新人教版八年级数学上册同步练习:13.4 课题学习 最短路径问题
数学人教版八年级上册13.4课题学习 最短路径问题同步练习题

数学人教版八年级上册13.4课题学习最短路径问题同步练习题解答题有两棵树位置如图,树脚分别为A,B.地上有一只昆虫沿A?B的路径在地面上爬行.小树顶D处一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C处,问小鸟飞至AB之间何处时,飞行距离最短,在图中画出该点的位置.【答案】见解析【解析】试题分析:根据两点之间线段最短,做出点D关于AB 的对称点D′,连接CD′与AB的交点即为所求的点.试题解析:如图,作D关于AB的对称点D′,连接CD′交AB 于点E,则点E就是所求的点.解答题已知,如图所示,甲、乙、丙三个人做传球游戏,游戏规则如下:甲将球传给乙,乙将球立刻传给丙,然后丙又立刻将球传给甲.若甲站在∠AOB内的P点,乙站在OA上,丙站在OB上,并且甲、乙、丙三人的传球速度相同.问乙和丙必须站在何处,才能使球从甲到乙、乙到丙、最后丙到甲这一轮所用的时间最少?【答案】见解析【解析】试题分析:分别作出点P关于OA、OB的对称点P1、P2,连接P1P2与OA、OB的交点即为乙、丙的位置.试题解析:如图所示,(1)分别作点P关于OA,OB的对称点P1,P2,(2)连接P1P2,与OA,OB分别相交于点M,N,因为乙站在OA上,丙站在OB上,所以乙必须站在OA上的M 处,丙必须站在OB上的N处才能使传球所用时间最少.解答题如图所示,P,Q为△ABC边上的两个定点,在BC上求作一点R,使△PQR的周长最小.【答案】见解析【解析】试题分析:作出点P关于BC的对称点P′,连接QP′交BC于R,那么△PQR的周长最小试题解析:(1)作点P关于BC所在直线的对称点P′,(2)连接P′Q,交BC于点R,则点R就是所求作的点(如图所示).解答题七年级(1)班同学做游戏,在活动区域边OP放了一些球(如图),则小明按怎样的路线跑,去捡哪个位置的球,才能最快拿到球跑到目的地A?【答案】见解析【解析】试题分析:作出小明关于OP的对称点A′,连接AA′,与OP交点即为满足条件的点.试题解析:如图,作小明关于活动区域边线OP的对称点A′,连接AA′交OP于点B,则小明行走的路线是小明→B→A,即在B处捡球,才能最快拿到球跑到目的地A.解答题公园内两条小河MO,NO在O处汇合,两河形成的半岛上有一处景点P(如图所示).现计划在两条小河上各建一座小桥Q和R,并在半岛上修三段小路,连通两座小桥与景点,这两座小桥应建在何处才能使修路费用最少?请说明理由.【答案】见解析【解析】试题分析:可过点P分别作关于OM,ON的对称点P′,P″,连接P′P″,与OM、ON的交点即为满足条件的建桥地点.试题解析:如图,作P关于OM的对称点P′,作P关于ON的对称点P″,连接P′P″,分别交MO,NO于Q,R,连接PQ,PR,则P′Q=PQ,PR=P″R,则Q,R就是小桥所在的位置.理由:在OM上任取一个异于Q的点Q′,在ON上任取一个异于R的点R′,连接PQ′,P′Q′,Q′R′,P″R′,PR′,则PQ′=P′Q′,PR′=P″R′,且P′Q′+Q′R′+R′P″>P′Q+QR+RP″,所以△PQR的周长最小,故Q,R就是我们所求的小桥的位置.解答题如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC、BD,且AC=BD。
人教版八年级数学上册测试题:13.4课题学习最短路径问题

人教版八年级数学上册测试题:13.4课题学习最短路径问题学校:___________姓名:___________班级:___________考号:___________一、填空题1.如图,已知正六边形ABCDEF的边长为2,G,H分别是AF和CD的中点,P是GH 上的动点,连接AP,BP,则AP+BP的值最小时,BP与HG的夹角(锐角)度数为________.二、解答题2.已知,如图,在直线l的同侧有两点A,B.(1)在图1的直线上找一点P,使PA+PB最短;(2)在图2的直线上找一点P,使PA-PB最长.3.如图均是由相同的小正方形组成的网格图,点A、B、C、D均落在格点上.请只用无刻度的直尺在格线CD上确定一点Q,使QA与QB的长度之和最小.4.如图,村庄A,B位于一条小河的两侧,若河岸a,b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近?5.如图,在△ABC中,AB=AC,AD平分∠CAB,N点是AB上的一定点,M是AD 上一动点,要使MB+MN最小,请找点M的位置.6.如图,在△ABC的一边AB上有一点P.(1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短?若能,请画出点M、N的位置,若不能,请说明理由;(2)若∠ACB=52°,在(1)的条件下,求出∠MPN的度数.7.如图,已知∠AOB,点P是∠AOB内部的一个定点,点E、F分别是OA、OB上的动点.(1)要使得△PEF的周长最小,试在图上确定点E、F的位置.(2)若OP=4,要使得△PEF的周长的最小值为4,则∠AOB=________.8.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN周长最小,求∠AMN+∠ANM的度数.9.已知:如图,在∠POQ内部有两点M、N,∠MOP=∠NOQ.(1)画图并简要说明画法:在射线OP上取一点A,使点A到点M和点N的距离和最小;在射线OQ上取一点B,使点B到点M和点N的距离和最小;(2)直接写出AM+AN与BM+BN的大小关系.参考答案1.60°【详解】如图,因为点A关于GH的对称点是F,所以连接BF交GH于点P,则PA+PB=PF+PB=BF,所以PA+PB的最小值是BF.因为∠BAF=180°×(6-2)÷6=120°,AB=AF,所以∠AFB=30°.因为∠HGF=90°,所以∠GPF=60°.故答案为:60°.2.画图见解析.【解析】试题分析:(1)作B关于l的对称点B',连接AB′,线段AB′与l交于P,则P就是所求点.也可作A关于l的对称点A′;(2)直线AB与l交于P,则P就是所求点,试题解析:如图:(1)作点B关于直线l的对称点B′,连接AB′交直线l于点P.点P即为所求.(2)连接AB并延长,交直线l于点P.3.作图见解析.【解析】试题分析:根据轴对称的性质,作B关于CD的对称点B′,连接AB′,交CD于Q.试题解析:如图,作B关于CD的对称点B′,连接AB′,交格线CD于Q,此时QA+QB=QA+QB′=AB′,根据两点之间线段最短,得QA+QB最小.4.画图见解析.【解析】试题分析:过点A作河岸a的垂线AE,在a的垂线AE上截取AA′等于河宽(即桥长CD),从而确定点A′的位置;连接A′B与河岸b相交于点C,即可确定桥的位置.试题解析:(1)过点A作河岸a的垂线AE;(2)在a的垂线AE上截取AA′等于河宽(即桥长CD),从而确定点A′的位置;(3)连接A′B与河岸b相交于点C;(4)过点C作河岸b的垂线,交河岸a于点D.所以,CD就是桥所在的位置.5.作图见解析.【解析】试题分析:因为AD垂直平分BC,所以点C是点B关于AD的对称点,连接CN交AD于点M.试题解析:如图,连接NC与AD的交点为M点.点M即为所求.6.(1) 作图见解析. (2) 76°.【解析】试题分析:(1)分别作点P关于AC,BC的对称点D,G,连接DG交AC、BC于点M、N.(2)由四边形的内角和求∠D+∠G=∠C,由轴对称的性质可得,∠D=∠DPM,∠G=∠GPN,即可求解.试题解析:(1)①作出点P关于AC、BC的对称点D、G.②连接DG交AC、BC于点M、N.点M、N即为所求.(2)设PD交AC于E,PG交BC于F,∵PD⊥AC,PG⊥BC,∴∠PEC=∠PFC=90°,∴∠C+∠EPF=180°.∵∠C=52°,∴∠EPF=128°.∵∠D+∠G+∠EPF=180°,∴∠D+∠G=52°.由对称可知:∠G=∠GPN,∠D=∠DPM,∴∠GPN+∠DPM=52°,∴∠MPN=128°-52°=76°.7.(1) 作图见解析. (2)30°【解析】试题分析:(1)分别作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB 于F.(2)由轴对称的性质知OP=OC,OP=OD,且△PEF周长的最小值是CD,所以dqga4OCD 是等边三角形,而∠COD=2∠EOF,由此即可求解.试题解析:(1)如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F.此时,△PEF的周长最小.(2)根据轴对称的性质得,OC=OP=OD,∠COE=∠POE,∠DOF=∠POF,△PEF的周长的最小值=CD,因为OP=4,△PEF的周长的最小值为4,所以△OCD是等边三角形.因为∠COE=∠POE,∠DOF=∠POF,所以∠PEF=12∠COD=30°.8.∠AMN+∠ANM=120°.【解析】试题分析:根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.试题解析:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,连接AM,AN,则A′A″即为△AMN的周长最小值.作DA延长线AH.∵∠DAB=120°,∴∠HAA′=60°.∴∠A′+∠A″=∠HAA′=60°.∵∠A′=∠MAA′,∠NAD=∠A″,且∠A′+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠A′+∠MAA′+∠NAD+∠A″=2(∠A′+∠A″)=2×60°=120°.点睛:本题考查的是轴对称−最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.9.(1)见解析;(2)AM+AN=BM+BN.【解析】试题分析:(1)根据轴对称的性质,分别作点M,N关于OP,OQ的对称点M′,N′,连接MM′,NN′交OP,OQ于点A,B.(2)由轴对称的性质可知AM+AN=M′N,BM+BN=MN′,试题解析:(1)图略,点A,B即为所求.画法:①作点M关于射线OP的对称点M′;②连接M′N交OP于点A;③作点N关于射线OQ的对称点N′;④连接N′M交OQ于点B.(2)AM+AN=BM+BN.点睛:本题主要考查了轴对称的性质,“将军饮马”型的问题是中考常考的题型,如图,点A,B在直线l的同旁,在直线l求点P,使PA+PB最小.确定点P的位置的方法是,作点A 关于直线l的对称点A′,连接BA′交直线l于点P,则PA+PB的值最小.。
人教版八年级数学上册《13-4 课题学习 最短路径问题》作业同步练习题及参考答案

13.4 课题学习最短路径问题1.已知点A(-2,1),B(3,2),在x 轴上求一点P,使AP+BP 最小,下列作法正确的是( ).A.点P 与O(0,0)重合B.连接AB 并延长,交x 轴于点P,点P 即为所求C.过点A 作x 轴的垂线,垂足为P,点P 即为所求D.作点A 关于x 轴的对称点A',连接A'B,交x 轴于点P,点P 即为所求2.如图,OA,OB 分别是线段MC,MD 的垂直平分线,MD=5 cm,MC=7 cm,CD=10 cm,一只小蚂蚁从点M 出发爬到OA 边上任意一点E,再爬到OB 边上任意一点F,然后爬回点M 处,则小蚂蚁爬行的路径最短可为( ).A.12 cmB.10 cmC.7 cmD.5 cm3.如图,牧童在A 处放牛,其家在B 处,A,B 到河岸的距离分别为AC 和BD,且AC=BD,若点A 到河岸CD 的中点的距离为500 m,则牧童从A 处把牛牵到河边饮水再回家,所走的最短路程是m.4.如图,l 为河岸(视为直线),要想开一条沟将河里的水从A 处引到田地里去,应从河边l 的何处开口才能使水沟最短,找出开口处的位置并说明理由.5.如图,在四边形ABCD 中,∠C=50°,∠B=∠D=90°,E,F 分别是BC,DC 上的点,当△AEF 的周长最小时,∠EAF 的度数为( ).A.50°B.60°C.70°D.80°6.如图,某公路(视为x 轴)的同一侧有A,B,C 三个村庄,要在公路边建一货栈(即在x 轴上找一点)D,向A,B,C 三个村庄运送农用物资,路线是:D→A→B→C→D(或D→C→B→A→D).试问在公路上是否存在D 使送货路程之和最短?若存在,请在图中画出D 所在的位置;若不存在,请说明理由.7.某中学八(2)班举行文艺晚会,桌子摆成如图所示的两直排(图中的AO,BO),AO 桌面上摆满了橘子,BO 桌面上摆满了糖果,站在C 处的学生小明先拿橘子再拿糖果,然后到D 处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短.答案与解析夯基达标1.D2.B 当CD 与OA 的交点为E,与OB 的交点为F 时,路径最短.因为OA,OB 分别是线段MC,MD 的垂直平分线,所以ME=CE,MF=DF,所以小蚂蚁爬行的路径最短为CD=10 cm,故选B.3.1 0004.解过A 向直线l 作垂线段,与l 相交于B,从B 处开口可满足要求.图略.理由:垂线段最短. 培优促能5.D 作点A 关于BC 和CD 的对称点A',A″,连接A'A″,交BC 于点E,交CD 于点F,则A'A″即为△AEF 周长的最小值.作DA 的延长线AH.∵∠C=50°,∴∠DAB=130°.∴∠HAA'=50°.∴∠AA'E+∠A″=∠HAA'=50°.∵∠EA'A=∠EAA',∠FAD=∠A″,∴∠EAA'+∠A″AF=50°.∴∠EAF=130°-50°=80°.故选D.6.解存在D 使所走路线D→A→B→C→D 的路程之和最短.作法:(1)作点A 关于x 轴的对称点A';(2)连接A'C 交x 轴于D.则D(3,0)就是所要建货栈的位置,如图.创新应用7.解如图.作法:①作点C 关于OA 的对称点C1,点D 关于OB 的对称点D1;②连接C1D1,分别交OA,OB 于点P,Q,连接CP,DQ,小明沿C→P→Q→D 的路线行走时,所走的总路程最短.。
人教版初中数学八年级上册《13.4 课题学习 最短路径问题》同步练习卷

人教新版八年级上学期《13.4 课题学习最短路径问题》同步练习卷一.选择题(共6小题)1.如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接P A,PB,PC,则P A+PB+PC 的最小值是()A.4+3B.2C.2+6D.42.如图,∠ABC=30°,点D、E分别在射线BC、BA上,且BD=2,BE=4,点M、N 分别是射线BA、BC上的动点,当DM+MN+NE最小时,(DM+MN+NE)2的值为()A.20B.26C.32D.363.如图.已知△ABC.∠ACB=30°,CP为∠ACB的平分线,且CP=6,点M、N分别是边AC和BC上的动点,则△PMN周长的最小值为()A.4B.6C.6D.104.△ABC中,∠ABC=97.5°,P、Q两点在AC边上,PB=2,BQ=3,PQ=,若点M、N分别在边AB、BC上,当四边形PQNM的周长最小时,(MP+MN+NQ)2的值为()A.18+8B.24+8C.22+6D.31+5.如图,在矩形ABCD中,对角线AC=6,过点D作DE⊥AC,垂足为E,AE=3CE,点F,G分别在AC,BC上,则AG+FG的最小值为()A.2B.C.2D.36.Rt△ABC中,∠ACB=90°,AC=4,BC=8,D,E是AB和BC上的动点,连接CD,DE,则CD+DE的最小值为()A.8B.C.D.二.填空题(共14小题)7.已知:如图,直线MN和直线l相交于点O,其中两直线相交所构成的锐角等于45°,且OM=6,MN=2,若点P为直线l上一动点,那么PM+PN的最小值是.8.如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP 的最小值为2,则BC=.9.如图,在矩形ABCD中,AB=10,AD=6,动点P满足S△P AB=S矩形ABCD,则点P到A,B两点距离之和P A+PB的最小值为.10.如图,菱形ABCD的边长为3,∠BAD=60°,点E、F在对角线AC上(点E在点F 的左侧),且EF=1,则DE+BF最小值为11.如图,在菱形ABCD中,AB=6,∠A=135°,点P是菱形内部一点,且满足S△PCD =,则PC+PD的最小值是.12.如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E 分别是AB,OA上的动点,则△CDE周长的最小值是.13.如图,在等腰三角形ABC中,∠ABC=120°,点P是底边AC上一个动点,M、N分别是AB、BC的中点,若PM+PN的最小值为4,则△ABC的周长是.14.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.AC与网格线交于点D,点P,Q分别为线段BC,AB上的动点.(I)线段CD的长为;(Ⅱ)当PD+PQ取得最小值时,用无刻度的直尺.画出线段PD,PQ,并简要说明点P和点Q的位置是如何找到的.15.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D.若AC=4,CD =1,E是AC的中点,P是AD上的一个动点,则PC+PE的最小值为.16.已知A(﹣2,0),B(0,2),P是x轴上动点,将B绕P点顺时针旋转90°得到点C,则AC+CP的最小值是.17.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+ PC的最小值为;PD+4PC的最小值为.18.如图,在△ABC中,∠ACB=90°,AC=6,BC=8,CD平分∠ACB交AB于点D.点E为CD的中点.在BC上有一动点P,则PD+PE的最小值是19.如图,在正方形ABCD中,BC=2,对角线AC与BD交于点O,P、Q为BD的两个动点,且BP=OQ,则△APQ的周长的最小值是.20.在△ABC中,∠ABC=60°,BC=8,AC=10,点D、E在AB、AC边上,且AD=CE,则CD+BE的最小值.三.解答题(共30小题)21.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.22.如图已知EF∥GH,AC⊥EF于点C,BD⊥EF于点D交HG于点K.AC=3,DK=2,BK=4.(1)若CD=6,点M是CD上一点,当点M到点A和点B的距离相等时,求CM的长;(2)若CD=,点P是HG上一点,点Q是EF上一点,连接AP,PQ,QB,求AP+PQ+QB 的最小值.23.如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,(1)求△ABC的面积;(2)如图②,BH为∠ABC的角平分线,点O为线段BH上的动点,点G为线段BC上的动点,请直接写出OC+OG的最小值.24.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上.(1)求出AB的长.(2)求出△ABC的周长的最小值?25.已知△ABC中,AC=6cm,BC=8cm,AB=10cm,CD为AB边上的高.动点P从点A 出发,沿着△ABC的三条边逆时针走一圈回到A点,速度为2cm/s,设运动时间为ts.(1)求CD的长;(2)t为何值时,△ACP为等腰三角形?(3)若M为BC上一动点,N为AB上一动点,是否存在M,N使得AM+MN的值最小?如果有请求出最小值,如果没有请说明理由.26.如图,山娃星期天从A处赶了几只羊到草地l1放羊,然后赶羊到小河l2饮水,之后再回到B处的家,假设山娃赶羊走的都是直路,请你为它设计一条最短的路线,标明放羊与饮水的位置.27.已知点P在∠MON内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若∠MON=50°,则∠GOH=;②若PO=5,连接GH,请说明当∠MON为多少度时,GH=10;(2)如图2,若∠MON=60°,A、B分别是射线OM、ON上的任意一点,当△P AB的周长最小时,求∠APB的度数.28.在如图所示的网格中,线段AB和直线l如图所示:(1)借助图中的网格,在图1中作锐角△ABC,满足以下要求:①C为格点(网格线交点);②AB=AC.(2)在(1)的基础上,请只用直尺(不含刻度)在图(1)中找一点P,使得P到AB、AC的距离相等,且P A=PB.(友情提醒:请别忘了标注字母!)(3)在图2中的直线l上找一点Q,使得△QAB的周长最小,并求出周长的最小值是.29.用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.30.如图,∠XOY内有一点P,试在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.31.在如图所示的方格中,点A,B,C,D都在格点上,且AB=BC=2CD=4,P是线段BC上的动点,连结AP,DP.(1)设BP=x,用含字母x的代数式分别表示线段AP,DP的长,求x=2时,AP+DP的值;(2)AP+DP是否存在最小值?若存在,求出其最小值.(3)根据(2)中的结论,请构图求出代数式+的最小值.32.如图,在平面直角坐标系xOy中,已知点A(﹣1,0),点B(0,2),点C(3,0),直线a为过点D(0,﹣1)且平行于x轴的直线.(1)直接写出点B关于直线a对称的点E的坐标;(2)若P为直线a上一动点,请求出△PBA周长的最小值和此时P点坐标.33.(1)如图1,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点并说明理由.(2)如图2,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P 三点组成的三角形的周长最短,找出E、F两点,并说明理由.(3)如图3,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并说明理由.34.如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连接AC,EC.已知AB=5,DE=3,BD=15,设BC=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C在什么位置时,AC+CE的值最小,求出这个最小值;(3)根据(2)中的规律和结论,作出图形并求出代数式+的最小值.35.如图,在△ABC中,AB=10,BC=12,BC边上的中线AD=8.(1)证明:△ABC为等腰三角形;(2)点H在线段AC上,试求AH+BH+CH的最小值.36.如图所示,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,求DN+MN的最小值.37.已知:三点A(a,1)、B(3,1)、C(6,0),点A在正比例函数y=x的图象上.(1)求a的值;(2)点P为x轴上一动点.①当△OAP与△CBP周长的和取得最小值时,求点P的坐标;②当∠APB=20°时,求∠OAP+∠PBC的度数.38.如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连结AC、EC.已知AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)试求AC+CE的最小值.39.如图,点A是半圆上的三等分点,B是弧AN的中点,P是直径MN上一动点,⊙O的半径是1,问点P在直线MN上什么位置是(在图中标注),AP+BP的值最小?并求出最小值.40.如图,梯形ABCD中,AD∥BC,∠BAD=90°,AD=1,E为AB的中点,AC是ED 的垂直平分线.(1)求证:DB=DC;(2)在图(2)的线段AB上找出一点P,使PC+PD的值最小,标出点P的位置,保留画图痕迹,并求出PB的值.41.如图,把两个全等的腰长为8的等腰直角三角形沿他们的斜边拼接得到四边形ABCD,N是斜边AC上一动点.(1)若E、F为AC的三等分点,求证:∠ADE=∠CBF;(2)若M是DC上一点,且DM=2,求DN+MN的最小值;(注:计算时可使用如下定理:在直角△ABC中,若∠C=90°,则AB2=AC2+BC2)(3)若点P在射线BC上,且NB=NP,求证:NP⊥ND.42.如图等腰梯形ABCD中,AD∥BC,AB=CD,其中AD=2,BC=5.(1)尺规作图,作等腰梯形ABCD的对称轴a;(2)在直线a上求作一点P,使PD+PC和最小;并求此时PD:PC的值.43.如右图,∠POQ=20°,A为OQ上的点,B为OP上的一点,且OA=1,OB=2,在OB上取点A1,在AQ上取点A2,设l=AA1+A1A2+A2B,求l的最小值.44.如图,在平面直角坐标系中,A,B两点的坐标分别为A(﹣2,0),B(8,0),以AB 为直径的半圆与y轴交于点M,以AB为一边作正方形ABCD.(1)求C,M两点的坐标;(2)连接CM,试判断直线CM是否与⊙P相切?说明你的理由;(3)在x轴上是否存在一点Q,使得△QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.45.如图,正方形ABCD边长为4,DE=1,M,N在BC上,且MN=2.求四边形AMNE 周长的最小值.46.如图,点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN 的值最小,保留作图痕迹,不写作法.47.如图,在铁路l的同侧有A、B两个工厂,要在铁路边建一个货场C,货场应建在什么地方,才能使A、B两厂到货场C的距离之和最短?48.如图,已知点M是以AB为直径的半圆上的一个三等分点,点N是弧BM的中点,点P 是直径AB上的点.若⊙O的半径为1.(1)用尺规在图中作出点P,使MP+NP的值最小(保留作图痕迹,不写作法);(2)求MP+NP的最小值.49.已知△ABC中,BC=a,AB=c,∠B=30°,P是△ABC内一点,求P A+PB+PC的最小值.50.如图,五羊大学建立分校,校本部与分校隔着两条平行的小河,l1∥l2表示小河甲,l3∥l4表示小河乙,A为校本部大门,B为分校大门,为方便人员来往,要在两条小河上各建一座桥,桥面垂直于河岸.图中的尺寸是:甲河宽8米,乙河宽10米,A到甲河垂直距离为40米,B到乙河垂直距离为20米,两河距离100米,A、B两点水平距离(与小河平行方向)120米,为使A、B两点间来往路程最短,两座桥都按这个目标而建,那么,此时A、D两点间来往的路程是多少米?人教新版八年级上学期《13.4 课题学习最短路径问题》2019年同步练习卷参考答案与试题解析一.选择题(共6小题)1.如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接P A,PB,PC,则P A+PB+PC 的最小值是()A.4+3B.2C.2+6D.4【分析】将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.【解答】解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE 的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴P A+PB+PC=P A+PF+EF,∴当A、P、F、E共线时,P A+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴tan∠ACB==,∴∠ACB=30°,AC=2AB=4,∵∠BCE=60°,∴∠ACE=90°,∴AE==2,故选:B.【点评】本题考查轴对称﹣最短问题、矩形的性质、旋转变换等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考常考题型.2.如图,∠ABC=30°,点D、E分别在射线BC、BA上,且BD=2,BE=4,点M、N 分别是射线BA、BC上的动点,当DM+MN+NE最小时,(DM+MN+NE)2的值为()A.20B.26C.32D.36【分析】如图,作点D关于BA的对称点G,作点E关于BC的对称点H,连接GH交AB 有M,交BC有N,连接DM、EN,此时DM+MN+NE的值最小.再证明∠HBG=90°,利用勾股定理即可解决问题;【解答】解:如图,作点D关于BA的对称点G,作点E关于BC的对称点H,连接GH交AB有M,交BC有N,连接DM、EN,此时DM+MN+NE的值最小.根据对称的性质可知:BD=BG=2,BE=BH=4,DM=GM,EN=NH,∴DM+MN+NE的最小值为线段GH的长,∵∠ABC=∠GBM=∠HBC=30°,∴∠HBG=90°,∴GH2=BG2+BH2=20,∴当DM+MN+NE最小时,(DM+MN+NE)2的值为20,故选:A.【点评】本题考查轴对称﹣最短问题、勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.3.如图.已知△ABC.∠ACB=30°,CP为∠ACB的平分线,且CP=6,点M、N分别是边AC和BC上的动点,则△PMN周长的最小值为()A.4B.6C.6D.10【分析】作点P关于AC的对称点E,点P关于BC的对称点F,连接EF交AC于M,交BC于N,连接CE、CF.此时△PMN的周长最小.【解答】解:作点P关于AC的对称点E,点P关于BC的对称点F,连接EF交AC于M,交BC于N,连接CE、CF.此时△PMN的周长最小.由对称的性质可知,∠ACP=∠ACE,∠PCB=∠BCF,CP=CE=CF=6,∵∠ACB=30°,∴∠ECF=60°,∴△CEF是等边三角形,∴EF=CE=6,∴△PMN的周长的最小值=PM+MN+PN=EM+MN+NF=EF=6,故选:B.【点评】本题考查轴对称﹣最短问题、等边三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.4.△ABC中,∠ABC=97.5°,P、Q两点在AC边上,PB=2,BQ=3,PQ=,若点M、N分别在边AB、BC上,当四边形PQNM的周长最小时,(MP+MN+NQ)2的值为()A.18+8B.24+8C.22+6D.31+【分析】如图,作点P关于AB的对称点P′,点Q关于BC的对称点Q′,连接P′Q′交AB于M,交BC于N,此时四边形PQNM的周长最小.作PH⊥BQ于H.【解答】解:如图,作点P关于AB的对称点P′,点Q关于BC的对称点Q′,连接P′Q′交AB于M,交BC于N,此时四边形PQNM的周长最小.作PH⊥BQ于H.∴PH2=PB2﹣BH2=PQ2﹣HQ2,∴22﹣BH2=()2﹣(3﹣BH)2,解得BH=,∴PH2=4﹣2=2,∴PH=,∴PH=BH=,∴∠PBQ=45°,∵∠ABP=∠ABP′,∠CBQ=∠CBQ′,∴∠P′BQ′=2(∠ABC﹣∠PBQ)+∠PBQ=2∠ABC﹣∠PBQ=150°,作Q′K⊥P′B于K.在Rt△BKQ′中,∠KBQ′=30°,BQ′=BQ=3,∴KQ′=,BK=,在Rt△P′Q′K中,KP′=2+,KQ′=,∴P′Q′2=(2+)2+()2=22+6,∴(MP+MN+NQ)2P′Q′2=22+6.故选:C.【点评】本题考查轴对称最短问题、解直角三角形、勾股定理、直角三角形30度角的性质等知识,解题的关键是学会利用轴对称解决最短问题,学会添加常用辅助线,根据直角三角形解决问题,属于中考选择题中的压轴题.5.如图,在矩形ABCD中,对角线AC=6,过点D作DE⊥AC,垂足为E,AE=3CE,点F,G分别在AC,BC上,则AG+FG的最小值为()A.2B.C.2D.3【分析】作点A关于BC的对称点M,连接CM,作AH⊥CM于H,交BC于G,作GF⊥AC于F,此时AG+GF的值最小,最小值=AH的长.想办法证明∠DAE=30°即可解决问题;【解答】解:作点A关于BC的对称点M,连接CM,作AH⊥CM于H,交BC于G,作GF⊥AC于F,此时AG+GF的值最小,最小值=AH的长.∵四边形ABCD是矩形,∴∠ADC=90°,∵DE⊥AC,AE=3CE,设EC=a,则AE=3a,∴∠AED=∠DEC=90°,∴a+3a=6,∴a=,∴EC=,AE=,∵∠DAE+∠ADE=90°,∠ADE+∠EDC=90°,∴∠DAE=∠EDC,∴△ADE∽△DCE,∴DE2=AE•EC,∴DE=,∴tan∠DAE==,∴∠DAE=30°,∵AD∥CB,∴∠DAE=∠ACB=∠BCM=30°,∴∠ACH=60°,∴AH=AC•sin60°=3,故选:D.【点评】本题考查轴对称﹣最短问题,矩形的性质,相似三角形的判定和和性质,锐角三角函数等知识,解题的关键是学会添加常用辅助线,利用垂线段最短解决最短问题,属于中考常考题型.6.Rt△ABC中,∠ACB=90°,AC=4,BC=8,D,E是AB和BC上的动点,连接CD,DE,则CD+DE的最小值为()A.8B.C.D.【分析】如图,作∠ABG=∠ABC,CF⊥BG于F,交AB于D,作DE⊥BC于E,此时DC+DE 的值最小,最小值=CF的长.再利用相似三角形的性质求出CF即可.【解答】解:如图,作∠ABG=∠ABC,CF⊥BG于F,交AB于D,作DE⊥BC于E,此时DC+DE的值最小,最小值=CF的长.取AB中点T,连接CT,作CH⊥AB于H.在Rt△ABC中,AB==4,∴CH==.CT=AB=2,∵TC=TB,∴∠TBC=∠TCB=∠ABG,∵∠ADC=∠TBC+∠TCB=2∠DBC,∠CBF=2∠DBC,∴∠CTH=∠CBF,∴sin∠CTH=sin∠CBF,∴=,∴=,∴CF=,故选:D.【点评】本题考查轴对称﹣最短问题、勾股定理、相似三角形的判定和性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,利用垂线段最短解决最短问题,属于中考常考题型.二.填空题(共14小题)7.已知:如图,直线MN和直线l相交于点O,其中两直线相交所构成的锐角等于45°,且OM=6,MN=2,若点P为直线l上一动点,那么PM+PN的最小值是10.【分析】作点M关于直线l的对称点M',连接NM',交直线l于P,连接NP,则MP=M'P,依据轴对称的性质,即可得到OM=OM'=6,∠NOM'=90°,再根据勾股定理即可得到PM+PN的最小值.【解答】解:如图,作点M关于直线l的对称点M',连接NM',交直线l于P,连接NP,则MP=M'P,∴PM+PN的最小值等于线段M'N的长,∵OM=OM',OP=OP,PM=PM',∴△OPM≌△OPM'(SSS),∴∠POM=∠POM'=45°,OM=OM'=6,∴∠NOM'=90°,∴Rt△NM'O中,M'N===10,∴PM+PN的最小值是10,故答案为:10.【点评】此题主要考查了利用轴对称求最短路径问题和勾股定理等知识,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.8.如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP 的最小值为2,则BC=﹣.【分析】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.首先证明当M,G,P,C共线时,P A+PB+PC的值最小,最小值为线段CM的长,想办法求出AC的长即可解决问题;【解答】解:如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.∵AB=AC,AH⊥BC,∴∠BAP=∠CAP,∵P A=P A,∴△BAP≌△CAP(SAS),∴PC=PB,∵MG=PB,AG=AP,∠GAP=60°,∴△GAP是等边三角形,∴P A=PG,∴P A+PB+PC=CP+PG+GM,∴当M,G,P,C共线时,P A+PB+PC的值最小,最小值为线段CM的长,∵AP+BP+CP的最小值为2,∴CM=2,∵∠BAM=60°,∠BAC=30°,∴∠MAC=90°,∴AM=AC=2,作BN⊥AC于N.则BN=AB=1,AN=,CN=2﹣,∴BC===﹣.故答案为﹣.【点评】本题考查轴对称﹣最短问题,等腰三角形的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用两点之间线段最短解决问题,属于中考常考题型.9.如图,在矩形ABCD中,AB=10,AD=6,动点P满足S△P AB=S矩形ABCD,则点P到A,B两点距离之和P A+PB的最小值为2.【分析】首先由S△P AB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l 上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即P A+PB的最小值.【解答】解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=4,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5=10,AE=4+4=8,∴BE===2,即P A+PB的最小值为2.故答案为:2.【点评】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.10.如图,菱形ABCD的边长为3,∠BAD=60°,点E、F在对角线AC上(点E在点F 的左侧),且EF=1,则DE+BF最小值为【分析】作DM∥AC,使得DM=EF=1,连接BM交AC于F,由四边形DEFM是平行四边形,推出DE=FM,推出DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,由四边形ABCD是菱形,在Rt△BDM中,根据BM=计算即可.【解答】解:如图,作DM∥AC,使得DM=EF=1,连接BM交AC于F,∵DM=EF,DM∥EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,AB=3,∠BAD=60°∴AD=AB,∴△ABD是等边三角形,∴BD=AB=3,在Rt△BDM中,BM==∴DE+BF的最小值为.故答案为.【点评】本题考查菱形的性质、平行四边形的判定和性质、两点之间线段最短、勾股定理等知识,解题的关键是学会添加常用辅助线,把问题转化为两点之间线段最短解决,属于中考填空题中的压轴题.11.如图,在菱形ABCD中,AB=6,∠A=135°,点P是菱形内部一点,且满足S△PCD =,则PC+PD的最小值是2.【分析】如图在BC上取一点E,使得EC=BC=2,作EF∥AB,作点C关于EF的对称点C′,CC′交EF于G,连接DC′交EF于P,连接PC,此时此时S△PDC=,PD+PC的值最小.【解答】解:如图在BC上取一点E,使得EC=BC=2,作EF∥AB,作点C关于EF的对称点C′,CC′交EF于G,连接DC′交EF于P,连接PC,此时此时S△PDC=,PD+PC的值最小.PC+PD的最小值=PD+PC′=DC′,∵四边形ABCD是菱形,∠A=135°,∴∠B=∠CEG=45°,∠BCD=135°∵∠CGE=90°,CE=2,∴CG=GE=GC′=,∴∠GCE=45°,∠DCC′=90°,∴DC′==2,故答案为2.【点评】本题考查轴对称﹣最短问题,三角形的面积,勾股定理等知识,解题的关键是学会利用轴对称解决最短问题.12.如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E 分别是AB,OA上的动点,则△CDE周长的最小值是10.【分析】点C关于OA的对称点C′(﹣1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,可以证明这个最小值就是线段C′C″.【解答】解:如图,点C关于OA的对称点C′(﹣1,0),点C关于直线AB的对称点C″,∵直线AB的解析式为y=﹣x+7,∴直线CC″的解析式为y=x﹣1,由解得,∴直线AB与直线CC″的交点坐标为K(4,3),∵K是CC″中点,∴可得C″(7,6).连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,△DEC的周长=DE+EC+CD=EC′+ED+DC″=C′C″==10.故答案为10.【点评】本题考查轴对称﹣最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D、点E位置,属于中考常考题型.13.如图,在等腰三角形ABC中,∠ABC=120°,点P是底边AC上一个动点,M、N分别是AB、BC的中点,若PM+PN的最小值为4,则△ABC的周长是8+4.【分析】本题首先要明确P点在何处,通过M关于AC的对称点M′,根据勾股定理就可求出MN的长,根据中位线的性质及三角函数分别求出AB、BC、AC的长,从而得到△ABC的周长.【解答】解:作M点关于AC的对称点M′,连接M'N,则与AC的交点即是P点的位置,∵M,N分别是AB,BC的中点,∴MN是△ABC的中位线,∴MN∥AC,∴=1,∴PM′=PN,即:当PM+PN最小时P在AC的中点,∴MN=AC∴PM=PN=2,MN=2∴AC=4 ,AB=BC=2PM=2PN=4,∴△ABC的周长为:4+4+4 =8+4 .故答案为:8+4.【点评】本题考查等腰三角形的性质和轴对称及三角函数等知识的综合应用.正确确定P 点的位置是解题的关键.14.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.AC与网格线交于点D,点P,Q分别为线段BC,AB上的动点.(I)线段CD的长为;(Ⅱ)当PD+PQ取得最小值时,用无刻度的直尺.画出线段PD,PQ,并简要说明点P和点Q的位置是如何找到的作DQ′⊥BE于Q′交BC于P,作PQ⊥AB于Q,根据垂线段最短可知,此时PD+PQ=PD+PQ′=DQ′最短..【分析】(I)添加辅助线,构造相似三角形即可解决问题;(Ⅱ)作DQ′⊥BE于Q′交BC于P,作PQ⊥AB于Q,根据垂线段最短可知,此时PD+PQ =PD+PQ′=DQ′最短;【解答】解:(I)作DF∥AB交BC于F,作CH⊥AB于H,交DF于G.∵DF∥AB,∴△CDF∽△CAB,∴=,∴=,∴CD=,故答案为.(Ⅱ)如图构造边长为5的菱形ABEC,作DQ′⊥BE于Q′交BC于P,作PQ⊥AB于Q,根据垂线段最短可知,此时PD+PQ=PD+PQ′=DQ′最短.故答案为:作DQ′⊥BE于Q′交BC于P,作PQ⊥AB于Q,根据垂线段最短可知,此时PD+PQ=PD+PQ′=DQ′最短.【点评】本题考查轴对称﹣最短问题,勾股定理、菱形的性质、垂线段最短就、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.15.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D.若AC=4,CD =1,E是AC的中点,P是AD上的一个动点,则PC+PE的最小值为.【分析】作点E关于AD的对称点E′,连接CE′交AD于P,连接PE,此时PE+PC的值最小,作E′H⊥AC于H,DG⊥AB于G.设BD=x,BG=y.成本法求出E′H,CH,利用勾股定理即可解决问题;【解答】解:作点E关于AD的对称点E′,连接CE′交AD于P,连接PE,此时PE+PC 的值最小,作E′H⊥AC于H,DG⊥AB于G.设BD=x,BG=y.∵DA平分∠CAB,DG⊥AB,DC⊥AC,∴DG=DC,∵AD=AD,∴Rt△ADG∽Rt△ADC,∴DG=DC=1,AG=AC=4,∵△BGD∽△BCA,∴==,∴==,∴x=,y=,∵E′H∥BC,∴==,∴E′H=,AH=,∴CH=4﹣=,∴PE+PC的最小值=CE′==.故答案为=.【点评】本题考查轴对称最短问题、角平分线的性质定理、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用轴对称解决最短问题.16.已知A(﹣2,0),B(0,2),P是x轴上动点,将B绕P点顺时针旋转90°得到点C,则AC+CP的最小值是2.【分析】如图,在x轴上取一点M(2,0),连接CM交y轴于N.首先证明△OBP∽△MBC,推出∠MBC=∠BOP=90°,推出点C在直线CN上运动,因为BC=PC,可得AC+ PC=CA+CB,延长BM到B′,使得MB′=BM,连接AB′交CN于C′,此时AC′+BC′的值最小,最小值=线段AB′的长;【解答】解:如图,在x轴上取一点M(2,0),连接CM交y轴于N.∵A(﹣2,0),B(0,2),M(2,0),∴OA=OB=OM=2,∴△OBM,△PBC都是等腰直角三角形,∴∠OBM=∠CBP=45°,∴∠OBP=∠MBC,∵==,∴△OBP∽△MBC,∴∠MBC=∠BOP=90°,∴点C在直线CN上运动,∵BC=PC,∴AC+PC=CA+CB,延长BM到B′,使得MB′=BM,连接AB′交CN于C′,此时AC′+BC′的值最小,最小值=线段AB′的长,∵A(﹣2,0),B′(4,﹣2),∴AB′==2,故答案为2.【点评】本题考查轴对称﹣最短问题、坐标与图形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.17.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+ PC的最小值为5;PD+4PC的最小值为10.【分析】①如图,连接PB、在BC上取一点E,使得BE=1.只要证明△PBE∽△CBE,可得==,推出PD+PC=PD+PE,再根据三角形的三边关系PE+PD≤DE即可解决问题;②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.只要证明△PBE∽△DBP,可得==,推出PE=PD,推出PD+4PC=4(PD+PC)=4(PE+PC),根据三角形的三边关系PE+PC≤EC即可解决问题;【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE•BC=4,∴PB2=BE•BC,∴=,∵∠PBE=∠CBE,∴△PBE∽△CBE,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.∵PB2=4,BE•BD=×4=4,∴BP2=BE•BD,∴=,∵∠PBE=∠PBD,∴△PBE∽△DBP,∴==,∴PE=PD,∴PD+4PC=4(PD+PC)=4(PE+PC),∵PE+PC≥EC,在Rt△EFC中,EF=,FC=,∴EC=,∴PD+4PC的最小值为10.故答案为5,10.【点评】本题考查轴对称最短问题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会根据相似三角形解决问题,属于中考填空题中的压轴题.18.如图,在△ABC中,∠ACB=90°,AC=6,BC=8,CD平分∠ACB交AB于点D.点E为CD的中点.在BC上有一动点P,则PD+PE的最小值是【分析】构建如图坐标系,利用一次函数构建方程组求出点D、E坐标,作点E关于BC的对称点E′,连接DE′交BC于P,此时PD+PE的值最小,最小值为DE′的长;【解答】解:根据如图坐标系:由题意:A(0,6),B(8,0),∴直线AB的解析式为y=﹣x+6,∵CD平分∠ACB,∴直线CD的解析式为y=x,由,解得,∴D(,),∵CE=DE,∴E(,),作点E关于BC的对称点E′(,﹣),连接DE′交BC于P,此时PD+PE的值最小,最小值为DE′的长,∵DE′=,∴PD+PE的最小值为,故答案为.【点评】本题考查轴对称﹣最短问题、一次函数的应用等知识,解题的关键是学会构建平面直角坐标系,利用一次函数解决问题,属于中考常考题型.19.如图,在正方形ABCD中,BC=2,对角线AC与BD交于点O,P、Q为BD的两个动点,且BP=OQ,则△APQ的周长的最小值是+.【分析】BP=OQ=x.易知△APQ的周长=++,欲求△QP A周长的最小值,相当于在x轴上找一点M(x,0),使得点M到E(0,)和F(,)的距离之和的最小值,作点E关于x轴的对称点E′,连接FE′交x轴于M,此时ME+MF的值最小,求出直线E′F的解析式即可;【解答】解:设BP=OQ=x.∵四边形ABCD是正方形,BC=2,∴OB=OA=OD=OC=,∵BP=OQ,∴PQ=OB=,∴△APQ的周长=++,欲求△QP A周长的最小值,相当于在x轴上找一点M(x,0),使得点M到E(0,)和F(,)的距离之和的最小值,作点E关于x轴的对称点E′,连接FE′交x轴于M,此时ME+MF的值最小,∵E′(0,﹣),F(,),∴直线FE′的解析式为y=2x﹣,∴M(,0),∴x=时,∴△P AQ的周长最小,最小值=+.故答案为+.【点评】本题考查轴对称最短问题、正方形的性质、勾股定理、一次函数的应用等知识,解题的关键是学会利用转化的思想思考问题,属于中考填空题中的压轴题.20.在△ABC中,∠ABC=60°,BC=8,AC=10,点D、E在AB、AC边上,且AD=CE,则CD+BE的最小值2.【分析】如图作CK∥AB,使得CK=CA.作BG⊥KC交KC的延长线于G.首先证明EK =CD,可得CD+BE=EK+EB≥BK,推出CD+BE的最小值为BK的长;【解答】解:如图作CK∥AB,使得CK=CA.作BG⊥KC交KC的延长线于G.∵CK∥AB,∴∠KCE=∠A,∵CK=CA,CE=AD,∴△CKE≌△CAD,∴CD=KE,∵CD+BE=EK+EB≥BK,∴CD+BE的最小值为BK的长,在Rt△BCG中,∵∠G=90°,BC=8,∴CG=BC=4,BG=4,在Rt△KBG中,BK===2.故答案为2.【点评】本题考查轴对称﹣最短问题、勾股定理等知识,解题的关键是学会构造全等三角形解决问题,属于中考填空题中的压轴题.三.解答题(共30小题)。
人教版八年级数学上册同步练习13.4 课题学习 最短路径问题(word版,含答案解析)

人教版八年级数学上册13.4 课题学习最短路径问题一、选择题(共16小题;共80分)1. 如图,直线是一条河,,是两个村庄.欲在上的某处修建一个水泵站,向,两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是A. B.C. D.2. 如图,四边形是直角梯形,,,点是腰上的一个动点,要使最小,则点应该满足A. B.C. D.3. 四边形中,,,在,上分别找一点,,使三角形周长最小时,则的度数为A. B. C. D.4. 如图,直线外存在不重合的两点,,在直线上求作一点,使得的长度最短,作法为:① 作点关于直线的对称点;②连接与直线相交于点,则点为所求作的点.在解决这个问题时没有运用到的知识或方法是A. 转化思想B. 三角形的两边之和大于第三边C. 两点之间,线段最短D. 三角形的一个外角大于与它不相邻的任意一个内角5. 如图,牧童在处放牛,其家在处,,到河岸的距离分别为和,且,若点到河岸的中点的距离为米,则牧童从处把牛牵到河边饮水再回家,最短距离是A. 米B. 米C. 米D. 米6. 如图,已知直线,且与之间的距离为,点到直线的距离为,点到直线的距离为,.试在直线上找一点,在直线上找一点,满足且的长度最短,则此时A. B. C. D.7. 如图,正的边长为,过点的直线,且与关于直线对称,为线段上一动点,则的最小值是A. B. C. D.8. 如图,在中,,,是的两条中线,是上一个动点,则下列线段的长度等于最小值的是A. B. C. D.9. 如图,在四边形中,,,在,上分别找一点,,使的周长最小,此时,A. B. C. D.10. 如图,,内有一定点,且,在上有一动点,上有一动点.若周长最小,则最小周长是A. B. C. D.11. 如图,四边形中,,,,分别是,上的点,当的周长最小时,的度数为A. B. C. D.12. 如图,在中,,,面积是,的垂直平分线分别交,边于,点.若点为边的中点,点为线段上一动点,则周长的最小值为A. B. C. D.13. 如图,在中,,,,为上一点,且,平分交于.若是上的动点,则的最小值等于A. B. C. D.14. 如图,圆柱形容器高为,底面周长为,在杯内壁离杯底的点处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿与蜂蜜相对的点处,则蚂蚁从外壁处到达内壁处的最短距离为A. C. D.15. 如图,点是内任意一点,且,点和点分别是射线和射线上的动点,当周长取最小值时,则的度数为A. B. C. D.16. 如图,,点是内任意一点,,点和点分别是射线和射线上的动点,若周长的最小值是,则的值是A. B. C. D.二、填空题(共5小题;共25分)17. 与的最小公倍数是.18. 如图,在中,是边的中点,过点作边的垂线,是上任意一点,且,,则的周长的最小值为.19. 如图,在中,,,的垂直平分线交于点,交于点,在直线上存在一点,使,,三点构成的的周长最小,则的周长最小值为.20. 已知,点在的内部,点是边上任意一点,点是边上任意一点,连接,,当的周长最小时,的度数为.21. 如图,是等腰直角三角形,,,为上的动点,则的最大值为.三、解答题(共3小题;共45分)22. 如图,已知直线及其同侧两点,,在直线上找一点,使得的长度最小.23. 如图,点,在的内部,为射线上的一个动点,为射线上的一个动点,求作点,,使得的长最短.作法:24. 如图,,两个小集镇在河流的同侧,分别到河的距离为千米,千米,且千米,现在要在河边建一自来水厂,向,两镇供水,铺设水管的费用为每千米万,请你在河流上选择水厂的位置,使铺设水管的费用最节省,并求出总费用是多少?答案第一部分1. D2. D 【解析】如图,作点关于的对称点,连接交于,连接.根据轴对称的性质,得,根据对顶角相等知,所以.3. C4. D5. B6. B7. A 【解析】如图所示.过点作的对称点,连接,与的延长线交于点 .此时,为最小值 .点在线段上,点在点处.的最小值为.8. B 【解析】如图连接,,,,,,,,,共线时,的值最小,最小值为的长度.9. D10. B【解析】设,则,作与相交于,并将延长一倍到,即,作与相交于,并将延长一倍到,即,连接与相交于,与相交于,再连接,,连接,,则即为周长最短的三角形,是的垂直平分线,;同理,是的垂直平分线,,的周长,,且,是等边三角形,,即在保持的条件下的最小周长为.11. D 【解析】作关于和的对称点,,连接,交于,交于,则即为的周长最小值.作延长线 .,...,,..12. C 【解析】连接.是等腰三角形,点是边的中点,,,解得,是线段的垂直平分线,点关于直线的对称点为点,的长为的最小值,13. D 【解析】如图,作点关于的对称点,连接交于,连接,此时的值最小,作于.,,,,,,,,,故选:D.14. D 【解析】如图:将杯子侧面展开,作关于的对称点,连接,则即为最短距离,.15. B【解析】分别作点关于,的对称点,,连接,分别交,于点,,如图所示:此时的周长取最小值.,,,,,,,.16. B第二部分17.18.19.【解析】如图,连接.,,的值最小时,的周长最小,垂直平分线段,,,的最小值为,的周长的最小值为.20.【解析】如图,过点作关于,的对称点,,连接,与,相交与点,,则此时的周长最小,为线段的长度;,,,,,,,,,,,解得:;故答案为:.21.第三部分22. 过点作直线的垂线,垂足为点,截取,连接,则与的交点就是点.23. 作点关于直线的对称点,作点关于直线的对称点交于,交于,则最短.24. 作关于的对称点,连接交于,点即为所求作的点,则可得:(千米),所以(千米),所以(千米),总费用为万元.。
八年级数学上册13.4《课题学习最短路径问题》同步训练(含解析)

最短路径问题·一.选择题(共6小题);1.(2015•遵义)如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为;()A.50° B.60° C.70° D.80°2.(2015•黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是;()A.转化思想B.三角形的两边之和大于第三边;C.两点之间,线段最短;D.三角形的一个外角大于与它不相邻的任意一个内角;3.(2015•同安区一模)如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD 上一动点,则线段EP+FP的长最短为();A.3 B.4 C.5 D.64.(2015•芜湖三模)如图,在矩形ABCD中,AB=9,BC=12,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为;()A.4 B.6 C.8 D.95.(2014•江西模拟)如图,在△ABC中,∠BAC=90°,AB⊥AC,AB=3,BC=5,EF垂直平分BC,点P为直线EF 上的任一点,则AP+BP的最小值是();A.4 B.5 C.6 D.76.(2014秋•监利县期末)如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC 边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为;()A.15° B.22.5°C.30° D.45°二.填空题(共6小题);7.(2015•攀枝花)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为.;8.(2015•惠山区一模)如图,矩形ABCD中,AB=2,AD=3,点E、F分别AD、DC边上的点,且EF=2,点G为EF的中点,点P为BC上一动点,则PA+PG的最小值为; .9.(2015春•沙坪坝区期末)如图,正方形ABCD中,AB=2,AC,BD交于点O.若E,F分别是边AB,BC上的动点,且OE⊥OF,则△OEF周长的最小值是.;10.(2015•枣庄模拟)如图,在对角线长分别为12和16的菱形ABCD中,E、F分别是边AB、AD的中点,H 是对角线BD上的任意一点,则HE+HF的最小值是.;11.(2015•许昌一模)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是.;12.(2015春•新泰市期末)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣1,2)、(1,4),欲在x 轴上找一点P,使PA+PB最短,则点P的坐标为.;三.解答题(共4小题)13.(2014•清河区二模)已知直角坐标系中有两点A(﹣1,2)、B(5,4),要在x轴上找一点P,使得PA+PB 之和最小,求点P的坐标.;;14.(2014秋•嘉荫县期末)如图,小河CD边有两个村庄A村、B村,现要在河边建一自来水厂E为A村与B 村供水,自来水厂建在什么地方到A村、B村的距离和最小?请在下图中找出点E的位置.(保留作图痕迹,不写作法)(2014秋•沙河市校级期末)如图,已知A,B两个村庄在河流CD的同侧,它们到河流的距离AC=10km,BD=30km,15.且CD=30km.现在要在河流CD上建立一个泵站P向村庄供水,铺设管道的费用为每千米2万元,要使所花费用最少,请确定泵站P的位置?(保留痕迹,不写作法)此时所花费用最少为.16.(2015春•下城区期末)在如图所示的方格中,点A,B,C,D都在格点上,且AB=BC=2CD=4,P是线段BC 上的动点,连结AP,DP.(1)设BP=x,用含字母x的代数式分别表示线段AP,DP的长,并求当x=2的时候,AP+DP的值;(2)AP+DP是否存在最小值?若存在,求出其最小值.人教版八年级数学上册13.3.4《课题学习最短路径问题》同步训练习题(教师版)一.选择题(共6小题)1.(2015•遵义)如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50° B.60° C.70° D.80°考点:轴对称-最短路线问题.分析:据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=50°,进而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案.解答:解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF 的周长最小值.作DA延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故选:D.点评:本题考查的是轴对称﹣最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出E,F的位置是解题关键.2.(2015•黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()A.转化思想B.三角形的两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的任意一个内角考点:轴对称-最短路线问题.分析:利用两点之间线段最短分析并验证即可即可.解答:解:∵点B和点B′关于直线l对称,且点C在l上,∴CB=CB′,又∵AB′交l与C,且两条直线相交只有一个交点,∴CB′+CA最短,即CA+CB的值最小,将轴对称最短路径问题利用线段的性质定理两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边.故选D.点评:此题主要考查了轴对称最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.3.(2015•同安区一模)如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD 上一动点,则线段EP+FP的长最短为()A.3 B.4 C.5 D.6考点:轴对称-最短路线问题;菱形的性质.分析:在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.EG的长就是EP+FP的最小值,据此即可求解.解答:解:在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.∵AE=DG,且AE∥DG,∴四边形ADGE是平行四边形,∴EG=AD=4.故选B.点评:本题考查了轴对称,理解菱形的性质,对角线所在的直线是菱形的对称轴是关键.4.(2015•芜湖三模)如图,在矩形ABCD中,AB=9,BC=12,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A.4 B.6 C.8 D.9考点:轴对称-最短路线问题;矩形的性质.专题:探究型.分析:先作点E关于直线CD的对称点E′,连接AE′交CD于点F,再根据△CEF∽△BEA即可求出CF的长,进而得出DF的长.解答:解:作点E关于直线CD的对称点E′,连接AE′交CD于点F,∵在矩形ABCD中,AB=9,BC=12,点E是BC中点,∴BE=CE=CE′=6,∵AB⊥BC,CD⊥BC,∴CD∥AB,∴=,即=,解得CF=3,∴DF=CD﹣CF=9﹣3=6.故选B.点评:本题考查的是轴对称﹣最短路线问题及相似三角形的判定与性质,根据题意作出E点关于直线CD的对称点,再根据轴对称的性质求出CE′的长,利用相似三角形的对应边成比例即可得出结论.5.(2014•江西模拟)如图,在△ABC中,∠BAC=90°,AB⊥AC,AB=3,BC=5,EF垂直平分BC,点P为直线EF 上的任一点,则AP+BP的最小值是()A.4 B.5 C.6 D.7考点:轴对称-最短路线问题.分析:根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP的最小值,求出AC长度即可.解答:解:∵EF垂直平分BC,∴B、C关于EF对称,连接AC交EF于D,∴当P和C重合时,AP+BP的值最小,最小值等于AC的长,由勾股定理得:AC===4,故选A.点评:本题考查了勾股定理,轴对称﹣最短路线问题的应用,解此题的关键是找出P的位置.6.(2014秋•监利县期末)如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC 边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15° B.22.5°C.30° D.45°考点:轴对称-最短路线问题;等边三角形的性质.分析:过E作EM∥BC,交AD于N,连接CM交AD于F,连接EF,推出M为AB中点,求出E和M关于AD对称,根据等边三角形性质求出∠ACM,即可求出答案.解答:解:过E作EM∥BC,交AD于N,∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD是BC边上的中线,△ABC是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E和M关于AD对称,连接CM交AD于F,连接EF,则此时EF+CF的值最小,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AM=BM,∴∠ECF=∠ACB=30°,故选C.点评:本题考查了轴对称﹣最短路线问题,等边三角形的性质,等腰三角形的性质,平行线分线段成比例定理等知识点的应用.二.填空题(共6小题)7.(2015•攀枝花)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为.考点:轴对称-最短路线问题;等边三角形的性质.分析:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,故E即为所求的点.解答:解:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,∵B、B′关于AC的对称,∴AC、BB′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC是边长为2,∵D为BC的中点,∴AD⊥BC,∴AD=,BD=CD=1,BB′=2AD=2,作B′G⊥BC的延长线于G,∴B′G=AD=,在Rt△B′BG中,BG===3,∴DG=BG﹣BD=3﹣1=2,在Rt△B′DG中,BD===.故BE+ED的最小值为.故答案为:.点评:本题考查的是最短路线问题,涉及的知识点有:轴对称的性质、等边三角形的性质、勾股定理等,有一定的综合性,但难易适中.8.(2015•惠山区一模)如图,矩形ABCD中,AB=2,AD=3,点E、F分别AD、DC边上的点,且EF=2,点G为EF的中点,点P为BC上一动点,则PA+PG的最小值为 4 .考点:轴对称-最短路线问题.分析:因为EF=2,点G为EF的中点,根据直角三角形斜边上中线的性质得出DG=1,所以G是以D为圆心,以1为半径的圆弧上的点,作A关于BC的对称点A′,连接A′D,交BC于P,交以D为圆心,以1为半径的圆于G,此时PA+PG的值最小,最小值为A′G的长;根据勾股定理求得A′D=5,即可求得A′G=A′D﹣DG=5﹣1=4,从而得出PA+PG的最小值.解答:解:∵EF=2,点G为EF的中点,∴DG=1,∴G是以D为圆心,以1为半径的圆弧上的点,作A关于BC的对称点A′,连接A′D,交BC于P,交以D为圆心,以1为半径的圆于G,此时PA+PG的值最小,最小值为A′G的长;∵AB=2,AD=3,∴AA′=4,∴A′D=5,∴A′G=A′D﹣DG=5﹣1=4;∴PA+PG的最小值为4;故答案为4.点评:本题考查了轴对称﹣最短路线问题,判断出G点的位置是解题的关键.9.(2015春•沙坪坝区期末)如图,正方形ABCD中,AB=2,AC,BD交于点O.若E,F分别是边AB,BC上的动点,且OE⊥OF,则△OEF周长的最小值是2+.考点:轴对称-最短路线问题;正方形的性质.分析:根据正方形的对角线互相平分且相等可得AO=BO,∠AOB=90°,对角线平分一组对角可得∠OAE=∠OBF,再根据AE=BF,然后利用“SAS”证明△AOE和△BOF全等,根据全等三角形对应角相等可得∠AOE=∠BOF,可得∠EOF=90°,然后利用勾股定理列式计算即可得解.解答:解:在正方形ABCD中,AO=BO,∠AOB=90°,∠OAE=∠OBF=45°,∵点E、F的速度相等,∴AE=BF,在△AOE和△BOF中,,∴△AOE≌△BOF(SAS),∴∠AOE=∠BOF,∴∠AOE+∠BOE=90°,∴∠BOF+∠BOE=90°,∴∠EOF=90°,在Rt△BEF中,设AE=x,则BF=x,BE=2﹣x,EF===.∴当x=1时,EF有最小值为.∴OE=OF=1.∴△OEF周长的最小值=2+.故答案为:2.点评:本题考查了正方形的性质,全等三角形的判定与性质,同角的余角相等的性质,熟记正方形的性质,求出三角形全等的条件是解题的关键.10.(2015•枣庄模拟)如图,在对角线长分别为12和16的菱形ABCD中,E、F分别是边AB、AD的中点,H 是对角线BD上的任意一点,则HE+HF的最小值是10 .考点:轴对称-最短路线问题;菱形的性质.分析:要求HE+HF的最小值,HE、HF不能直接求,可考虑通过作辅助线转化HE、HF的值,从而找出其最小值求解.解答:解:如图:作EE′⊥BD交BC于E′,连接E′F,连接AC交BD于O.则E′F就是HE+HF的最小值,∵E、F分别是边AB、AD的中点,∴E′F AB,而由已知△AOB中可得AB====10,故HE+HF的最小值为10.故答案为:10.点评:考查菱形的性质和轴对称及平行四边形的判定等知识的综合应用.11.(2015•许昌一模)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是(0,3).考点:轴对称-最短路线问题;坐标与图形性质.分析:根据轴对称做最短路线得出AE=B′E,进而得出B′O=C′O,即可得出△ABC的周长最小时C点坐标.解答:解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,此时△A BC的周长最小,∵点A、B的坐标分别为(1,4)和(3,0),∴B′点坐标为:(﹣3,0),AE=4,则B′E=4,即B′E=AE,∵C′O∥AE,∴B′O=C′O=3,∴点C′的坐标是(0,3),此时△ABC的周长最小.故答案为(0,3).点评:此题主要考查了利用轴对称求最短路线以及平行线的性质,根据已知得出C点位置是解题关键.12.(2015春•新泰市期末)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣1,2)、(1,4),欲在x 轴上找一点P,使PA+PB最短,则点P的坐标为(﹣,0).考点:轴对称-最短路线问题;坐标与图形性质.分析:先求出点A关于x轴的对称点A′的坐标,连接A′B,交x轴于P,则P即为所求的点,然后用待定系数法求出直线A′B的解析式,求出直线与x轴的交点即可.解答:解:∵点A(﹣1,2),∴点A关于x轴的对称点A′的坐标为(﹣1,﹣2),∵A′(﹣1,﹣2),B(1,4),设直线A′B的解析式为y=kx+b(k≠0),∴,解得,∴直线A′B的解析式为y=3x+1,当y=0时,x=﹣.∴P(﹣,0).故答案为(﹣,0).点评:本题考查的是轴对称﹣最短路线问题,待定系数法求一次函数的解析式,熟知“两点之间线段最短”是解答此题的关键.三.解答题(共4小题)13.(2014•清河区二模)已知直角坐标系中有两点A(﹣1,2)、B(5,4),要在x轴上找一点P,使得PA+PB 之和最小,求点P的坐标.考点:轴对称-最短路线问题;坐标与图形性质.分析:先求出点A关于x轴的对称点A′的坐标,连接A′B交x轴于P,此时PA+PB最小,用待定系数法求出直线A′B的解析式,然后求出直线与x轴的交点即可.解答:解:∵A(﹣1,2),∴点A关于x轴的对称点A′的坐标为(﹣1,﹣2),∵A′(﹣1,﹣2),B(5,4),设直线A′B的解析式为y=kx+b(k≠0),∴,解得,∴直线A′B的解析式为y=x﹣1,当y=0时,x=1.∴P(1,0).点评:本题考查的是轴对称﹣最短路线问题,熟知“两点之间线段最短”是解答此题的关键.14.(2014秋•嘉荫县期末)如图,小河CD边有两个村庄A村、B村,现要在河边建一自来水厂E为A村与B 村供水,自来水厂建在什么地方到A村、B村的距离和最小?请在下图中找出点E的位置.(保留作图痕迹,不写作法)考点:轴对称-最短路线问题;作图—应用与设计作图.分析:利用轴对称求最短路线的方法得出A点关于直线CD的对称点A′,再连接A′B交CD于点E,即可得出答案.解答:解:如图所示:点E即为所求.点评:此题主要考查了应用设计与作图以及轴对称求最短路径,得出A点对称点是解题关键.(2014秋•沙河市校级期末)如图,已知A,B两个村庄在河流CD的同侧,它们到河流的距离AC=10km,BD=30km,15.且CD=30km.现在要在河流CD上建立一个泵站P向村庄供水,铺设管道的费用为每千米2万元,要使所花费用最少,请确定泵站P的位置?(保留痕迹,不写作法)此时所花费用最少为100万元.考点:轴对称-最短路线问题.分析:根据已知得出作点A关于直线l的对称点A′,连接A′B,则A′B与直线l的交点P到A、B两点的距离和最小,再利用构造直角三角形得出即可.解答:解:依题意,只要在直线l上找一点P,使点P到A、B两点的距离和最小.作点A关于直线l的对称点A′,连接A′B,则A′B与直线l的交点P到A、B两点的距离和最小,且PA+PB=PA′+PB=A′B.过点A′向BD作垂线,交BD的延长线于点E,在直角三角形A′BE 中,A′E=CD=30,BE=BD+DE=40,根据勾股定理可得:A′B=50(千米)即铺设水管长度的最小值为50千米.所以铺设水管所需费用的最小值为:50×2=100(万元).故答案为100万元.点评:此题主要考查了轴对称﹣最短路线问题和勾股定理的应用,解题关键是构建直角三角形.16.(2015春•下城区期末)在如图所示的方格中,点A,B,C,D都在格点上,且AB=BC=2CD=4,P是线段BC 上的动点,连结AP,DP.(1)设BP=x,用含字母x的代数式分别表示线段AP,DP的长,并求当x=2的时候,AP+DP的值;(2)AP+DP是否存在最小值?若存在,求出其最小值.考点:轴对称-最短路线问题.分析:(1)分别用x表示出BP、CD的长度,再根据勾股定理求出AP、DP的长即可;(2)作点A关于BC的对称点A′,连接A′D,再由对称的性质及勾股定理即可求解.解答:解:(1)由题意结合图形知:AB=4,BP=x,CP=4﹣x,CD=2,∴AP==,DP===;当x=2时,AP+DP=+=2+2;(2)存在.如图,作点A关于BC的对称点A′,连接A′D,∴A′E=4,DE=6,则A′D====,∴最小值为2.点评:本题主要考查的是最短线路问题及勾股定理,根据题意画出图形是解答此类题目的关键.。
2022年人教版八年级数学上册第十三章练习题及答案 课题学习 最短路径问题
第十三章轴对称13.4.课题学习最短路径问题1.如图,直线m同侧有A、B两点,A、A′关于直线m对称,A、B关于直线n对称,直线m与A′B和n分别交于P、Q,下面的说法正确的是()A.P是m上到A、B距离之和最短的点,Q是m上到A、B距离相等的点.B.Q是m上到A、B距离之和最短的点,P是m上到A、B距离相等的点.C.P、Q都是m上到A、B距离之和最短的点.D.P、Q都是m上到A、B距离相等的点.2.如图,∠AOB=30°,∠AOB内有一定点P,且OP=10.在OA上有一点Q,OB上有一点R.若△PQR周长最小,则最小周长是()A.10 B.15C.20 D.303.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离是_________米.4.如图,边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,2),B(1,3).点P在x轴上,当PA+PB的值最小时,在图中画出点P.5. 如图,荆州古城河在CC′处直角转弯,河宽相同,从A处到B处,须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,怎样架桥可使ADD ′E ′EB的路程最短?6. (1)如图①,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点并说明理由.(2)如图②,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点,并说明理由.(3)如图③,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并说明理由.参考答案:1.A2.A3.10004. 解析:作出点B关于x轴的对称点B′,连接AB′交x轴于点P,点P 就是所求的点.5. 解:作AF⊥CD,且AF=河宽,作BG ⊥CE,且BG=河宽,连接GF,与河岸相交于E ′,D′.作DD′,EE′即为桥.理由:由作图法可知,AF//DD′,AF=DD′,则四边形AFD′D为平行四边形,于是AD=FD′,同理,BE=GE′,由两点之间线段最短可知,GF最小.6.解答如下图:。
8年级数学人教版上册同步练习13.3等腰三角形13.4课题学习最短路径问题(含答案解析)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!13.3等腰三角形13.4课题学习最短路径问题专题一等腰三角形的性质和判定的综合应用1.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是___________.(填序号)2.如图,在△ABC中,AB=AC,点D、E、F分别在边AB、BC、AC上,且BE=CF,AD+E C=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?(4)请你猜想:当∠A为多少度时,∠EDF+∠EFD=120°,并请说明理由.3.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.专题二等边三角形的性质和判定4.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP ,以O为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是_____ _____.5.如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.6.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.专题三 最短路径问题7.如图,A 、B 两点分别表示两幢大楼所在的位置,直线a 表示输水总管道,直线b 表示输煤气总管道.现要在这两根总管道上分别设一个连接点,安装分管道将水和煤气输送到A 、B 两幢大楼,要求使铺设至两幢大楼的输水分管道和输煤气分管道的用料最短.图中,点A′是点A 关于直线b 的对称点,A′B 分别交b 、a 于点C 、D ;点B′是点B 关于直线a 的对称点,B′A 分别交b 、a 于点E 、F .则符合要求的输水和输煤气分管道的连接点依次是( )A .F 和CB .F 和EC .D 和C D .D 和E8.如图,现准备在一条公路旁修建一个仓储基地,分别给、两个超市配货,那么这个基地建在什么位置,能使它到两个超市的距离之和最小? (保留作图痕迹及简要说明)状元笔记【知识要点】1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).2.等腰三角形的判定方法如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.等边三角形的性质和判定方法性质:等边三角形的三个内角都相等,并且每一个角都等于60°.A B判定方法1:三个角都相等的三角形是等边三角形.判定方法2:有一个角是60°的等腰三角形是等边三角形.4.直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【温馨提示】1.“等边对等角”和“等角对等边”只限于在同一个三角形中,在两个三角形中时,上述结论不一定成立.2.在应用直角三角形的性质时应注意以下两点:(1)必须是在直角三角形中;(2)必须有一个锐角等于30°.【方法技巧】1.等腰三角形的性质是证明两个角相等的重要方法,当要证明同一个三角形的两个内角相等时,可尝试用“等边对等角”.2.等腰三角形的判定是证明线段相等的一个重要方法,当要证明位于同一个三角形的两条线段相等时,可尝试用“等角对等边”.3.利用轴对称可以解决几何中的最值问题,本方法的实质是依据轴对称的性质以及两点之间线段最短和三角形两边之和大于第三边.参考答案:1.①②③解析:∵DE ∥BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB .∵BF 是∠ABC 的平分线,CF 是∠ACB 的平分线,∴∠FBC=∠DBF ,∠FCE=∠FCB .∴∠DBF=∠DFB ,∠EFC=∠ECF ,∴△DFB ,△FEC 都是等腰三角形.∴DF=DB ,FE=EC ,即有DE=DF+FE=DB+EC .∴△ADE 的周长=AD+AE+D E=AD+AE+DB+EC=AB+AC .综上所述,命题①②③正确.2.解:(1)证明:∵AD+EC=AB ,∴BD=CE .∵AB=AC ,∴∠B=∠C .∵BE=CF ,∴△BDE ≌△CEF .∴DE=EF ,即△DEF 是等腰三角形.(2)∵∠A=40°,∴∠B=∠C=(180°-∠A)=(180°-40°)=70°. ∵△BDE ≌△CEF ,∴∠BDE=∠CEF .∴∠DEF=180°-∠BED -∠CEF=180°-∠BED -∠BDE=∠B=70°.(3)不能.∵∠DEF=∠B ≠90°,∴△DEF 不可能是等腰直角三角形.(4)60°.理由:当∠A=60°时,∠B=∠C=60°,由(2)可得∠DEF=60°.∴∠EDF+∠EFD=120°.3.解:(1)△ABC ,△ABD ,△ADE ,△EDC .(2)AD 与BE 垂直.证明:∵BE 为∠ABC 的平分线,∴∠ABE=∠DBE. 又∵∠BAE=∠BDE=90°,BE=BE ,∴△ABE 沿BE 折叠,一定与△DBE 重合.∴A 、D 是对称点.∴AD ⊥BE .(3)∵BE 是∠ABC 的平分线,DE ⊥BC ,EA ⊥AB ,∴AE=DE .在Rt △ABE 和Rt △DBE 中,∴Rt △ABE ≌Rt △DBE (HL ).∴AB=BD .又△ABC 是等腰直角三角形,∠BAC=90°,∴∠C=45°.又∵ED ⊥BC ,∴△DCE 为等腰直角三角形.∴DE=DC .即AB+AE=BD+DC=BC=10.4.61212AE =DE BE =BE ⎧⎨⎩,,解析:连接OD,∵PO=PD,∴OP=DP=OD.∴∠DPO=60°.∵△ABC是等边三角形,∴∠A=∠B =60°,AC=AB=9.∵∠OPA=∠PDB=∠DPA-60°.∴△OPA≌△PDB.∵AO=3,∴AO=PB=3,∴AP=6.5.解:(1)△ODE是等边三角形,其理由是:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵OD∥AB,OE∥AC,∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°.∴△ODE是等边三角形.(2)BD=DE=EC.其理由是:∵OB平分∠ABC,且∠ABC=60°,∴∠ABO=∠OBD=30°.∵OD∥AB,∴∠BOD=∠ABO=30°.∴∠DBO=∠DOB.∴DB=DO.同理,EC=EO.∵DE=OD=OE,∴BD=DE=EC.6.解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12.(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB-BN=12-2t,∵三角形△AMN是等边三角形,∴t=12-2t.解得t=4.∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM.∴∠AMN=∠ANM.∴∠AMC=∠ANB .∵AB=BC=AC ,∴△ACB 是等边三角形.∴∠C=∠B .在△ACM 和△ABN 中,∴△ACM ≌△ABN .∴CM=BN .设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,△AMN 是等腰三角形,∴CM=y -12,NB=36-2y ,CM=NB .y -12=36-2y ,解得:y=16.故假设成立.∴当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰三角形AMN ,此时M 、N 运动的时间为16秒.7.A解析:由轴对称--最短路线的要求可知:输水分管道的连接点是点B 关于a 的对称点B′与A 的连线的交点F ,煤气分管道的连接点是点A 关于b 的对称点A′与B 的连线的交点C .故选A .8.解:如图,作点B 关于公路的对称点B′,连接AB′,交公路于点C ,则这个基地建在C 处,才能使它到这两个超市的距离之和最小.AC AB C B AMC ANB =⎧⎪=⎨⎪=⎩,∠∠,∠∠,。
2023-2024学年人教版八年级数学上学期:课题学习 最短路径问题(附答案解析)
第1页(共9页)
2023-2024学年人教版八年级数学上学期13.4课题学习 最短路
径问题
一.选择题(共6小题)
1.如图,点P 为∠AOB 内一点,分别作点P 关于OA ,OB 的对称点P 1,P 2,连接P 1,P 2
交OA 于M ,交OB 于N ,若P 1P 2=6,则△PMN 周长为( )
A .4
B .5
C .6
D .7
2.如图,直线L 是一条输水主管道,现有A 、B 两户新住户要接水入户,图中实线表示铺
设的管道,则铺设的管道最短的是( )
A .
B .
C .
D .
3.如图,直线l 是一条河,P ,Q 是两个村庄.计划在l 上的某处修建一个水泵站M ,向P ,
Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是( )
A .
B .
C .
D .
4.如图,直线m 表示一条河,M ,N 表示两个村庄,欲在m
上的某处修建一个给水站,向。
人教版八年级数学上册同步练习题 第十三章轴对称 13.4 课题学习--最短路径问题
人教版八年级数学上册同步练习题第十三章轴对称13.4 课题学习--最短路径问题一、单选题1.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间2.已知两点M(3(5((N(1((1),点P是x轴上一动点,若使PM(PN最短,则点P的坐标应为()A.(12((4(B.(23(0(C.(43(0(D.(32(0(3.平面直角坐标系xOy中,已知A((1(0)(B(3(0)(C(0((1)三点,D(1(m)是一个动点,当△ACD的周长最小时,则△ABD的面积为((A.13B.23C.43D.834.x是数轴上任意一点表示的数,若|x﹣3|+|x+2|的值最小,则x的取值范围是()A.x≥3B.x≤﹣2C.﹣2≤x≤3D.﹣2<x<35.如图,在锐角三角形ABC中,AB=4,△ABC的面积为8,BD平分∠ABC.若M、N分别是BD、BC上的动点,则CM+MN的最小值是()A.2B.4C.6D.86.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A .①②B .②③C .①③D .①④7.如图,ABC ∆中,BAC 90︒∠=,6AB =,10BC =,8AC =,BD 是ABC ∠的平分线.若P 、Q 分别是BD 和AB 上的动点,则PA PQ +的最小值是( )A .125B .4C .245D .58.如图,在矩形ABCD 中8AB =,16BC =,将矩形ABCD 沿EF 折叠,使点C 与点A 重合,则折痕EF 的长为( )A .6B .12C .D .9.A ,B ,C 三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )A .在A 的左侧B .在AB 之间C .在BC 之间D .B 处10.A(B 是直线l 上的两点,P 是直线l 上的任意一点,要使PA+PB 的值最小,那么点P 的位置应在( ) A .线段AB 上 B .线段AB 的延长线上C .线段AB 的反向延长线上D .直线l 上二、填空题11.如图,在Rt(ABC中,(ACB(90°((ABC(60°(BC(4(E是AB边的中点,F是AC边的中点,则(1(EF(____((2)若D是BC边上一动点,则(EFD的周长最小值是____(12.如图,点P是∠AOB内部的一点,∠AOB=30°,OP=8cm,M,N是OA,OB上的两个动点,则△MPN周长的最小值_____cm.13.如图,已知(AOB=45°((AOB内有一点(M为射线OA上一动点,N为射线OB上一动点,则PM+MN+PN的最小值为________(14.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF=________度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级数学上册同步练习:13.4 课题学习最短路径问题一.选择题(共10小题)1.(2015•内江)如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.B.2C.2D.2.(2015•黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()A.转化思想B.三角形的两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的任意一个内角3.(2015•绥化)如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段ACAB上的两个动点,则BM+MN的最小值为()A.10 B.8 C.5D.64.(2015•遵义)如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50° B.60° C.70° D.80°5.(2015•营口)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25° B.30° C.35° D.40°6.(2015•南宁)如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()A.4 B. 5 C. 6 D.77.(2014•贵港)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.B. 4 C.D.58.(2014•安顺)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.P是直径MN上一动点,则PA+PB的最小值为()A.B. 1 C.2 D.29.(2014•鄂尔多斯)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB上的动点,E是BC 上的动点,则AE+DE的最小值为()A.3+2B.10 C.D.10.(2013•济宁)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0)B.(0,1)C.(0,2)D.(0,3)二.填空题(共17小题)11.(2015•攀枝花)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为.12.(2015•玉林)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.13.(2015•武汉)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q 分别在边OB、OA上,则MP+PQ+QN的最小值是.14.(2015•天津)在每个小正方形的边长为1的网格中.点A,B,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=时,计算AE+AF的值等于(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明).15.(2015•安顺)如图,正方形ABCD的边长为4,E为BC上一点,BE=1,F为AB上一点,AF=2,P为AC上一点,则PF+PE的最小值为.16.(2015•鄂州)如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN的周长取最小值时,四边形PMON的面积为.17.(2014•资阳)如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.18.(2014•东营)在⊙O中,AB是⊙O的直径,AB=8cm,==,M是AB上一动点,CM+DM的最小值是cm.19.(2014•黑龙江)如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是.20.(2014•宿迁)如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是.21.(2014•黔东南州)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B (2,0)是x轴上的两点,则PA+PB的最小值为.22.(2014•锦州)菱形ABCD的边长为2,∠ABC=60°,E是AD边中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是.23.(2014•青岛)如图,在等腰梯形ABCD中,AB=AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB 的最小值为.24.(2014•无锡)如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A和⊙B上的动点,则PE+PF的最小值是.25.(2014•长沙)如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是.26.(2014•莆田)如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是.27.(2013•钦州)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.三.解答题(共2小题)28.(2014•齐齐哈尔)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x 轴交于C、D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)当PA+PB的值最小时,求点P的坐标.29.(2013•日照)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接AB′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A在⊙O上,∠ACD=30°,B为弧AD的中点,P为直径CD上一动点,则BP+AP的最小值为.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.13.4 课题学习最短路径问题3参考答案与试题解析一.选择题(共10小题)1.(2015•内江)如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.B.2C.2D.考点:轴对称-最短路线问题;正方形的性质.分析:由于点B与D关于AC对称,所以BE与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.解答:解:由题意,可得BE与AC交于点P.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故选B.点评:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,等边三角形的性质,找到点P的位置是解决问题的关键.2.(2015•黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()A.转化思想B.三角形的两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的任意一个内角考点:轴对称-最短路线问题.分析:利用两点之间线段最短分析并验证即可即可.解答:解:∵点B和点B′关于直线l对称,且点C在l上,∴CB=CB′,又∵AB′交l与C,且两条直线相交只有一个交点,∴CB′+CA最短,即CA+CB的值最小,将轴对称最短路径问题利用线段的性质定理两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边.故选D.点评:此题主要考查了轴对称最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.3.(2015•绥化)如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段ACAB上的两个动点,则BM+MN的最小值为()A.10 B.8 C.5D.6考点:轴对称-最短路线问题.分析:根据轴对称求最短路线的方法得出M点位置,进而利用勾股定理及面积法求出CC′的值,然后再证明△BCD∽△C′NC进而求出C′N的值,从而求出MC+NM的值.解答:解:如图所示:由题意可得出:作C点关于BD对称点C′,交BD于点E,连接BC′,过点C′作C′N⊥BC于点N,交BD于点M,连接MC,此时CM+NM=C′N最小,∵AB=10,BC=5,在Rt△BCD中,由勾股定理得:BD==5,∵S△BCD=•BC•CD=BD•CE,∴CE===2,∵CC′=2CE,∴CC′=4,∵NC′⊥BC,DC⊥BC,CE⊥BD,∴∠BNC′=∠BCD=∠BEC=∠BEC′=90°,∴∠CC′N+∠NCC′=∠CBD+∠NCC′=90°,∴∠CC′N=∠CBD,∴△BCD∽△C′NC,∴,即,∴NC′=8,即BM+MN的最小值为8.故选B.点评:此题主要考查了利用轴对称求最短路线以及勾股定理的应用和相似三角形的应用,利用轴对称得出M点与N点的位置是解题的关键.4.(2015•遵义)如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50° B.60° C.70° D.80°考点:轴对称-最短路线问题.分析:据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=80°,进而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案.解答:解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,且∠EA′A+∠EAA′=∠AEF,∠FAD+∠A″=∠AFE,∴∠AEF+∠AFE=∠EA′A+∠EAA′+∠FAD+∠A″=2(∠AA′E+∠A″)=2×50°=100°∴∠EAF=180°﹣100°=80°,故选D.点评:本题考查的是轴对称﹣最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出E,F的位置是解题关键.5.(2015•营口)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25° B.30° C.35° D.40°考点:轴对称-最短路线问题.分析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.解答:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴CM+DN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.点评:本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.6.(2015•南宁)如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()A.4 B. 5 C. 6 D.7考点:轴对称-最短路线问题;圆周角定理.分析:作N关于AB的对称点N′,连接MN′,NN′,ON′,ON,由两点之间线段最短可知MN′与AB的交点P′即为△PMN周长的最小时的点,根据N是弧MB的中点可知∠A=∠NOB=∠MON=20°,故可得出∠MON′=60°,故△MON′为等边三角形,由此可得出结论.解答:解:作N关于AB的对称点N′,连接MN′,NN′,ON′,ON.∵N关于AB的对称点N′,∴MN′与AB的交点P′即为△PMN周长的最小时的点,∵N是弧MB的中点,∴∠A=∠NOB=∠MON=20°,∴∠MON′=60°,∴△MON′为等边三角形,∴MN′=OM=4,∴△PMN周长的最小值为4+1=5.故选B.点评:本题考查的是轴对称﹣最短路径问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.7.(2014•贵港)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.B. 4 C.D.5考点:轴对称-最短路线问题.分析:过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,由AD是∠BAC 的平分线.得出PQ=PM,这时PC+PQ有最小值,即CM的长度,运用勾股定理求出AB,再运用S△ABC=AB•CM=AC•BC,得出CM的值,即PC+PQ的最小值.解答:解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,∵AD是∠BAC的平分线.∴PQ=PM,这时PC+PQ有最小值,即CM的长度,∵AC=6,BC=8,∠ACB=90°,∴AB===10.∵S△ABC=AB•CM=AC•BC,∴CM===,即PC+PQ的最小值为.故选:C.点评:本题主要考查了轴对称问题,解题的关键是找出满足PC+PQ有最小值时点P和Q的位置.8.(2014•安顺)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.P是直径MN上一动点,则PA+PB的最小值为()A.B. 1 C.2 D.2考点:轴对称-最短路线问题;勾股定理;垂径定理.分析:作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,根据轴对称确定最短路线问题可得AB′与MN的交点即为PA+PB的最小时的点,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠AON=60°,然后求出∠BON=30°,再根据对称性可得∠B′ON=∠BON=30°,然后求出∠AOB′=90°,从而判断出△AOB′是等腰直角三角形,再根据等腰直角三角形的性质可得AB′=OA,即为PA+PB的最小值.解答:解:作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,则AB′与MN的交点即为PA+PB的最小时的点,PA+PB的最小值=AB′,∵∠AMN=30°,∴∠AON=2∠AMN=2×30°=60°,∵点B为劣弧AN的中点,∴∠BON=∠AON=×60°=30°,由对称性,∠B′ON=∠BON=30°,∴∠AOB′=∠AON+∠B′ON=60°+30°=90°,∴△AOB′是等腰直角三角形,∴AB′=OA=×1=,即PA+PB的最小值=.故选:A.点评:本题考查了轴对称确定最短路线问题,在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍的性质,作辅助线并得到△AOB′是等腰直角三角形是解题的关键.9.(2014•鄂尔多斯)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB上的动点,E是BC 上的动点,则AE+DE的最小值为()A.3+2B.10 C.D.考点:轴对称-最短路线问题.分析:作点A关于BC的对称点A′,过点A′作A′D⊥AB交BC、AB分别于点E、D,根据轴对称确定最短路线问题,A′D的长度即为AE+DE的最小值,利用勾股定理列式求出AB,再利用∠ABC 的正弦列式计算即可得解.解答:解:如图,作点A关于BC的对称点A′,过点A′作A′D⊥AB交BC、AB分别于点E、D,则A′D的长度即为AE+DE的最小值,AA′=2AC=2×6=12,∵∠ACB=90°,BC=8,AC=6,∴AB===10,∴sin∠BAC===,∴A′D=AA′•sin∠BAC=12×=,即AE+DE的最小值是.故选D.点评:本题考查了利用轴对称确定最短路线问题,主要利用了勾股定理,垂线段最短,锐角三角函数的定义,难点在于确定出点D、E的位置.10.(2013•济宁)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0)B.(0,1)C.(0,2)D.(0,3)考点:轴对称-最短路线问题;坐标与图形性质.分析:根据轴对称作最短路线得出AE=B′E,进而得出B′O=C′O,即可得出△ABC的周长最小时C 点坐标.解答:解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,此时△ABC的周长最小,∵点A、B的坐标分别为(1,4)和(3,0),∴B′点坐标为:(﹣3,0),AE=4,则B′E=4,即B′E=AE,∵C′O∥AE,∴B′O=C′O=3,∴点C′的坐标是(0,3),此时△ABC的周长最小.故选:D.点评:此题主要考查了利用轴对称求最短路线以及平行线的性质,根据已知得出C点位置是解题关键.二.填空题(共17小题)11.(2015•攀枝花)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为.考点:轴对称-最短路线问题;等边三角形的性质.分析:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,故E即为所求的点.解答:解:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,∵B、B′关于AC的对称,∴AC、BB′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC是边长为2,∵D为BC的中点,∴AD⊥BC,∴AD=,BD=CD=1,BB′=2AD=2,作B′G⊥BC的延长线于G,∴B′G=AD=,在Rt△B′BG中,BG===3,∴DG=BG﹣BD=3﹣1=2,在Rt△B′DG中,BD===.故BE+ED的最小值为.故答案为:.点评:本题考查的是最短路线问题,涉及的知识点有:轴对称的性质、等边三角形的性质、勾股定理等,有一定的综合性,但难易适中.12.(2015•玉林)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是3.考点:轴对称-最短路线问题;正方形的性质.专题:计算题.分析:根据最短路径的求法,先确定点E关于BC的对称点E′,再确定点A关于DC的对称点A′,连接A′E′即可得出P,Q的位置;再根据相似得出相应的线段长从而可求得四边形AEPQ的面积.解答:解:如图1所示,作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A′D=3,BE=BE′=1,∴AA′=6,AE′=4.∵DQ∥AE′,D是AA′的中点,∴DQ是△AA′E′的中位线,∴DQ=AE′=2;CQ=DC﹣CQ=3﹣2=1,∵BP∥AA′,∴△BE′P∽△AE′A′,∴=,即=,BP=,CP=BC﹣BP=3﹣=,S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣S BEP=9﹣AD•DQ﹣CQ•CP﹣BE•BP=9﹣×3×2﹣×1×﹣×1×=,故答案为:.点评:本题考查了轴对称,利用轴对称确定A′、E′,连接A′E′得出P、Q的位置是解题关键,又利用了相似三角形的判定与性质,图形分割法是求面积的重要方法.13.(2015•武汉)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.考点:轴对称-最短路线问题.分析:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.解答:解:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,M′N′==.故答案为.点评:本题考查了轴对称﹣﹣最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.14.(2015•天津)在每个小正方形的边长为1的网格中.点A,B,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=时,计算AE+AF的值等于(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明)取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD 相交,得点F,线段AE,AF即为所求..考点:轴对称-最短路线问题;勾股定理.专题:作图题.分析:(1)根据勾股定理得出DB=5,进而得出AF=2.5,由勾股定理得出AE=,再解答即可;(2)首先确定E点,要使AE+AF最小,根据三角形两边之和大于第三边可知,需要将AF移到AE 的延长线上,因此可以构造全等三角形,首先选择格点H使∠HBC=∠ADB,其次需要构造长度BP使BP=AD=4,根据勾股定理可知BH==5,结合相似三角形选出格点K,根据,得BP=BH==4=DA,易证△ADF≌△PBE,因此可得到PE=AF,线段AP即为所求的AE+AF 的最小值;同理可确定F点,因为AB⊥BC,因此首先确定格点M使DM⊥DB,其次确定格点G 使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到,得DG=DM=×5=3,易证△DFG≌BEA,因此可得到AE=GF,故线段AG即为所求的AE+AF的最小值.解答:解:(1)根据勾股定理可得:DB=,因为BE=DF=,所以可得AF==2.5,根据勾股定理可得:AE=,所以AE+AF=,故答案为:;(2)如图,首先确定E点,要使AE+AF最小,根据三角形两边之和大于第三边可知,需要将AF移到AE的延长线上,因此可以构造全等三角形,首先选择格点H使∠HBC=∠ADB,其次需要构造长度BP使BP=AD=4,根据勾股定理可知BH==5,结合相似三角形选出格点K,根据,得BP=BH==4=DA,易证△ADF≌△PBE,因此可得到PE=AF,线段AP即为所求的AE+AF的最小值;同理可确定F点,因为AB⊥BC,因此首先确定格点M使DM⊥DB,其次确定格点G使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到,得DG=DM=×5=3,易证△DFG≌BEA,因此可得到AE=GF,故线段AG即为所求的AE+AF的最小值.故答案为:取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD相交,得点F,线段AE,AF即为所求.点评:此题考查最短路径问题,关键是根据轴对称的性质进行分析解答.15.(2015•安顺)如图,正方形ABCD的边长为4,E为BC上一点,BE=1,F为AB上一点,AF=2,P为AC上一点,则PF+PE的最小值为.考点:轴对称-最短路线问题;正方形的性质.分析:作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG 中,利用勾股定理即可求出E′F的长.解答:解:作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG中,GE′=CD﹣BE﹣BF=4﹣1﹣2=1,GF=4,所以E′F=.故答案为:.点评:本题考查的是最短线路问题,熟知两点之间线段最短是解答此题的关键.16.(2015•鄂州)如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN的周长取最小值时,四边形PMON的面积为36﹣54.考点:轴对称-最短路线问题.分析:设点P关于OA的对称点为C,关于OB的对称点为D,当点M、N在CD上时,△PMN 的周长最小,此时△COD是等边三角形,求得三角形PMN和△COD的面积,根据四边形PMON的面积为:(S△COD+S△PMN)求得即可.解答:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=6.∵∠POC=∠POD,∴OP⊥CD,∴OQ=6×=3,∴PQ=6﹣3,设MQ=x,则PM=CM=3﹣x,∴(3﹣x)2﹣x2=(6﹣3)2,解得x=6﹣9,∴S△PMN=MN×PQ=MQ•PQ=(6﹣9)•(6﹣3)=63﹣108,∵S△COD=×3×6=9,∴四边形PMON的面积为:(S△COD+S△PMN)=×(72﹣108)=36﹣54.故答案为36﹣54.点评:此题主要考查轴对称﹣﹣最短路线问题,熟知两点之间线段最短是解答此题的关键.17.(2014•资阳)如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为6.考点:轴对称-最短路线问题;正方形的性质.专题:计算题.分析:连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE 的最小值,进而可得出结论.解答:解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.点评:本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.18.(2014•东营)在⊙O中,AB是⊙O的直径,AB=8cm,==,M是AB上一动点,CM+DM 的最小值是8cm.考点:轴对称-最短路线问题;勾股定理;垂径定理.分析:作点C关于AB的对称点C′,连接C′D与AB相交于点M,根据轴对称确定最短路线问题,点M为CM+DM的最小值时的位置,根据垂径定理可得=,然后求出C′D为直径,从而得解.解答:解:如图,作点C关于AB的对称点C′,连接C′D与AB相交于点M,此时,点M为CM+DM的最小值时的位置,由垂径定理,=,∴=,∵==,AB为直径,∴C′D为直径,∴CM+DM的最小值是8cm.故答案为:8.点评:本题考查了轴对称确定最短路线问题,垂径定理,熟记定理并作出图形,判断出CM+DM的最小值等于圆的直径的长度是解题的关键.19.(2014•黑龙江)如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是5.考点:轴对称-最短路线问题;勾股定理的应用;平行四边形的判定与性质;菱形的性质.专题:几何图形问题.分析:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.解答:解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=AC=3,BP=BD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故答案为:5.点评:本题考查了轴对称﹣最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置.20.(2014•宿迁)如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是.考点:轴对称-最短路线问题;正方形的性质.专题:计算题.分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.解答:解:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴AE==,故答案为:.点评:此题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键.21.(2014•黔东南州)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为.考点:轴对称-最短路线问题;一次函数图象上点的坐标特征.分析:利用一次函数图象上点的坐标性质得出OA′=1,进而利用勾股定理得出即可.解答:解:如图所示:作A点关于直线y=x的对称点A′,连接A′B,交直线y=x于点P,此时PA+PB最小,由题意可得出:OA′=1,BO=2,PA′=PA,∴PA+PB=A′B==.故答案为:.点评:此题主要考查了利用轴对称求最短路线以及一次函数图象上点的特征等知识,得出P点位置是解题关键.22.(2014•锦州)菱形ABCD的边长为2,∠ABC=60°,E是AD边中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是.考点:轴对称-最短路线问题;菱形的性质.专题:几何综合题.分析:作点E关于直线BD的对称点E′,连接AE′,则线段AE′的长即为AP+PE的最小值,再由轴对称的性质可知DE=DE′=1,故可得出△AE′D是直角三角形,由菱形的性质可知∠PDE′=∠ADC=30°,根据锐角三角函数的定义求出PE的长,进而可得出PC的长.解答:解:如图所示,作点E关于直线BD的对称点E′,连接AE′,则线段AE′的长即为AP+PE的最小值,∵菱形ABCD的边长为2,E是AD边中点,∴DE=DE′=AD=1,∴△AE′D是直角三角形,∵∠ABC=60°,∴∠PDE′=∠ADC=30°,∴PE′=DE′•tan30°=,∴PC===.故答案为:.点评:本题考查的是轴对称﹣最短路线问题,熟知菱形的性质及锐角三角函数的定义是解答此题的关键.23.(2014•青岛)如图,在等腰梯形ABCD中,AB=AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB 的最小值为2.考点:轴对称-最短路线问题;等腰梯形的性质.专题:几何动点问题.分析:要求PA+PB的最小值,PA、PB不能直接求,可考虑转化PA、PB的值,从而找出其最小值求解.解答:解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为PA+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴PA+PB的最小值=AB•tan60°=.故答案为:2.点评:考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.24.(2014•无锡)如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A和⊙B上的动点,则PE+PF的最小值是3.。