 化简得时方程有两个实数根由①当时此时即符合要求.②当x 时即与相矛盾故舍去k=-13综上可知:当k=时有22x = 例3 某工厂拟建一座平面图形为矩形且面积为200平方米 的三级污水处理池(平面图如右图),由于地形限制,三级水库处理 池的长、宽都不能超过16米,如果池的外围墙建造单价为每米 400元,中间两条间隔墙单价为每米300元,池底建造单价为每平 方米80元.(池墙的厚度忽略不计)(1) 当三级污水处理池的总造价为47200元时,求池长x;(2) 如果规定总造价越低就越合算那么根据题目提供的信息以47200元为总造价来修建三级污水处理池是否最合算?请说明理由.分析:可根据三级污水处理池的总造价为47200元列方程.ADBC隔墙隔墙x21212400400:(1)400(2)3002008047200,4007008002008047200,393500,14,25,,14,25,2516(,)10014,16.7x x xx xx x x x x x ⨯++⨯+⨯=⨯++⨯=-+=====><∴ 解由题意得即有 化简得 解得经检验都是原方程的根但米米不符合题意舍去 当池长为米时池宽为米米符合题意 当三级污水处理池的总造价为47200(2)1612.5164007008001620080463004720016<⨯⨯++⨯=<∴元时,池长为14米.当以47200元为总造价修建三级污水处理池时,不是最合算. 当池长为米时,池宽为米米,故池长为16米符合题意,这时总造价为当以47200元为总造价修建三级污水处理池时,不是最合算.【知识应用】 一、选择题22222401)53200,0,0,x x k k m x x m m m n x mx n n m n --=-++-+=++=≠+1.方程2有两个相等的实数根,则的值为( )A.-1 B.-2 C.1 D.22.若一元二次方程(的常数项为则为( )A.1 B.2 C.1或2 D.53.若是方程的根则的值为( )1A. B.1 C.222235020,______.6.610_______.7.x x x mx m x x x --=++=--=1- D.-124.不解方程,判断方程2的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定二、填空题5.已知的一个根则方程的另一个根是_____,的值是方程3的两根之和是方程22230530______.x x x --=++=与方程2的公共解是三、解答题,28.已知直角三角形的一条直角边比另一条直角边长2cm,且面积为24cm 求直角三角形的周长.21)(4)240,10,.k x k x k k k +++-+=+≠9.已知方程(有零根其中求的值2210.2)0,a a x ax b x a --++=要使(是关于的一元二次方程求的取值范围.第4讲 分解因式法【知识要点】112212121212a xb a x b b b a a x x a a ++≠=-=- 1. 分解因式法:把一个一元一次方:程整理为:()()=0的(0)的形式,方程的解为:;;. 2.注意(1)方程一边一定化为0;(2)常用的方法:①提公因式法;②运用公式法③十字相乘法.【典型例题】260;x x -=例1 用因式分解法解下列方程. (1):(1),,(2),(5)(5),,.x x --分析方程的右边是零左边可以用提公因式法分解方程不要去掉括号更不要两边同时除以或要先移项使方程右边为零212212:60,(6)0,060,0, 6.(2)3(5)2(5)0,(5)[3(5)2]0,(5)(133)0,501330,135,.3x x x x x x x x x x x x x x x x x x -=-=∴=-=∴==---=---=--=∴-=-=∴==解(1)即或原方程可变形为 即或 2(2)3(5)2(5)x x -=-例2 用公式法因式分解式解下列方程.2222(4)(43)(2)49(3)16(6)x x x x -=--=+ (1)3221222(1)(2)(1)(4)(43)0[(4)(43)][(4)(43)]0(77)(1)0,770101, 1.(2)7(3)][4(6)]0,7(3)4(6)][7(3)4(x x x x x x x x x x x x x x x x x x ---=∴-+----=∴---=∴-=--=∴==---+=-++--分析:方程先移项再利用因式分解法来解,方程移项后也能因式分解.解:移项,得333或 原方程化为[ [126)]0,(113)(345)0,3,15.11x x x x +=+-=∴=-=化简为,1).x x x x +-例3 为解决新疆农牧民出行难的问题今年是新疆投资公路建设力度最大、最多的一年,某公路修筑队接受了改建农村公路96千米的任务,为了尽量减少施工带来的交通不便,实际施工时每天比计划多修1千米,结果提前16天完成任务,问原计划每天修多少千米?分析:如果把修路队原来计划每天修(千米),则实际每天修路是(千米,工作任务可根据工作时间=列方程工作效率解:设原计划每天修路千米,由题意得962129616160(3)(2)03(),2:x x x x x x x =++-=∴+-=∴=-= 化简整理得舍去答原计划每天修2千米.【知识运用】1212121212121200550505244552A. B.4C.,4D.,4225(1)(2)034,A B x x x x x x x x x x x x x x x x x x x x x x x x -======-==--======+-===-一、选择题1.一元二次方(5)=0的两个根为( )A.,B.,C.,D.,2.方程()=5()的根为( )3.方程的根是,则这个方程为( ).-1,2 .12C D 34,A.(3)(4)0B.(3)(4)0C.(3)(4)0D.(3)(4)0x x x x x x x x x x ==--+=+-=++=--=1,-2 .0,-1,2 .0,1,-24.已知一元二次方程的两根分别为,则这个方程为( )22225123,_____.4_____,.5147.235(23)201(21);(2)(5)59.,3,x x x x x x x x x x y x x x +-+=-=+-++++=-=-=2二、填空题:5.若与的值相等则6.当时代数式的值为零用分解因式法解方程:2()的解是_____.三、解答题8.用适当的方法解方程.1(1)2有一个直角三角形它的边长恰是个连续整数这个三角形的三边长是多少?10.有一个两位数,它的十位数字和个位数字的和是5,把这个两位数的十位数字和个位数字互换后得到另一个两位数,两个两位数的积为736,求原来的两位数.第5讲 一元二次方程【知识要点】 1、黄金分割:如,图若点C 把线段分成两条线段AB 和BC ,且满足AC BCAB AC=则称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.2、列方程解应用题的基本步骤可归纳为:审(审题);设(设未知数);列(列方程)解(解方程);答(答案).3、列方程解应用题的关键是找出存在的相等关系 【典型例题】例1 某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,求3月份到五月份营业额的平均增长率.分析:本题属于平均增长率问题,由已知可设月平均增长率为x ,那么3月份的营业额为400(1+10%)(1+x ),5月份营业额为400(1+10%)(1+x )2.解:设平均月增长率为x ,由题意得400(1+10%)(1+x )2=633.6 整理得:(1+x )2=633.61 1.2440x ∴+=± 0.2x ∴= 所以平均月增长率为20%.例2 一块矩形耕地大小尺寸如图所示,要在这块地上沿东西和南北方向分别挖2条和4条水渠,如果水渠的宽相等,而且要保证余下的可耕地面积为9600米2,那么水渠应挖多宽?分析:这类问题的 特点是挖蕖所占用土地面积只与挖蕖的条数、渠道的宽度有关,而与渠道的位置无关,为了研究问题方便可分别把沿东西和南北方向挖的渠道移动到一起,那ABC么剩余可耕的长方形土地的长为(162-2x )米,宽为(64-4x )米.解:设水渠应挖x 米宽,以题意,得(162-2x )(64-4x )=9600化简,297960x x -+=解得11x =,296x =(舍去)答:水渠应挖1米宽. 【知识运用】 一、选择题1. 某商店十月份营业额为5000元,十二月份上升到7200元,平均每月增长的百分率是( ) A .20% B ..12% C .22% D.10%2. 从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是( )A. 9cm 2B.68cm 2C. 8cm 2D. 64cm 23.有一个两位数,它的数字和等于14,交换数字位置后,得到新的两位数比原来的两位数大18,则原来的两位数是( )A .68 B.86 C.-68 D.-864.随着通讯市场竞争日益激烈,某通讯公司的收集市话收费标准按原标准每分钟降低了a 院后,再次下降25%,现在的收费标准是每分钟b 元,则原收费标准是每分钟( ) A. 5(1)4b -元 B. 5()4b a +元 C. 3()4b a +元 D 4()3b a +元. 二、填空题5.三个连续偶数,较小的两个数的平方和等于较大的数的平方,则这三个数为________. 6.一个两位数,它的数字之和为9,如果十位数字为a ,那么这个两位数是________;b 把这个两位数的个位数字与十位数字对调组成一个新数,则这个数与原数的差为________. 7.某种手表的成本在两年内以100元降低到81元,那么平均每年降低成本的百分率是_____. 三、解答题8.某工厂计划用两个月把产量提高21%,如果每月比上个月提高的百分数相同,求这个百分数.9.某人将2000元人民币按一年定期存入银行,到期后支出1000元用来购物,剩下的1000元及应得利息又全部按一年定期存入银行.若存款的利率不变,到期后得本金和利息共1320元,求这种存款方式的年利率.10.某商店如果将进货价为8元的商品按每件10元出售,每天可销售200件.现采用提高售价、减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件.问售价定为多少时,才能使所赚利润最大,并求出最大利润.第1讲一、1.C 2.C 3.D 4.D 二、5.一、二,4,0,0 6.m=1,m ≠1 7.222a ab b --三、8.根据题意的1230k k ⎧-=⎪⎨-≠⎪⎩①②由①得k -1=-2解得k=3或k=-1,由②得k ≠3,所以k=-19.由于方程的解使方程的左右两边相等,故将方程的解代入原方程后得到关于a 得方程,求出a 得值,但是需要满足原一元二次方程的二次项系数不为零,故只取a=-1. 10.设步行道的宽度为x 米,根据题意得(80-2x ).(60-2x)=3500整理,得方程的一般形式为703250x -+=2x 第2讲一、1.A 2.B 3.C 4.B二、5.12x,2x ;6.2(1)3x --;7.22m m -=三、8.121233(1)(2)2,31342x y y y y ±±==-==-=--2()x=29.2711110)002040x --<原式配方得-( 2210740,10740x x x x +-=+-即-故-的值恒小于 10.设这两年手机产量平均每年的增长率为x ,根据题意得2124000212(1)980040%,8055x x x +====-解得%(舍去) 第3讲一、1.B 2..B 3.D 4.A 二、5.24-- 6.2 7.x=-1三、8.设直角三角形的较短的直角边长为xcm ,则较长的直角边长为(x+2)cm.根据题意得:2001)0(4)02402x x k k k k =∴=+⨯++⨯-+=∴=Q 方程有零根即将代入方程得,(2121(2)24248026,8()2810x x x x x x x +=∴+-===-∴+=∴∴解得不符合题意舍去较长直角边为直角三角形的周长为6+8+10=24(cm )9. 10.要使方程是x 的一元二次方程,则由一元二次方程的定义.有220,2,1a a a a x --≠∴≠≠-且时该方程时关于的一元二次方程第4讲一、1.C 2.A 3.C 4.C 二、5.- 1或4 6.x =-27.260,y y x +-==三、8.(1)y=12±(2)121x x 5==- 9. 3,4,5 10. 32,23第5讲一、1.C 2.A 3.B 4.D 二、5. 7,6,8 6.9a+9,81-18a 7.10%三、8.设每月提高的百分率为x,原产量为a ,以题意得a(1+x)2=a(1+21%)220(1) 1.210.110% 2.1(10a x x ≠∴+====-∴Q 1解得x 舍去)为%9.设此种存款的年利率为x ,由题意得: 【2000(1+x )-1000】(1+x)=1320 所以年利率为10%10.设此种商品的售价为x 元,商品所赚利润s 最大.2210.(20010)2040020(10)20000.5102000.x s x x x s x x s -=-⨯=-+∴=--+∴=当时,取最大值。

人教版九年级数学 中考复习 一元二次方程

人教版九年级数学 中考复习  一元二次方程

一元二次方程一、知识要点一元二次方程1.一元二次方程的有关概念:只含 个未知数,并且未知数的最高次数是 的整式方程叫做一元二次方程,一元二次方程的一般形式是 ,其中二次项系数是 ,一次项系数是 ,常数项是 。

2.一元二次方程的解法:(1)一元二次方程的解法有 、 、 、 。

(2)一元二次方程)0(02≠=++a c bx ax 的求根公式是 ,运用求根公式解一元二次方程的前提是 。

3、一元二次方程的根的判别式:对于一元二次方程)0(02≠=++a c bx ax ,ac b 42-=∆称为一元二次方程的根的判别式。

4.一元二次方程的根与系数的关系:设21,x x 分别是一元二次方程()002≠=++a c bx ax 的两根,则有=+21x x ,=21x x 。

二、知识运用典型例题例1.(1)(武汉) 2310x x --=. (2)(仙桃)2420x x ++=.例2.m 取什么值时,关于x 的方程22(1)0mx m x m -++=,(1)有两个相等的实数根,(2) 有两个不相等的实数根,(3)有实数根,(4)没有实数根,(5)有且只有一个实数根。

例3.已知1x 2x 是关于x 的一元二次方程062=+-k x x 的两个实数根,且21x 22x —1x —2x =115 (1)求k 的值;(2)求21x +22x +8的值。

例4.(淮安)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?三、知识运用课堂训练1. (河南)方程2x =x 的解是 ( )A .x =1 B.x =0 C.x 1=1 x 2=0 D. x 1=﹣1 x 2=0 2.(山西省太原市)用配方法解方程2250x x --=时,原方程应变形为( ) A .()216x += B .()216x -= C .()229x += D .()229x -= 3.(无锡)方程2310x x -+=的解是.4.(威海)若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______.5.(兰州)已知关于x 的一元二次方程01)12=++-x x m (有实数根,则m 的取值范围是 .6.(安徽芜湖)已知x 1、x 2是方程x 2+3x +1=0的两实数根,则x 13+8x 2+20=________.7.(成都)设1x ,2x 是一元二次方程2320x x --=的两个实数根,则2211223x x x x ++的值为__________________.8.(昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80-100x-80x=7644B.(100-x)(80-x)+x 2=7644C.(100-x)(80-x)=7644D.100 x+80 x =3569.(荆州)已知:关于x的方程kx2-(3k-1)x+2(k-1)=0(1)求证:无论k为何实数,方程总有实数根;(2)若此方程有两个实数根x1,x2,且│x1-x2│=2,求k的值.10.(长沙)长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠?课后训练1.(河南)方程032=-x 的根是( )(A )3=x (B )3,321-==x x (C )3=x (D )3,321-==x x 2.(荆门)如果方程ax 2+2x +1=0有两个不等实根,则实数a 的取值范围是___ ___. 3.(玉溪市)一元二次方程x 2-5x +6=0 的两根分别是x 1,x 2,则x 1+x 2等于 ( ) A. 5 B. 6C. -5D. -64.(烟台市)设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( )A .2006B .2007C .2008D .20095.(包头)关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .25。

完整word版人教版九年级上册数学一元二次方程复习资料

完整word版人教版九年级上册数学一元二次方程复习资料

一元二次方程一、知识结构:一元二次方程二、考点精析考点一、看法解与解法根的鉴识韦达定理(1) 定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二......................次方程。

(2)一般表达式: ax 2 bx c 0(a 0)⑶难点:如何理解“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以议论。

典型例题:例 1、以下方程中是关于x 的一元二次方程的是()A 3 x 1 2 2 x 1B 1 12 0 x 2 xC ax 2 bx c 0D x 2 2x x 2 1变式:当 k 时,关于 x 的方程 kx 2 2x x2 3 是一元二次方程。

例 2、方程m 2 x m 3mx 1 0 是关于x的一元二次方程,则m的值为。

针对练习:★1、方程8x2 7 的一次项系数是,常数项是。

★2、若方程m 2 x m 1 0 是关于x的一元一次方程,⑴求 m 的值;⑵写出关于x 的一元一次方程。

★★ 3、若方程m 1 x 2 m ? x 1 是关于 x 的一元二次方程,则 m 的取值范围是。

★★★ 4、若方程nx m+x n -2x2=0 是一元二次方程,则以下不能够能的是()A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=1考点二、方程的解⑴看法:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的看法求代数式的值;典型例题:例 1、已知2 y2 y 3 的值为2,则4 y2 2 y 1 的值为。

例 2、关于 x 的一元二次方程 a 2 x 2 x a 2 4 0 的一个根为0,则 a 的值为。

例 3、已知关于x 的一元二次方程ax2 bx c 0 a 0 的系数满足a c b ,则此方程必有一根为。

例 4、已知a,b是方程x2 4x m 0 的两个根, b, c 是方程 y2 8 y 5m 0 的两个根,则 m 的值为。

九年级数学一元二次方程总复习资料

九年级数学一元二次方程总复习资料

九年级数学一元二次方程总复习资料一、知识扫描1.只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.因此,由一元二次方程的定义可知,即一元二次方程必须满足满足以下三个条件:①方程的两边都是关于未知数的整式;②只含有一个未知数;③未知数的最高次数是2。

这样的方程才是一元二次方程,不满足其中任何一个条件的方程都不是一元二次方程。

例如:535,53,02,3422222+===-+-x x x x x x x 都是一元二次方程。

而03132=-+x x不是一元二次方程,原因是x1是分式。

2.任何关于x 的一元二次方程的都可整理成)0(02≠=++a c bx ax 的形式.这种形式叫做一元二次方程的一般形式,它的特征是方程左边是一个关于未知数的二次三项式,方程右边是零,其中2ax 叫二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

注意b 、c 可以是任何实数,但a 绝对不能为零,否则,就不是一元二次方程了。

化一元二次方程为一般形式的手段是去分母、去括号、移项、合并同类项,整理后的方程最好按降幂排列,二次项系数化为正数。

注意任何一个一元二次方程不可缺少二次项,担可缺少一次项和常数项,即b 、c 均可以为零。

如方程013x 023x 02222=-=-=、、x x 都是一元二次方程。

3.一元二次方程的解. 使一元二次方程左、右两边相等的未知数的值,叫一元二次方程的解,又叫一元二次方程的根。

如x=1时,022=-+x x成立,故x=1叫022=-+x x的解。

4.一元二次方程的解法解一元二次方程的基本思想是通过降次转化为一元一次方程,本节共介绍了四种解法。

(1)直接开平方法:方程)0(2≥=a a x的解为a x ±=,这种解一元二次方程的方法叫直接开平方法。

它是利用了平方根的定义直接开平方,只要形式能化成()a =2的一元二次方程都可以采用直接开平方法来解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程专题复习【知识回顾】1.灵活运用四种解法解一元二次方程:一元二次方程的-•般形式:做2+bx + c = 0(dH0)四种解法:直接开平方法,配方法,公式法,因式分解法,公式法:(戸一4必$0)注意:(1) 一定要注意QHO,填空题和选择题中很多情况下是在此处设陷进;(2)掌握一元二次方程求根公式的推导;(3)主要数学方法有:配方法,换元法,“消元”与“降次” •2.根的判别式及应用(A = &2-4ac):(1)一元二次方程ax2 +加+ c = 0(a工0)根的情况:①当A>0时,方程有两个不相等的实数根;②当△ = ()时,方程有两个相等的实数根;③当时,方程无实数根.(2)判定一元二次方程根的情况;(3)确定字母的值或取值范围。

3.根与系数的关系(韦达定理)的应用:b c韦达定理:如一元二次方程ax1 +Z?x + c = 0(«^0)的两根为,则西+无=——,占•匕=— a ~ a适用题型:(1)已知一根求另一•根及未知系数;(2)求与方程的根有关的代数式的值;(3)己知两根求作方程;(4)已知两数的和与积,求这两个数;(5)确定根的符号:(西,召是方程两根);(6)题冃给出两根Z间的关系,如两根互为相反数、互为倒数、两根的平方和或平方差是多少、两根是/?/△的两直角边求斜边等悄况.注意:(1 ) %]2 + =(X] + 兀2)~ — 2兀]• X,(2) (x, -x2)2 = (Xj +x2)2 -4^ -x2;x} -x2 =+x2)2 -4x, -x 2A>0(3)①方程有两正根,贝iJ<X]+兀2>0;-x2 > 0A>0②方程有两负根,贝IJ西+兀;x l-x2>0[A>0③方程冇一正一负两根,贝叽“[x A -x2 < 0[A>0④方程一根人于1,另一根小于1,贝几仃 .、八[(x, — l)(x2 -l)<0(4)应用韦达定理时,要确保一元二次方程有根,即一定要判断根的判别式是否非负;求作一元二次方程时, 一•般把所求作得方程的二次项系数设为1,即以西,吃为根的一元二次方程为X2-U.十兀2)兀+西*2 =0 ;求字母系数的值时,需使二次项系数QH0,同时满足△》();求代数式的值,常用整体思想,把所求代数式变形成为含有两根Z和坷+乞,两根Z积旺的代数式的形式,整体代入。

4.用配方法解一元二次方程的配方步骤:例:用配方法解4X2-6X+1=03 1第一步,将二次项系数化为1: x2--x + l = 0,(两边同除以4)2 4第二步,移项:x2--x = --2 4第三步,两边同加一次项系数的一半的平方:兀2_?兀+(丄)2=_丄+(?)22 4 4 43 5第四步,完全平方:(兀—2)2=丄416笫五步,直接开平方:X ———±-^- , HP : Xj =+ -^― + —, ——4-—4 4 | 4 4 ~ 4 45.一元二次方程的应用:解应用题的关键是把握题意,找准等量关系,列出方程。

最后还要注意求出的未知数的值,是否符合实际意义。

【中考考点】①利用一元二次方程的意义解决问题;②用整体思想对复杂的高次方程或分式方程进行变形(换元法);③考杳配方法(主要结合函数的顶点式来研究);④一元二次方程的解法;⑤一元二次方程根的近似值;⑥建立一元二次方程模型解决问题;⑦利用根的判别式求方程屮字母系数的值和利用根与系数关系求代数式的值;⑧与一元二次方程相关的探索或说理题;⑨与其他知识结合,综合解决问题。

一元二次方程的定义与解法>【要点、考点聚焦】1.加深理解一元二次方程的有关概念及一元二次方程的一般形式or? + bjc + c = O(d HO);2.熟练地应用不同的方法解方程;直接开平方法、配方法、公式法、因式分解法;并体会“降幕法”在解方程中的含义.(其屮配方法很重要)>【课前热身】1.当€/=___________ 时,方程ax2 +3x4-1 = 0是一元二次方程.2.已知x = l是方程#+妙+ 2 = 0的一个根,则方程的另一根为___________ .3.一元二次方程x(x-\) = x的解是____________ .4.若关于兀的一元二次方程祇2+^+ C =0(G H0),一rid + b + c = O,则方程必有一根为_____________ ・5.用配方法解方程X2-4X +2=0,则下列配方正确的是( )A. (x —2尸=2B. (X +2)2=2C. (x-2)2=-2D. (x-2)2=6>【典型例题解析】1、关于兀的一元二次方程(or-l)(or-2)=〒-2兀+ 6中,求。

的取值范围.2、己知:关于兀的方程x2-6% + m2-3m-5 = 0的一个根是-1,求方程的另一个根及加的值。

3、用配方法解方程:2X2-X-1=0>【考点训练】1、关于兀的一元二次方程(a-l)x2+x + a2-\ = 0的一个根是0,则d的值为()A. 1B. — 1C. 1 或一1D.—22、解方程3(12%-1)2=4(12X-1)的最适当的方法()A.直接开平方法B.配方法C.因式分解法D.公式法3、若a-b + c = 0,贝ij一元二次方程“+bx + c = 0有一根是()A. 2B. 1C. 0D. -14、_____________ 当k 时,伙2一9庆+仗_5)兀_3 = 0不是关于兀的一元二次方程.5、_______________________________________________________ 已知方程3/- 2尤+ 1 = 4,贝I」代数式12X2-8X +3= _________________________________________________ ・6、解下列方程:(1)(乂一1)~=4; (2)x~ — 2x— 3 = 0 (3)2t~ — 7t — 4 = 0(用配方法)一元二次方程根的判别式>【要点、考点聚焦】1.一元二次方程做$ +以+ C = 0(67 H 0)根的情况与△的关系;2.一元二次方程根的判别式的性质反用也成立_,即己知空]情况:可以得到一个等響不等式,从血确定系数的值或取值范围'〜匕切记:不要忽略d 一>【课前热身】1.若关于X的一元二次方程x2-2x+l = 0有实数根,则加的取值范围是()A. m< 1B.加<1且加HOC. m C1D. m W1且加HO2.一元二次方程X2-2X-1 = 0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根3.已知关于兀的一元二次方程x2+4x + m-l = 0 .请你为加选取一个合适的整数,当加= _______________ 时,得到的方程有两个不相等的实数根;4.若关于兀的方程兀2+(2—1)卄疋_? = 0有两个相等的实数根,求£的取值范围。

>【典型考题】1.已知关于x的方程(m-2)x2 -2(m-l)x + m + l = 0 ,当加为何非负整数时:(1)方程只有一个实数根;(2)方程有两个相等的实数根;(3)方程有两个不等的实数根.2.已知a,b,c是三角形的三条边,求证:关于兀的方程b2x2 + (b2+c2-a2)x-^-c2= 0没有实数根.【课时训练】1、一元二次方程^-2x-l = °的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2、已知关于兀的一元二次方程x2-m = 2x有两个不和等的实数根,则加的取值范囤是( )A. m > -1B. m < -2C. m 0D. m<Q3、一元二次方程(1-幻无2一2兀_i=o冇两个不相等的实数根,则R的取值范围是_________ .4、求证:关于兀的方程兀2 + 0 + 1)兀+ — 1 = 0有两个不相等的实数根。

强化训练一、填空题1、关于兀的方程(m-3)x2-V3x-2 = 0是一元二次方程,则加的取值范围是_________________ .2、若b(b 0)是关于兀的方程2〒+b + b = 0的根,则2b + c的值为______________ .3、方程X2-3X+1=0的根的情况是 _______________________________ ・4、写出一个既能直接开方法解,又能用因式分解法解的一元二次方程是_____________ .5、在实数范围内定义一种运算“ *”,其规则为a^b = a(a-by根据这个规则,方程(x+2)*5 = 0的解为6、如果关于兀的一元二次方程总'―2兀-1 = 0有两个实数根,则£的取值范围是____________ o7、设西,兀?是—元二次方程G F +bx + c = 0的两个根,则代数式d(彳+兀;)+方(彳+x;) + c(兀]+花)=0的值为二、选择题1、关于兀的方程x2-kx + k-2 = 0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定2、已知方程j^4-Ax+a=0有一个根是p(a#Q),则下列代数式的值恒为常数的是()A> ab B> —C^ D、a—Ab3、方程3x2 + 27 = 0的解是()A. x=±3B. X = -3C. X=0D. 无实数根4、若关于兀的一元二次方程2x(总—4)—兀2+6 = 0没有实数根,那么£的最小整数值是()A. 1B. 2C. 3D. "I5、如果。

是一元二次方程X2-3X +/H = 0的一个根,一。

是一元二次方程x2+3x-m = 0的一个根,那么Q的值是()A、1 或 2B、0 或一3C、一 1 或一2D、0 或 36、设加是方程x2 +5x = 0的綾人的一根,〃是方程x2 -3x + 2 = 0的綾小的一根,则m + n=()A. -4B. -3 c. 1 D. 2三、解答题1、用配方法解下列方程:3x2- \=4x ax2 + abx — 2 = Q(a > 0)a(x-b)2 + c = 0(a 丰 0)2、已知方程2x2 +伙-9)兀+伙2+3k + 4) = 0有两个相等的实数根,求R值,并求出方程的根。

3、已知是AABC的三条边长,且方程(a2+/72)x2-2cx + l = 0有两个相等的实数根,试判断AABC的形状。

4^己知关于兀的一元二次方程十-2nvc-3m2 + Sm-4 = 0.(1)求证:原方程恒有两个实数根;(2)若方程的两个实数根一个小于5,另一个大于2,求加的取值范围.5、方程(2008x)2 - 2007 x 2009% -1 = 0的较人根为Q,方程%2 - 2008% - 2009 = 0的较小根为b,求(a + 疔009的值.综合测试基础部分:1若关于x的二次方程(m+l)x2-3x+2=0有两个相等的实数根,则m二_____2设方程X2+3X-4=°的两根分别为西,花,则坷+勺二__________ ,州・勺二 _______Xj 2+兀[兀2 +3兀[二3若方程x2-5x+m=o的一个根是1,则m= __________4两根之和等于一3,两根Z积等于一7的最简系数的一元二次方程是5已知方程2x2+(k-l)x-6二0的一个根为2,则k二______6若关于x的一元二次方程mx2+3x-4二0有实数根,则m的值为____7方程kx2+l=x-x2无实根,则k8如果x2・2(m+l)+m2+5是一个完全平方公式,则m= 。

相关文档
最新文档