同步载波提取
实验十四 同步载波提取实验

实验十四同步载波提取实验一、实验目的1、掌握用科斯塔斯(Costas)环提取相干载波的原理与实现方法。
2、了解相干载波相位模糊现象的产生原因。
二、实验内容1、观察科斯塔斯环提取相干载波的过程。
2、观察科斯塔斯环提取的相干载波,并做分析。
三、实验仪器1、信号源模块2、同步信号提取模块3、数字调制模块4、20M双踪示波器一台5、频率计(选用)一台6、连接线若干四、实验原理本实验是采用科斯塔斯环法提取同步载波,科斯塔斯环又称同相正交环,框图如下:Array乘法器PSK乘法器在实际电路中,我们的乘法器使用模拟乘法器MC1496,其中乘法器1为U01,乘法器2为U02,乘法器3为U03;滤波器为运放及其外围元器件组成的二阶巴特沃斯低通滤波器,其中滤波器1由二运放芯片TL082中的一个运放(U06B)及其外围元器件组成,滤波器2由二运放芯片TL082中的一个运放(U07B)及其外围元器件组成;环路滤波器为L01和R29构成的无源低通滤波器;压控振荡器使用集成数字压控振荡器74S124(U04),其自由振荡频率可由电位器W01(频率调节)调节;90°相移用集成D 触发器芯片74HC74(U05)和集成反相器芯片74HC04(U12)共同完成。
由于数字压控振荡器74S124输出的信号为方波信号,要得到正弦波还需经过滤波,我们使用运放U08B和U08C及其外围元器件构成的两级带通滤波器进行滤波,最后再经过运放U08D构成的同相放大器放大得到恢复后的同步载波。
在实验过程中,由于科斯塔斯环频率锁定范围较小,因此需要调节电位器W01(频率调节),使压控振荡器74S124的自由振荡频率接近62.5KHz。
五、实验步骤及注意事项1、将信号源模块、同步信号提取模块、数字调制模块小心地固定在主机箱中,确保电源接触良好。
2、插上电源线,打开主机箱右侧的交流开关,再分别按下三个模块中的开关POWER1、POWER2,对应的发光二极管LED01、LED02发光,按一下信号源模块的复位键,三个模块均开始工作。
实验四载波同步

实验四 载波同步提取实验一、实验目的1、 掌握用科斯塔斯(Costas )环提取相干载波的原理与实现方法。
2、 了解相干载波相位模糊现象的产生原因。
二、实验内容1、 观察科斯塔斯环提取相干载波的过程。
2、 观察科斯塔斯环提取的相干载波,并做分析。
三、实验器材1、 信号源模块 一块2、 ③号模块 一块3、 ⑦号模块 一块4、 20M 双踪示波器一台 5、 频率计(选用)一台四、实验原理(一)基本原理同步是通信系统中一个重要的实际问题。
当采用同步解调或相干检测时,接收端需要提供一个与发射端调制载波同频同相的相干载波。
这个相干载波的获取方法就称为载波提取,或称为载波同步。
提取载波的方法一般分为两类:一类是在发送有用信号的同时,在适当的频率位置上,插入一个(或多个)称为导频的正弦波,接收端就由导频提取出载波,这类方法称为导频插入法;另一类就是不专门发送导频,而在接收端直接从发送信号中提取载波,这类方法称为直接法。
下面就重点介绍直接法的两种方法。
1、 平方变换法和平方环法设调制信号为()m t ,()m t 中无直流分量,则抑制载波的双边带信号为t t m t s c ωcos )()(=接收端将该信号进行平方变换,即经过一个平方律部件后就得到t t m t m t t m t e c c ωω2cos )(212)(cos )()(2222+== (17-1) 由式(17-1)看出,虽然前面假设了()m t 中无直流分量,但2()m t 中却有直流分量,而()e t 表示式的第二项中包含有2ωc 频率的分量。
若用一窄带滤波器将2ωc 频率分量滤出,再进行二分频,就获得所需的载波。
根据这种分析所得出的平方变换法提取载波的方框图如图17-1所示。
若调制信号()m t =±1,该抑制载波的双边带信号就成为二相移相信号,这时t t t m t e c c ωω2cos 2121]cos )([)(2+== (17-2)图17-1 平方变换提取载波因而,用图17-1所示的方框图同样可以提取出载波。
同步原理(载波同步与位同步)

载波同步的基本原理,实现方法和性能指标
实际中,伴随信号一起进入接收机的还有加性高斯白噪声,为了改善平方变换法的性能,使恢复的相干载波更为纯净,常用锁相环代替窄带滤波器。如下图: 平方环法提取载波框图 锁相环具有良好的跟踪,窄带滤波和记忆功能。
等价于:中心频率可调的窄带滤波器
载波同步的基本原理,实现方法和性能指标
载波同步:是指在相干解调时,接收端需要提供一个与接收信号中的调制载波同频同相的相干载波。 载波同步是实现相干解调的先决条件。 提取相干载波的方法:直接法(自同步法)
插入导频法
载波同步的基本原理,实现方法和性能指标
载波同步的基本原理,实现方法和性能指标
直接法:有些信号(DSB-SC,PSK),虽然本身不含有载波分量,但经过某种非线性变化后,将具有载波的谐波分量,因此可以从中提取。下面介绍几种常用的方法:
载波同步的基本原理,实现方法和性能指标
一:在抑制载波的双边带信号中插入导频法 导频的插入方法: 在抑制载波双边带信号的已调信号的载频出插入一个与该信号频谱正交的载波信号。 插入导频系统的发端框图: 输出信号为:
载波同步的基本原理,实现方法和性能指标
1
插入导频系统的接收端框图:
平方变换法和平方环法 设调制信号 ,则抑制载波的双边带信号为: 平方变换法提取载波框图: 窄带滤波器输出为:
载波同步的基本原理,实现方法和性能指标
二分频器输出,可得载波信号: 注意:载波提取的方框图中用了一个二分频电路,由于分频起点的不确定性,使输出的载波相对于接收信号的相位有180度的相位模糊。 相位模糊对模拟通信关系不大(人耳听不出相位变化) 对数字通信影响很大,有可能使2PSK相干解调后出 现“反向工作”的问题。 解决办法:对调制器输入的信息序列进行差分编码。(2DPSK)
4.5 载波同步

双边带信号 平方后
sm (t ) m(t ) cosct
e(t ) m(t ) cos ct
(4.5 - 1)
2
1 2 1 2 m (t ) m (t ) cos 2 ct (4.5 - 2) 2 2 若用一窄带滤波器将2ωc频率分量滤出,再进行二分 频,就可获得所需的相干载波。
2.
同相正交环法又叫科斯塔斯(Costas)环。在此环路 中,压控振荡器 (VCO) 提供两路互为正交的载波,与 输入接收信号分别在同相和正交两个鉴相器中进行鉴 相,经低通滤波之后的输出均含调制信号,两者相乘 后可以消除调制信号的影响,经环路滤波器得到仅与 相位差有关的控制压控,从而准确地对压控振荡器进 行调整。 VCO输出
S
m(t ) cos t sin t
解调原理图:
[m(t ).cos c t sin c t ].cos c t m(t ) cos 2 c t sin c t cos c t 1 1 m(t )(1 cos 2c t ) sin 2c t 2 2
2
VCO输出
v0 (t ) Asin(2ct 2 )
(4.5 - 6) (4.5 - 6)
鉴相器误差输出 vd Kd sin 2
输 入 已调 信 号
平 方 律 部 件
鉴相器
环路 滤波器
压控 振荡器
二分频
载 波 输出
锁 相 环
图4.5-2 平方环法提取载波
式中,Kd为鉴相灵敏度,是一个常数。vd仅与相 位差有关,它通过环路滤波器去控制压控振荡器的相 位和频率,环路锁定之后, θ 是一个很小的量。因此, VCO的输出经过二分频后,就是所需的相干载波。
输 入 已调 信 号 平 方 律 部 件 鉴相器 环路 滤波器 压控 振荡器 二分频 载 波 输出
载波同步实验报告

一、实习目的通过对专业基础课与专业理论课的学习后,以及同学们都具备了一些有关模拟电路及数字电路分析、设计、调试能力。
本次实习主要是针对整个通信系统而言的。
1.掌握通信系统的整体概念及组成模块。
2.理解每个模块的原理及实现的功能。
3.根据自己所完成的模块载波同步模块:1. 掌握模拟锁相环的工作原理,以及环路的锁定状态、失锁状态、同步带、捕捉带等基本概念。
2. 掌握用平方环法从2DPSK信号中提取相干载波的原理及模拟锁相环的设计方法。
3. 了解相干载波相位模糊现象产生的原因。
二、实习要求在本实习我主要负责完成载波同步单元,该单元采用平方环从2DPSK信号中提取相干载波。
1. 观察模拟锁相环的锁定状态、失锁状态及捕捉过程。
2. 观察环路的捕捉带和同步带。
3. 用平方环法从2DPSK信号中提取载波同步信号,观察相位模糊现象。
三、实习内容(1)实习题目: 数字通信系统---载波同步(2)原理介绍:通信是通过某种媒体进行的信息传递。
在古代,人们通过驿站、飞鸽传书、烽火报警等方式进行信息传递。
到了今天,随着科学水平的飞速发展,相继出现了无线电,固定电话,移动电话,互联网甚至可视电话等各种通信方式。
通信技术拉近了人与人之间的距离,提高了经济的效率,深刻的改变了人类的生活方式和社会面貌。
:通信系统的一般模型如下在本次实验中, 通过动手焊接部分模块最后通过联试来完成整个通信系统的过程.主要目的是让大家更深刻的理解通信系统的整体概念及基本理论。
1.整个系统试验框图如下:TX-3 ͨÐÅÔÀí½ÌѧʳÑéϳͱ °¼¾ÖʾÒâͼ通信系统中常用平方环或同相正交环(科斯塔斯环)从2DPSK信号中提取相干载波。
载波同步提取方法

载波同步提取方法载波同步提取方法是数字通信中非常重要的一部分,它主要用于接收端对于发送端发出的信号进行恢复。
在数字通信中,载波同步提取方法是非常必要的,因为发送端的信号往往会受到频率偏移、相位噪声等各种干扰,使得接收端很难对信号进行准确的解调和恢复。
因此,载波同步提取方法的研究和应用对于数字通信系统的性能至关重要。
载波同步提取方法主要包括信号检测、频率估计和相位同步三个方面。
首先,信号检测是通过接收端对接收到的信号进行初步处理,识别出信号的存在和基本特征。
接着,频率估计是对信号的频率进行估计和补偿,以纠正由于频率偏移而引起的信号失真。
最后,相位同步是对信号的相位进行调整,以使得接收端的信号与发送端的同步,从而实现准确的解调和信号恢复。
在实际的数字通信系统中,载波同步提取方法有多种实现方式,下面将介绍一些常见的方法:1. 相关估计法:这是一种基于相关函数的频率估计方法。
它通过计算接收信号和本地参考信号的相关函数来估计两者之间的相位差和频率偏移,从而实现相位同步和频率校正。
2. Costas环路:这是一种常用的数字调制解调中采用的相位同步方法。
它通过在接收端引入一个Costas环路来实现相位同步,从而可以在有载波情况下对QAM、PSK等调制信号进行解调。
3. PLL环路:PLL(Phase-Locked Loop)是一种广泛应用于载波同步提取的方法。
它通过不断调整本地振荡器的相位和频率,使得其与接收信号的相位和频率保持同步,从而实现信号的准确解调。
除了上述方法,还有很多其他的载波同步提取方法,如最大似然估计法、瞬时频率估计法、均值估计法等。
这些方法各有特点,可以根据具体的通信系统要求和环境来选择合适的方法。
总的来说,载波同步提取方法是数字通信系统中不可或缺的一部分,它对于系统的性能和可靠性有着重要的影响。
因此,在设计和实现数字通信系统时,需要认真考虑载波同步提取方法的选择和优化,以确保系统能够在各种复杂的通信环境下都能够实现稳定、准确的信号恢复和解调。
科斯塔斯环提取载波的实现方法。

科斯塔斯环提取载波的实现方法
科斯塔斯环(Costas Loop)是一种用于提取载波的同步方法,其基本原理是在一个环路中,通过相位鉴别器(PD)鉴别两个输入信号之间相位的差异,从而产生一个控制信号去控制压控振荡器(VCO),以消除其输出信号的相位误差,实现提取载波的目的。
具体实现方法如下:
产生两个不同频率的正弦波信号,一个作为本地振荡信号,另一个作为输入信号。
将输入信号与本地振荡信号进行相乘,得到两个正弦波的乘积信号。
通过低通滤波器(LPF)滤除乘积信号中的高频分量,保留低频分量。
将低频分量作为误差信号,输入到相位鉴别器中进行相位比较。
相位鉴别器输出一个与输入信号和本地振荡信号之间的相位差成比例的控制电压。
控制电压输入到压控振荡器中,调整其输出信号的频率。
压控振荡器的输出信号即为提取出的载波信号。
科斯塔斯环具有结构简单、易于实现、稳定性高等优点,因此在通信、雷达、遥控等领域得到广泛应用。
载波同步的设计与实现

目录摘要 (1)一、设计要求 (2)二.设计目的 (2)三.设计原理 (2)3.1二进制移相键控(2PSK)原理 (2)3.2载波同步原理 (3)3.2.1直接法(自同步法) (4)3.2.2插入导频法 (6)四.各模块及总体电路设计 (7)4.1调制模块的设计 (7)4.2调制模块的设计 (10)4.3载波同步系统总电路图 (12)五.仿真结果 (13)六.心得体会 (15)参考文献 (16)摘要载波同步又称载波恢复(carrier restoration),即在接收设备中产生一个和接收信号的载波同频同相的本地振荡(local oscillation),供给解调器作相干解调用。
当接收信号中包含离散的载频分量时,在接收端需要从信号中分离出信号载波作为本地相干载波;这样分离出的本地相干载波频率必然与接收信号载波频率相同,但为了使相位也相同,可能需要对分离出的载波相位作适当的调整。
若接收信号中没有离散载波分量,例如在2PSK信号中(“1”和“0”以等概率出现时),则接收端需要用较复杂的方法从信号中提取载波。
因此,在这些接收设备中需要有载波同步电路,以提供相干解调所需要的相干载波;相干载波必须与接收信号的载波严格地同频同相。
电路设计特点:载波提取电路采用直接法,即直接从发送信号中提取载波,电路连线简单,易实现,成本低。
关键字:载波同步,EWB仿真,2PSK信号⎥⎢发送概率为1-P-cosω180°,号2PSK当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信( ) = 2( ) 2= 2( )2 + 2( ) 2 ( ) = 2( ) 2 =+ 2 滤波器¶þ·ÖƵ载波输出部件3.2.1 直接法(自同步法)有些信号(如抑制载波的双边带信号等)虽然本身不包含载波分量,但对该信号进行某些非线性变换以后,就可以直接从中提取出载波分量来,这就是直接法提取同步载波的基本原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验九 同步载波提取实验
一、实验目的
1. 掌握用科斯塔斯(Costas )环提取相干载波的原理与实现方法。
2. 了解相干载波相位模糊现象的产生原因。
二、实验内容
1. 观察科斯塔斯环提取相干载波的过程。
2. 观察科斯塔斯环提取的相干载波,并做分析。
三、实验器材
1. 信号源模块
2. 同步信号提取模块
3. 数字调制模块
4. 20M 双踪示波器
一台 5. 频率计(选用) 一台
四、实验原理
当采用同步解调或相干检测时,接收端需要提供一个与发射端调制载波同频同相的相干载波。
这个相干载波的获取就称为载波提取,或称为载波同步。
提取载波的方法一般分为两类:一类是在发送有用信号的同时,在适当的频率位置上,插入一个(或多个)称作导频的正弦波,接收端就由导频提取出载波,这类方法称为插入导频法;另一类是不专门发送导频,而在接收端直接从发送信号中提取载波,这类方法称为直接法。
下面就重点介绍直接法的两种方法。
1. 平方变换法和平方环法
设调制信号为()m t ,()m t 中无直流分量,则抑制载波的双边带信号为
t t m t s c ωcos )()(=
接收端将该信号进行平方变换,即经过一个平方律部件后就得到
t t m t m t t m t e c c ωω2cos )(212)(cos )()(222
2+== (14-1) 由式(14-1)看出,虽然前面假设了()m t 中无直流分量,但2()m t 中却有直流分量,而()e t 表示式的第二项中包含有2ωc 频率的分量。
若用一窄带滤波器将2ωc 频率分量滤出,再进行二分频,就获得所需的载波。
根据这种分析所得出的平方变换法提取载波的方框图如图14-1所示。
若调制信号()m t =±1,该抑制载波的双边带信号就成为二相移相信号,这时
t t t m t e c c ωω2cos 2
121]cos )([)(2+== (14-2)
图14-1 平方变换提取载波
因而,用图14-1所示的方框图同样可以提取出载波。
由于提取载波的方框图中用了一个二分频电路,故提取出的载波存在180°的相位模糊问题。
对移相信号而言,解决这个问题的常用方法是采用相对移相。
平方交换法提取载波方框图中的2c f窄带滤波器若用锁相环代替,构成如图14-2所示的方框图,就称为平方环法提取载波。
由于锁相环具有良好的跟踪、窄带滤波和记忆性能,平方环法比一般的平方变换法具有更好的性能。
因此,平方环法提取载波应用较为广泛。
图14-2 平方环法提取载波
2.科斯塔斯环法
本实验是采用科斯塔斯环法提取同步载波的。
科斯塔斯环又称同相正交环,其原理框图如下:
图14-3 科斯塔斯环原理框图
在科斯塔斯环环路中,误差信号V7是由低通滤波器及两路相乘提供的。
压控振荡器输出信号直接供给一路相乘器,供给另一路的则是压控振荡器输出经90o移相后的信号。
两路相乘器的输出均包含有调制信号,两者相乘以后可以消除调制信号的影响,经环路滤波器得
到仅与压控振荡器输出和理想载波之间相位差有关的控制电压,从而准确地对压控振荡器进行调整,恢复出原始的载波信号。
现在从理论上对科斯塔斯环的工作过程加以说明。
设输入调制信号为()cos c m t t ω,则 )]2cos()[cos (2
1)cos(cos )(v 3θωθθωω++=+=t t m t t t m c c c (14-3) )]2sin()[sin (2
1)sin(cos )(v 4θωθθωω++=+=t t m t t t m c c c (14-4) 经低通滤波器后的输出分别为: θcos )(2
1v 5t m = θsin )(2
1v 6t m = 将v 5和v 6在相乘器中相乘,得, θ2sin )(8
1v v v 2657t m == (14-5) (14-5)中θ是压控振荡器输出信号与输入信号载波之间的相位误差,当θ较小时, θ)(41v 27t m ≈ (14-6)
(14-6)中的v 7大小与相位误差θ成正比,它就相当于一个鉴相器的输出。
用v 7去调整压控振荡器输出信号的相位,最后使稳定相位误差减小到很小的数值。
这样压控振荡器的输出就是所需提取的载波。
注意,本实验模块只能从PSK 调制信号中提取频率为62.5KHz 的载波。
五、实验步骤
1. 将信号源模块、同步信号提取模块、数字调制模块小心地固定在主机箱中,确保电源
接触良好。
2. 插上电源线,打开主机箱右侧的交流开关,再分别按下三个模块中的开关POWER1、
POWER2,对应的发光二极管LED001、LED002、D500、D501、D400、D401发光,按一下信号源模块的复位键,三个模块均开始工作。
(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)
3. 合理设置并连接信号源模块与数字调制模块,使数字调制模块的信号输出点“PSK 调
制输出”能输出正确的PSK 调制信号(关于数字调制模块请参考实验十五)。
4. 将数字调制模块信号输出点“PSK 调制输出”输出的PSK 调制信号送入同步信号提
取模块的信号输入点“S-IN ”,按一下同步信号提取模块的复位键,以数字调制模块信号输入点“PSK 载波输入”点的波形为内触发源,用示波器双踪同时观察数字调制模块信号输入点“PSK 载波输入”与同步信号提取模块的信号输出点“载波输出”的输出波形。
调节标号为“频率调节”的电位器,使“载波输出”点输出清楚的正弦波。
此时“载波输出”点输出的信号就是从输入的PSK 调制信号中提取出来的载波,再用示波器观察信号输出点“Sin-OUT ”、“Cos-OUT ”各点波形。
5. 观察同步信号提取模块的信号输出点“载波输出”的频率,可以观察到此时的频率为
62.5KHz 。
六、输入、输出点参考说明
1.输入点参考说明
S-IN:PSK调制信号输入点。
2.输出点参考说明
Sin-OUT:压控振荡器输出信号二分频后0相信号输出点。
Cos-OUT:压控振荡器输出信号二分频后π/4相信号输出点。
载波输出:提取出来的载波输出点。
七、实验思考题
1.简述科斯塔斯环法提取同步载波的工作过程。
2.提取同步载波的方法除了科斯塔斯环法外,还有什么方法?试设计该电路并分析其工作过程。
八、实验报告要求
1.分析实验电路的工作原理,叙述其工作过程。
2.根据实验测试记录,在坐标纸上画出各测量点的波形图,并分析实验现象。
3.对实验思考题加以分析,按照要求做出回答,并尝试画出本实验的电路原理图。
4.写出完成本次实验后的心得体会以及对本次实验的改进意见。