图形与坐标

合集下载

坐标系与图形

坐标系与图形

坐标系与图形在数学学科中,坐标系与图形是一个重要的概念。

它们不仅在初中数学中出现频率较高,而且在高中、大学乃至实际生活中都有广泛的应用。

本文将从坐标系的概念、坐标系的构建、坐标系中的图形等方面进行详细的探讨。

一、坐标系的概念坐标系是一种用来描述平面上点位置的工具。

它由两个相互垂直的数轴组成,其中一个是水平的x轴,另一个是垂直的y轴。

通过在这两条轴上的数值,我们可以确定平面上任意一点的位置。

其中,x轴上的数值称为横坐标,y轴上的数值称为纵坐标。

二、坐标系的构建构建坐标系的方法有多种,下面我们以直角坐标系为例进行说明。

首先,在一张纸上画一条水平的直线作为x轴,再在这条直线上选择一个点作为原点O。

然后,从原点O向右画一条直线作为x轴的正方向,从原点O向上画一条直线作为y轴的正方向。

最后,确定一个单位长度,将x轴和y轴分别划分成若干等分,标上相应的数值即可。

三、坐标系中的图形在坐标系中,我们可以用数对(x, y)来表示平面上的任意一点。

例如,点A的坐标为(2, 3),表示它的横坐标为2,纵坐标为3。

通过这种方式,我们可以方便地描述和研究各种图形。

1. 点点是最简单的图形之一,它在坐标系中由一个数对表示。

例如,点A的坐标为(2, 3),点B的坐标为(-1, 4)。

我们可以通过这些坐标来确定点在坐标系中的位置。

2. 直线直线是由无数个点组成的,它在坐标系中可以用一个方程来表示。

例如,直线y = 2x + 1表示了所有满足这个方程的点构成的直线。

我们可以通过给定的方程,将其转化为坐标系中的点来绘制直线。

3. 曲线曲线是由无数个点组成的,它在坐标系中可以用一个方程来表示。

例如,曲线y = x^2表示了所有满足这个方程的点构成的曲线。

我们可以通过给定的方程,将其转化为坐标系中的点来绘制曲线。

四、坐标系与图形的应用坐标系与图形不仅在数学学科中有重要应用,而且在实际生活中也有广泛的应用。

1. 几何图形在几何学中,坐标系与图形的应用非常广泛。

图形与坐标(含答案)

图形与坐标(含答案)

第26课时图形与坐标【基础知识梳理】 1.位置的确定一般地,在平面内确定物体的位置需要个数据. 2.平面直角坐标系 在平面内,两条互相垂直有的数轴组成平面直角坐标系。

通常把其中水平的一条数轴叫做(或),取为正方向;铅直的数轴叫做(或),取为正方向;x 轴和y 轴统称为,它们的公共原点O 叫做直角坐标系的。

3.a 、b 分别叫做点P 4._______x (3)(4)点点点5.(1)x (2)y (3). 6.(1). (2)关于(3)横向拉长(压缩)坐标不变,坐标分别乘以1(1)n n n〉或;纵向拉长(压缩)坐标不变,坐标分别乘以1(1)n n n 〉或.【基础诊断】1、在平面直角坐标系xOy 中,点P(3-,5)关于y 轴的对称点的坐标为() A .(3-,5-)B .(3,5)C .(3.5-)D .(5,3-)2、在平面直角坐标系中,将点A(-2,1)向左平移2个单位到点Q ,则点Q 的坐标为A.(-2,3) B.(0,1) C.(-4,1) D.(-4,-1)3、如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将△BDE翻折,点B落在点B′处.则点B′的坐标为()A.(1,2).B.(2,1).C.(2,2).D.(3,1).【精典例题】例1如果点P(-3,2m-1)关于原点的对称点在第四象限,求m的取值范围;如果Q(m+1,3m-5)到x轴的距离与到y轴的距离相等,求m的值。

号为正,的值。

要例2、(为.【点拨】并1,纵例3△ABC①把△②以原点平【1A2(A)(-3图23、若点P(a,a﹣2)在第四象限,则a的取值范围是()A 、﹣2<a <0B 、0<a <2C 、a >2D 、a <04、在平面直角坐标系中,?AB CD 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、(4.2),则顶点D 的坐标为()A.(7,2)B.(5,4)C.(1,2)D.(2,1)5、以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是() A 、(3,3)B 、(5,3)C 、(3,5)D 、(5,5)6则点A A .(-47.已知点8.点(1P 9.已知点5,那么点N 10.三、解答题11、△ABC 在平面直角坐标系中的位置如图所示.(1)作出△ABC 关于x 轴对称的的坐标; (22C .12的中心在直角坐标系的原点,一条边AD 与x 轴平行,已知点的坐标分别是(-13、(夹角为B 提升训练 一、选择题1、点P (m -1,2m +1)在第二象限,则m 的取值范围是()A.121>->m m 或B.121<<-m C.m<1D.21->m第6题图第10题图第10题2、点M (﹣sin60°,cos60°)关于x 轴对称的点的坐标是() A.12)B.(12-)C.(12)D.(12-, 3、在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为()??三、解答题11、如图,已知平行四边形ABCD 的对角线AC 、BD 相交于坐标原点O ,AC 与x 轴夹角∠COF =30°,DC ∥x 轴,AC =8,BD =6.求平行四边形ABCD 的四个顶点的坐标.12.如图,把矩形纸片OABC 放入平面直角坐标系中,使OA ,OC 分别落在x 轴、y 轴上,连接AC ,将矩形纸片OABC 沿AC 折叠,使点B 落在点D 的位置,若B (1,2),求点D 的坐标. 13、【阅读】 第8题图 第10题第9题图在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(,).【运用】(1)如图,矩形ONEF的对角线交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为______;(2)在直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C 第261、B2、7、-1811、12、B(13.∵矩形BE=2∴则点B,)B提升训练一、选择题1、B2、B3、B4、D5、D二、填空题6、-4或67、18、(3,4)9、(12,)10、210三、解答题11、55,-2) 12、过点D 作DF⊥OA 于F ,∵四边形OABC 是矩形,∴OC∥AB 。

初中数学知识点精讲精析 图形与坐标

初中数学知识点精讲精析 图形与坐标

23.6 图形与坐标学习目标1.会用合适的方法描述物体的位置,用坐标的方法描述图形的运动变换。

2.能运用图形的变换与坐标的内在联系解决一些简单的生活实际问题。

知识详解1.用坐标确定位置有了平面直角坐标系,我们可以毫不费力地在平面上确定一个点的位置。

现实生活中我们能看到许多这种方法的应用:如用经度和纬度来表示一个地点在地球上的位置,电影院的座位用几排几座来表示,国际象棋中竖条用字母表示、横条用数字表示等。

除了用坐标形式表示物体的位置之外,我们还经常用到的还有用一个方向的角度和距离来表示一个点的位置。

建立直角坐标系后,平面上的点可以用坐标来描述,在平面上由于建立的坐标系不同,单位长度选定不同,所以同一个点描述的坐标也可能不同。

平面上的点也可以用一个角度来描述其位置。

2.图形的变换与坐标一个图形沿x轴左、右平移,它们的纵坐标都不变,横坐标有变化。

向右平移几个单位,横坐标就增加几个单位;向左平移几个单位,横坐标就减少几个单位。

关于x轴或y轴成对称的对应点的坐标的关系:关于x轴对称的对称点的横坐标相同,纵坐标互为相反数。

关于y轴对称的对称点的纵坐标相同,横坐标互为相反数。

在同一直角坐标系中,图形经过平移、轴对称、放大、缩小的变化,其对应顶点的坐标也发生了变化。

【典型例题】例1:2008年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点位置的是()A.北纬31°B.东经103.5°C.金华的西北方向上D.北纬31°,东经103.5°【答案】D【解析】根据地理上表示某个点的位的方法可知选项D符合条件.例2:如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点AB.点BC.点CD.点D【答案】B【解析】根据题意可得:小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,即向西走为x轴负方向,向南走为y轴负方向;则(10,20)表示的位置是向东10,北20;即点B所在位置。

课时11 图形与坐标知识框架

课时11 图形与坐标知识框架
课时11图形与坐标(知识框架)
班级___________姓名_____________学号________得分________
1、平面直角坐标系:(如右图)
2、坐标平面内点的坐标的符号特征:
第一象限:(+,+)第二象限:(-,+)
第三象限:(-,-)第四象限:(+,-)
3、坐标轴上的点的坐标特征:
在x轴上的点:______坐标为0;在y轴上的点:_______坐标为0
点(x,y)向右平移a个单位可得对应点__________;
点(x,y)向左平移a个单位可得对应点__________;
点(x,y)向上平移b个单位可得对应点__________;
点(x,y)向下平移b个单位可得对应点__________.
点(x,y)到x轴的距离是______;点(x,y)到y轴的距离是______;点(x,y)到原点的距离是_______. .
点(a,y)到点(b,y)的距离是__________;点(x,a)到点(x,b)的距离是_________.
点(a,b)到点(c,d)的距离是_______________.
4、各象限角平分线上的点的坐标特征:
第一、三象限角平分线的点的横、纵坐标___________;
第二、四象限角平分线上的点的横ຫໍສະໝຸດ 纵坐标_____________.
点(x,y)关于x轴对称的点的坐标是_________;
点(x,y)关于y轴对称的点的坐标是_________;
点(x,y)关于原点对称的点的坐标是_________.

图形与坐标变换

图形与坐标变换

图形与坐标变换在数学和计算机图形学中,图形的展示离不开坐标变换。

坐标变换是一种将图形从一个坐标系转换到另一个坐标系的方法,在处理图形的旋转、平移和缩放等操作时起到了至关重要的作用。

本文将介绍常见的图形坐标变换方法及其应用。

一、平移变换平移变换是指将图形沿着坐标轴的方向平移一定的距离。

平移变换的数学表示为:```(x', y') = (x + dx, y + dy)```其中,(x,y)是原始点的坐标,(x',y')是平移后的点的坐标,dx和dy分别是平移的水平和垂直距离。

平移变换在图形处理中常用于移动对象、实现图像的滚动以及图形的布局调整等。

通过修改坐标偏移量,可以将图形相对于原始位置进行任意平移。

二、旋转变换旋转变换是指将图形绕一个旋转中心点旋转一定的角度。

旋转变换的数学表示为:```x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ```其中,(x,y)是原始点的坐标,(x',y')是旋转后的点的坐标,θ是旋转的角度。

旋转变换常用于图像的翻转、旋转效果的实现以及物体在平面内的旋转变化等。

通过调整旋转角度,可以改变图形的朝向和角度。

三、缩放变换缩放变换是指将图形按照比例因子进行放大或缩小。

缩放变换的数学表示为:```x' = x * sxy' = y * sy```其中,(x,y)是原始点的坐标,(x',y')是缩放后的点的坐标,sx和sy分别是水平和垂直方向的缩放比例因子。

缩放变换常用于图像的放大和缩小、图形的形变效果实现以及物体的大小调整等。

通过调整缩放因子,可以改变图形的大小比例。

四、矩阵变换矩阵变换是一种将多种变换方法结合起来进行处理的方式,常用的矩阵变换包括平移、旋转、缩放和剪切等。

矩阵变换的数学表示为:```[x'] [a b c] [x][y'] = [d e f] * [y][1] [g h i] [1]```其中,(x,y)是原始点的坐标,(x',y')是变换后的点的坐标,矩阵[A]是变换矩阵。

图形与坐标

图形与坐标

2.5图形与坐标1、关于横轴(x轴)对称的点的横坐标相同,纵坐标互为相反数。

2、关于纵轴(y轴)对称的点的纵坐标相同,横坐标互为相反数。

3、关于原点对称的点的横、纵坐标都分别互为相反数。

4、平面直角坐标系内线段中点的横坐标,等于两个端点横坐标的平均数。

中点的纵坐标等于两个端点纵坐标的平均数。

5、平面直角坐标系内点的平移:(1)、左右平移,横坐标左减右加,纵坐标不变;(2)、上下平移,纵坐标上加下减,横坐标不变。

6、平面直角坐标系内函数图像平移:(1)、左右平移,横坐标左加右减,纵坐标不变;(2)、上下平移,纵坐标上加下减,横坐标不变。

7、(1)求关于x轴对称的函数解析式,把(x,y)换成(x,-y);(2)、求关于y轴对称的函数解析式,把(x,y)换成(-x, y);(3)、求关于原点对称的函数解析式,把(x,y)换成(-x,-y);8、若直线y1=k1x+b1∥直线y2=k2x+b2,则k1=k2.9、用待定系数法求二次函数解析式:(1)、已知抛物线上任意三点坐标,设成一般式:y=ax2+bx+c.(与y轴交点坐标为(0,c)).(2)、已知抛物线顶点坐标(h,k),及抛物线上另外一点坐标,设成顶点式:y=a(x-h)2+k. (3)、已知抛物线与x轴两个交点坐标(x1,0),(x2,0),及另外一点坐标,设成交点式(两根式):y=a(x-x1)(x-x2).2.5图形与坐标1、关于横轴(x轴)对称的点的横坐标相同,纵坐标互为相反数。

2、关于纵轴(y轴)对称的点的纵坐标相同,横坐标互为相反数。

3、关于原点对称的点的横、纵坐标都分别互为相反数。

4、平面直角坐标系内线段中点的横坐标,等于两个端点横坐标的平均数。

中点的纵坐标等于两个端点纵坐标的平均数。

5、平面直角坐标系内点的平移:(1)、左右平移,横坐标左减右加,纵坐标不变;(2)、上下平移,纵坐标上加下减,横坐标不变。

6、平面直角坐标系内函数图像平移:(1)、左右平移,横坐标左加右减,纵坐标不变;(2)、上下平移,纵坐标上加下减,横坐标不变。

图形与坐标简单图形的坐标表示教学ppt

图形与坐标简单图形的坐标表示教学ppt

06
总结与展望
本课程主要内容回顾与总结
• 图形与坐标系的基本概念 • 定义与性质 • 坐标系的作用与意义 • 简单图形的坐标表示 • 直线、曲线、曲线的切线与法线的坐标表示 • 圆形、球体、圆柱体、圆锥体等简单三维图形的坐标表示 • 图形变换与对称 • 平移、旋转、缩放等变换操作及其坐标表示 • 对称操作的坐标表示及其应用
提高数学思维能力 和解决问题的能力
理解简单图形的坐 标表示方法
课程安排及内容概述
课程安排
本课程共分为8个课时,包括理论学习和实践操作
内容概述
介绍图形与坐标的基本概念、简单图形的坐标表示方法、坐标系的应用等。
02
坐标系的基本知识
什么是坐标系
坐标系定义
坐标系是数学中用来确定点位置的一种方法,通过在二维平 面上建立x轴和y轴,可以将平面上的点与实数对一一对应。
对未来学习的建议和展望
• 深入理解图形与坐标系的关系 • 掌握各种图形在坐标系中的表示方法及其应用 • 理解图形变换和对称操作对坐标表示的影响 • 加强实践操作能力 • 通过具体实例和练习题加深对图形坐标表示的理解和应用能力 • 提高解决实际问题的能力,如利用坐标系解决几何问题、物理问题等 • 拓展学习领域和思路 • 学习更复杂的图形表示和变换操作,如极坐标系、参数方程等 • 将图形坐标表示方法应用到其他领域,如计算机图形学、机器学习等
2023
图形与坐标简单图形的坐 标表示教学ppt
目 录
• 引言 • 坐标系的基本知识 • 简单图形的坐标表示方法 • 图形变换的坐标表示方法 • 典型例题解析与实战演练 • 总结与展望
01
引言
课程背景介绍
基础数学的重要组成部分 为后续学习几何、代数等数学领域奠定基础

八年级数学上第四章《图形与坐标》

八年级数学上第四章《图形与坐标》

第 12 讲 《图形与坐标》(叶胤均)一、知识要点: 1.平面内表示点的位置有两种方法:一是有序实数对,二是距离加方向,这两种方法都需要两个量. 2.平面直角坐标系由两条有公共原点、且互相垂直的数轴构成.点的坐标表示为(x,y) 3.各个象限的符号:(+,+);(-,+);(-,-);(+,-).坐标轴上的点不在象限内. 4.点(x,y)到 x 轴的距离:∣y∣,到 y 轴的距离:∣x∣点 M(x,y)到原点的距离:OM= x2 y2x 轴上 M(x1,0),N(x2,0)之间的距离:MN=∣x1-x2∣平面内任意两点 A(x1,y1)、B(x2,y2)之间的距离:AB= x1 x2 2 y1 y2 25.如果 M(x1,a),N(x2,a),则 MN∥x 轴;反之成立.6.点 M(x,y)①关于 x 轴的对称点的坐标为(x,-y);②关于 y 轴的对称点的坐标为(-x,y);③关于原点的对称点的坐标为(-x,-y);7、①一、三象限的角平分线上的点的坐标为(a,a);②二、四象限的角平分线上的点的坐标为(a,-a)8、坐标平面内点的平移:方向加距离.9、坐标平面内的点与有序实数对一一对应.10、关于一、三象限的角平分线,二、四象限的角平分线对称的点的坐标.二、例题精选:例 1、在如图所示的正方形网格(小正方形的边长为 1) A 中,△ABC 的顶点 A,C 的坐标分别为(-4,5),(-1,3).(1)画出相应的直角坐标系;C(2)作出△ABC 关于 y 轴对称的△A′B′C′;(3)写出点 B′的坐标. B例 2、根据给出的已知点的坐标求四边形 ABCO 的面积.yA(-2,8) B(-11,6)1/7C(-14,0) 例 2Ox例 3、平面直角坐标系中有两点 M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d), 则称点 Q(a+c,b+d)为 M,N 的“和点”,若以坐标原点 O 与任意两点及它们的和点为顶点能组 成四边形,则称这个四边形为和点四边形.现在点 A(2,5),B(-1,3),若以 O,A,B,C 四点为 顶点的四边形是“和点四边形”,求点 C 的坐标.例 4.(1)已知 A(2,4),B(-3,-8),求 A,B 两点间的距离. (2)已知△ABC 各顶点坐标为 A(0,6),B(-3,2),C(3,2),你能判定此三角形的形状吗? 说明理由.例 5、平面直角坐标系中,点 A 的坐标是(3a-5,a+1) (1)若点 A 在 y 轴上,求点 A 的坐标; (2)若点 A 到 x 轴的距离与到 y 轴的距离相等,求点 A 的坐标.例 6、平面直角坐标系中,等腰△ABC 的两个顶点的坐标 分别为 A(1,0),B(4,4),如果第三个顶点在坐标轴 上,那么点 C 可能的不同位置有多少个(画图说明)?2/7例 7、已知点 A(2a-b,5+a),B(2b-1,-a+b). (1)若点 A,B 关于 x 轴对称,求 a,b 的值; (2)若点 A,B 关于 y 轴对称,求(4a+b)2017 的值例 8、如图,平面直角坐标系中,一颗棋子从点 P 处开始 依次关于点 A,B,C 作循环对称跳动,即第一次跳到点 P 关于点 A 的对称点 M 处,接着跳到点 M 关于点 B 的对 称点 N 处,第三次再跳到点 N 关于点 C 的对称点处...... 如此下去. (1)在图中画出点 M,N,并写出点 M,N 的坐标; (2)求经过第 2017 次跳动后,棋子的落点与点 P 的距离.yB• C•OxA••P例 9.平面直角坐标系中,点 M 的坐标是(a,-2a).将点 M 向左平移 2 个单位,再向上平移 1 个 单位后得到点 N.若点 N 在第三象限,求 a 的取值范围.例 10、如图①,将射线 Ox 按逆时针方向旋转β,得到射线 Oy,如果 P为射线 Oy 上一点,且 OP=a,那么我们规定用(a,β)表示点 P 在平面内的位置,并记为(a,β).例如,图②中,如果 OM=8,∠xOM=110°,那么点 M 在平面内的位置记为 M(8,110°),根据图形,解答下列问题:(1)如图,如果点 N 在平面内的位置记为(6,30°),那么 ON=,∠xON=.(2)如果点 A,B 在平面内的位置分别记为 A(5,30°),B(12,120°),求 A,B 两点之间的距离.yaPβ O 图① xM(8,110°) •110° O 图② xN(6•,30°)3/7O 图③x三、学生练习:(一)选择题(每小题 3 分,共 30 分)1. 若点 P(a,-b)在第三象限,则 M(ab,-a)应在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 在 x 轴上到点 A(3,0)的距离为 4 的点是( ).A. (7,0) B. (-1,0) C. (7,0)或(-1,0) D. 以上都不对3. 点 M 到 x 轴的距离为 3,到 y 的距离为 4,则点 A 的坐标为( ).A. (3,4)B. (4,3)C. (4,3),(-4,3)D. (4,3),(-4,3)(-4,-3),(4,-3)4. 如果点 P(m+3,2m+4)在 y 轴上,那么点 P 的坐标为( ).A. (-2,0) B. (0,-2) C. (1,0)D. (0,1)5. 点 M 在 x 轴的上方,距离 x 轴 5 个单位长度,距离 y 轴 3 个单位长度,则 M 点的坐标为( ).A. (5,3) B. (-5,3)或(5,3) C. (3,5) D. (-3,5)或(3,5)6. 平面直角坐标系中,一个四边形各顶点坐标分别为 A(1, 2) ,B((4, 2) ,C(4,3) ,D((1,3) ,则四边形 ABCD 的形状是( ).A. 梯形B. 平行四边形C. 正方形D. 无法确定7. 设点 A(m,n)在 x 轴上,位于原点的左侧,则下列结论正确的是( ).A. m=0,n 为一切数B. m=O,n<0C. m 为一切数,n=0D. m<0,n=08. 在坐标轴上与点 M(3,-4)距离等于 5 的点共有( ).A. 4 个B. 3 个C. 2 个D. 1 个9. 直角坐标系中,一个图案上各个点的横坐标和纵坐标分别乘以正数 a(a>1),那么所得的图案与原来图案相比( ).A. 形状不变,大小扩大到原来的 a2 倍B. 图案向右平移了 a 个单位C. 图案向上平移了 a 个单位D. 图案沿纵向拉长为 a 倍10. 若 y 0 ,则点 P(x,y)的位置是( ). xA. 在横轴上B. 在去掉原点的横轴上C. 在纵轴上D. 在去掉原点的纵轴上(二)填空题(每小题 3 分,共 30 分)11. 如果将电影票上“6 排 3 号”简记为(6,3),(7,1)表示的含义是.12. 点(-4,0)在轴上,距坐标原点个单位长度.13. 点 P 在 y 轴上且距原点 1 个单位长度,则点 P 的坐标是.14. 已知点 M(a,3-a)是第二象限的点,则 a 的取值范围是.15. 点 A、点 B 同在平行于 x 轴的一条直线上,则点 A 与点 B 的坐标相等.16. 点 M(-3,4)与点 N(-3,-4)关于对称.17. 点 A(3,b)与点 B(a,-2)关于原点对称则 a=,b=.18. 若点 P(x,y)在第二象限角平分线上,则 x 与 y 的关系是.4/719. 已知点 P(-3,2),则点 P 到 x 轴的距离为,到 y 轴的距离为20. 已知点 A(x,4)到原点的距离为 5,则点 A 的坐标为.(三)解答题(计 60 分)21.等腰梯形 ABCD 的上底 AD=2,下底 BC=4,底角 B=45°,A建立适当的直角坐标系,求各顶点的坐标.B.D C22.正方形的边长为 2,建立适当的直角坐标系,使它的一个顶点的坐标为( 2 ,0),并写出另外三个顶点的坐标.23. 四边形 ABCD 在直角坐标中的位置如图 1 所示,按下列步骤操作并画出变化后的图形:(1)将四边形 ABCD 各点的横纵坐标都乘以12 ,把得到的四边形 A1B1C1D1 画在图 2 的坐标系中; (2)将四边形 A1B1C1D1 各点的横坐标都乘以-1,纵坐标都乘以-1 后再加上 1,把得到的四边形 A2B2C2D2 画在图 3 的坐标系中.(图中每个方格的边长均为 1)yADyyoxoBCxox(图 1)(图 2)24.如图所示,OA=8,OB=6,∠XOA=45°,∠XOB=120°, 求 A、B 的坐标.(图 3)5/725. 根据指令[S,A](S≥0,0°<A<180°,机器人在平面上能完成下列动作:先原地逆时针旋转角度 A,再朝其面对的方向沿直线行走距离 S,现机器人在直角坐标系坐标原点,且面对 x 轴正方向.(1)若给机器人下了一个指令[4,60],则机器人应移动到点;(2)请你给机器人下一个指令,使其移到点(-5,5).26. 观察图形由(1)→(2)→(3)→(4)的变化过程,写出每一步图形是如何变化的,图形中各顶点的坐标是如何变化的.y A(1,2)y A(2,2)yOxO B(2,0) OB(4,0)x(1)(2)B(4,0) xA(2,- 2) (3)yO (0,-1)x B(4,-1)(4) A(2,-5)4)27、如图,在平面直角坐标系中,长方形 OABC 的顶点 A, C 的坐标分别为(10,0),(0,4),D 为 OA 的中点,P 为 BC 边上一点.若△POD 为等腰三角形,求所有满足条件的 点 P 的坐标.yC •P•ODB Ax6/7八年级上四章《图形与坐标》第 12 讲答案例 1、(1)(2)略;(3)坐标是(2,1)例 2、作 BD⊥x 轴,AE⊥x 轴,面积为 80例 3、(1,8)或(-3,-2)或(3,2)例 4、(1)AB=13;(2)AB=AC=5,BC=6 等腰三角形例 5、(1)(0, 8 );(2)a=3,(4,4)或 a=1,(-2,2) 3例 6、如图,9 个点 例 7、(1)a=-8,b=-5;(2)-1•• • • C1 • OAB C•2 C• 5 C7例 8、(1)M(-2,0),N(4,4) (2)PM=2 2例 9、 1 a 2 2例 10.(2)画出图形,得∠AOB=90°,∴AB=13 学生练习:•例6BCDB DCDB AB 11、7 排 1 号; 12、x 的负半轴, 4; 13、(0,1),(0,-1); 14、a<0; 15 纵; 16、y 轴; 17、a=-3,b=2; 18、x+y=0; 19、2,3; 20、(3,4)或(-3,4)21、略; 22、(0, 2 ),(- 2 ,0),(0,- 2 );23、(1,2),(1,0),(2,0),(3,2)(2)(-2,-4),(-2,0),(-4,0),(-6,-4)24、A(4 2 ,4 2 ),B(-3,3 3 ); 25、(1)(2,2 3 );(2)[5 2 ,135]横×2纵×(-1)纵-126、(1)(2)(3)(4)27(1)当 PO=PD 时,P(2.5,4); y (2)当 OP=OD=5 时,P(3,4); C(3)当 DP=OD=5 时,分两种情况:如图 P(2,4)或 P(8,4)O•P•D图(1)B AxyC •P•OD图(2)B AxyC •P45•OD图(3)①B AxyCP• B54•ODAx图(3)②7/7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教案示例
18、5 图形与坐标
1、用坐标来确定位置
教学目标
1.认识并能画出平面直角坐标系,能在方格纸上建立适当的直角坐标系,描述物体的位置。

2.能在给定的直角坐标系中,根据坐标描出点的位置,由点的位置写出它的坐标。

3.理解平面上表示一个点的位置有不同的方式,灵活运用不同的方式确定物体的位置.
教学过程
一、复习
1.什么是平面直角坐标系?建立了平面直角坐标系后,平面的点可以用什么来描述?
平面上画两条互相垂直的数轴,就组成了平面直角坐标系;坐标平面上的点用有序实数对来描述它的位置,有序实数对就是我们常说的点的坐标。

2.画一个直角坐标系,并描出点A(1,2),B(-3, 5),C(4,5),D(0,3)的位置。

3.如图四边形ABCD,在方格图中建立适当的直角;坐标系,用点的坐标来表示各点的位置。

选择的原点不同,所得到的坐标也不一样。

如以A为坐标原点,水平方向为x轴,竖直方向为 y轴,建立直角坐标系,可以得到点A(0,0),B(-2,- 4),C(2,-5),D(4,0)。

二、新课讲解
在地图上,应用直角坐标系确定一些建筑物的位置,用坐标来表示,就能比较容易地找出目的地。

在一张地图上,画一个直角坐标系,作为定向标记,有四座农舍的坐标是(1,2),(-3,5),(4,5),(0,3),并且知道目的地位于连结第一与第三座农舍的直线和第二与第四座农舍的直线的交点,请大家在课本上找出这个目的地所处的位置,你能估计出这个位置的坐标是什么吗?
先确定出四座农舍的位置(即复习中(2)的A、B、C、D四个点),过A、C作直线,过B、D作直线,两直线的交点P是目的地,确定点P的坐标,过P作x 轴垂线,垂足坐标是1、2,过P作y轴垂线,垂足坐标为2.2,所以目的地P
的坐标为(1.2、2.2)。

课本第87页中“试一试”,与复习中(3)类似。

在方格图中,选定一个确定的点为坐标原点,横线所在直线为x轴,建立直角坐标系,如以王坪村希望小学为原点,则各点位置的坐标是:希望小学的坐标(0,0)、大山镇是(0,3)、___乡(2,5)、小学是(4,7)、爱心中学(6,7)、马村是(5,2)、映月湖为(6,1),同学们互相对照一下,建立的直角坐标系是否相同呢?选定的坐标单位会一样吗?各点的坐标是否一样?有了平面直角坐标系,我们可以毫不费力地在平面上确定一个点的位置,平面直角坐标系中,用一对有顺序关系实数来描述一个点的位置,在现实生活中,我们能看到许多这种方法的应用:如用经度和纬度来表示一个地点在地球上的位置、电影院的座号用几排几座来表示,国际象棋中竖条用字母表示,横条用数字表示等。

除了用坐标形式表示物体的位置之外,我们还经常用到的还有用一个方向的角度和距离来表示一个点的位置。

如小明去某地考察环境污染问题,并且他事先知道,“悠悠日用化工品厂”在他现在所在地的北偏东30度的方向,距离此地3千米的地方,根据这个角度和距离,我们可以画出这个工厂与现在所处位置的图形。

以小明现在的位置为O,东西方向线是水平的,南北方向线一般画竖直方向,画出北偏东30°的方向线,在这方向线(射线帜)上,按比例尺的要求确定出“悠悠日用化工品厂”所处的位置点A。

同学们也按此方法,在同图中确定出“明天调味品厂”的位置 B,“321水
库”的位置。

例题:
三、练习
P88 练习
四、小结
建立直角坐标系后,平面上的点可以用坐标来描述,在平面上由于建立的坐标系不同,单位长度选定不同,所以同一个点描述的坐标也可能不同。

平面上的点也可以用一个角度来描述其位置。

五、作业
习题第1题
2.图形的运动与坐标
教学目标
1.在同一直角坐标系中,感受到图形经过平移、旋转、轴对称放大或缩小的变换之后,点的坐标相应发生变化。

2.探索图形在平移、轴对称、放大或缩小的变换,它们点的坐标的变化规律。

教学过程
一、复习
1.△ABC中,AB=AC,BC=6,AC=5,建立直角坐标系,写出各顶点的坐标。

2.你能画与△ABC成轴对称的三角形吗?请画一个以直线BG为对称轴的三角形。

二、新课讲解
如果以C为坐标原点,CB所在直线为x轴,建立直角坐标系,上述(1)的各顶点坐标为多少?(画成与厚纸片相符)
1.把厚纸片的三角形向右边移动3个单位,问:
(1)这时三角形的位置发生了什么变化?
向右平移3个单位。

(2)这时三角形的三个顶点的坐标有什么变化,写出它们这个位置时的三个顶点坐标。

(3)比较相应顶点的坐标,它们之间存在什么相同之处?
相应顶点的横坐标都增加了3个单位,而纵坐标都不变。

2.把纸片三角形向左平移4个单位,后以同样的问题回答。

发现相应顶点横坐标有变化,减少了4个单位,纵坐标不变。

3.把纸片三角形再变换一个位置后,向左、右两边平移,观察各对应顶点的坐标的变化。

问:由上述的几个变换过程,可以得到一个图形沿x轴左、右平移,它们的纵坐标,横坐标各有什么变化?
它们的纵坐标都不变,横坐标有变化。

向右平移几个单位,横坐标就增加几个单位;向左平移几个单位,横坐标就减少几个单位。

4.若把这个三角形沿y轴上、下平移呢?
思考:△AOB关于x轴的轴对称图形△OA′B,对应顶点的坐标有什么变化呢?
关于x轴对称,由于O、B在对称轴上,其坐标不变,那么点 A与对称点A′关于x轴对称,它们的横坐标相同,纵坐标是互为相反数,这就得出关于x轴对称的对称点的坐标的特点是:横坐标不变,纵坐标互为相反数。

△AOB关于y轴的轴对称图形△A
l OB
l
,对应顶点的坐标有什么变化?
得出关于x轴或y轴成对称的对应点的坐标的关系:
关于x轴对称的对称点的横坐标相同,纵坐标互为相反数。

关于y轴对称的对称点的纵坐标相同,横坐标互为相反数。

例题:
课本91面图18.5,7,△AOB的各顶点坐标是什么?0(0,0),A(2,4),B(4,0),缩小后得到的△COD,各顶点的坐标是什么呢?O(0,0),C(1,2),D(2,0),比较各对应顶点的坐标有什么呢?它们的横纵坐标都按比例缩小,这种变化与它们的相似比有什么关系呢?
三、练习
1.线段AB的两端点A(1,3),B(2,-5)。

(1)把线段AB向左平移2个单位,则点A、B的坐标为:A__B__。

(2)线段AB关于x轴对称的线段A′B′,则其坐标为:A′_,B′_。

(3)把线段AB向上平移2个单位得线段A
1B
l
,A
l
B
l
关于y轴对称的线段A
2
B
2

那么点A
2的坐标为___,点B
2
的坐标为___。

2.课本第90页“试一试”。

四、小结
在同一直角坐标系中,图形经过平移、轴对称、放大、缩小的变化,其对应顶点的坐标也发生了变化,它们的变化是有规律的,要按照变化的情况,同学观察、总结会得出变化规律(由同学说出变化规律)。

五、作业
习题18、5 2。

相关文档
最新文档