2017年人教版七年级数学上册第2章整式的加减单元测试题(含答案)
人教版数学七年级上册第二章整式的加减单元测试卷(含答案)

人教版数学七年级上学期第二章整式的加减测试一、选择题(共12小题,总分36分)1.代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式共有( )A. 7个B. 6个C. 5个D. 4个2.下列关于单项式235xy-的说法中,正确的是()A. 系数是25-,次数是2 B. 系数是35,次数是2C. 系数是一3,次数是3D. 系数是35,次数是33.多项式6x2y-3x-1的次数和常数项分别是()A 3和-1 B. 2和-1 C. 3和1 D. 2和14.下列运算中,“去括号”正确的是( )A. a+(b-c)=a-b-cB. a-(b+c)=a-b-cC. m-2(p-q)=m-2p+qD. x²-(-x+y)=x²+x+y5.对于式子:22x y+,2ab,12,3x2+5x-2,abc,0,2x yx+,m,下列说法正确是( )A 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式6. 下列计算,正确的是( )A. 3+2ab="5ab"B. 5xy–y="5x"C. -52m n+5n2m=" 0" D.–x =7.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是( ).A. m=2,n=2B. m=-1,n=2C. m=-2,n=2D. m=2,n=-18.多项式23635x x-+与3231257x mx x+-+相加后,不含二次项,则常数的值是( )A. B. 3- C. 2- D. 8-9.若m﹣x=2,n+y=3,则(m﹣n)﹣(x+y)=( )A. ﹣1B. 1C. 5D. ﹣510.一个多项式减去x2﹣2y2等于x2+y2,则这个多项式 ( )A. ﹣2x2+y2B. 2x2﹣y2C. x2﹣2y2D. ﹣x2+2y211.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A. 3aB. 6a +bC. 6aD. 10a -b12.两个完全相同的大长方形,长为a ,各放入四个完全一样的小长方形后,得到图(1)、图(2),那么图(1)阴影部分的周长与图(2)阴影部分的周长的差是( )(用含a 的代数式表示)A. 12aB. 32a C. a D. 54a 二、填空题(共6小题,总分18分) 13.请写出一个系数是-2,次数是3的单项式:________________.14.若5m x n 3与-6m 2n y 是同类项,则xy 的值等于_________.15.若整式(8x 2-6ax +14)-(8x 2-6x +6)的值与x 的取值无关,则a 的值是________.16.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母,则的值为__________. 18.观察下面的一列单项式:2x,-4x 2,8x 3,-16x 4,…根据你发现的规律,第n 个单项式为__________.三、解答题(共8小题,总分66分)19.化简:(1)3x 2-3x 2-y 2+5y +x 2-5y +y 2; (2) a 2b -0.4ab 2-12a 2b +25ab 2. 20.先化简,再求值:(1)2xy -12 (4xy -8x 2y 2)+2(3xy -5x 2y 2),其中x =13,y =-3. (2)-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ),其中a =1,b =-2.21.如果x 2-x+1的2倍减去一个多项式得到3x 2+4x-1,求这个多项式.22.若3x m y n 是含有字母x 和y 的五次单项式,求m n 的最大值.23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:-(a 2+4ab +4b 2)=a 2-4b 2(1)求所捂的多项式;(2)当a =-1,b =2时,求所捂的多项式的值.24.已知A =2a 2-a,B =-5a +1.(1)化简:3A -2B +2;(2)当a =-12时,求3A -2B +2的值. 25.先化简,再求值:已知a 2﹣1=0,求(5a 2+2a ﹣1)﹣2(a+a 2)的值.26.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).答案与解析一、选择题(共12小题,总分36分)1.在代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式共有( )A. 7个B. 6个C. 5个D. 4个【答案】B【解析】【分析】分母中含有字母的式子一定不是多项式也不是单项式,因此其不是整式.所有单项式和多项式都是整式.【详解】在代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式有:π,x+xy,3x2+nx+4,﹣x,3,5xy,共有6个.故选B【点睛】本题考核知识点:整式. 解题关键点:理解整式的意义.2.下列关于单项式235xy-的说法中,正确的是()A. 系数是25-,次数是2 B. 系数是35,次数是2C. 系数是一3,次数是3D. 系数是35,次数是3【答案】D【解析】【分析】根据单项式系数和次数的定义判断即可.【详解】235xy-的系数是35,次数是3.故选D.【点睛】本题考查单项式系数与次数的定义,关键在于牢记定义即可判断.3.多项式6x2y-3x-1的次数和常数项分别是()A. 3和-1B. 2和-1C. 3和1D. 2和1 【答案】A【解析】【分析】运用多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数即可得出答案.【详解】∵多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数∴多项式6x2y-3x-1的次数和常数项分别是:3和-1.故选A.【点睛】考查了多项式相关概念,正确把握多项式次数和常数项的定义(多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数)是解题关键.4.下列运算中,“去括号”正确的是( )A. a+(b-c)=a-b-cB. a-(b+c)=a-b-cC. m-2(p-q)=m-2p+qD. x²-(-x+y)=x²+x+y【答案】B【解析】【分析】对原式各项进行去括号变形得到结果,即可作出判断.【详解】解:A、a+(b-c)=a+b-c,错误;B、a-(b+c)=a-b-c,正确;C、m-2(p-q)=m-2p+2q,错误;D、x²-(-x+y)=x2+x-y,错误,故选B.【点睛】本题考查了去括号,熟练掌握去括号法则是解本题的关键.5.对于式子:22x y+,2ab,12,3x2+5x-2,abc,0,2x yx+,m,下列说法正确的是( )A. 有5个单项式,1个多项式B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式【答案】C【解析】分析:分别利用多项式以及单项式的定义分析得出答案.详解:22x y+,2ab,12,3x2+5x﹣2,abc,0,2x yx+,m中:有4个单项式:12,abc,0,m;2个多项式为:22x y+,3x2+5x-2.故选C.点睛:此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.6. 下列计算,正确的是( )A. 3+2ab="5ab"B. 5xy–y="5x"C. -52m=" 0" D.–x =m n+5n2【答案】C【解析】分析:根据同类项的概念及合并同类项的法则得出.详解:A、一个是数字,一个是字母,不是同类项,不能合并,错误;B、字母不同,不是同类项,不能合并,错误;C、正确;D、字母的指数不同,不是同类项,不能合并,错误.故选C.点睛:本题主要考查同类项的概念和合并同类项的法则.同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.7.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是( ).A. m=2,n=2B. m=-1,n=2C. m=-2,n=2D. m=2,n=-1【答案】B【解析】试题分析:本题考查同类项的定义,单项式x2y m+2与x n y的和仍然是一个单项式,意思是x2y m+2与x n y是同类项,根据同类项中相同字母的指数相同得出.解:由同类项的定义,可知2=n,m+2=1,解得m=﹣1,n=2.故选B.考点:同类项.8.多项式2x mx x+-+相加后,不含二次项,则常数的值是( )312573635x x-+与32A. B. 3- C. 2- D. 8-【答案】B【解析】由题意可知36+12m=0,解得m=-3,故选B.9.若m﹣x=2,n+y=3,则(m﹣n)﹣(x+y)=( )A. ﹣1B. 1C. 5D. ﹣5【答案】A【解析】【分析】原式去括号整理后,将已知等式代入计算即可求出值.详解】∵m-x=2,n+y=3,∴原式=m-n-x-y=(m-x)-(n+y)=2-3=-1,故选A.【点睛】考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.10.一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是( )A. ﹣2x2+y2B. 2x2﹣y2C. x2﹣2y2D. ﹣x2+2y2【答案】B【解析】【分析】根据:被减式=减式+差,列式计算即可得出答案.【详解】解:这个多项式为:x2﹣2y2+(x2+y2),=(1+1)x2+(﹣2+1)y2,=2x2﹣y2,故选B.【点睛】本题主要考查整式的加减.熟练应用整式加减法计算法则进行计算是解题的关键.11.长方形一边长为2a+b,另一边为a-b,则长方形周长为()A. 3aB. 6a+bC. 6aD. 10a-b 【答案】C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a+b,另一边为a-b,∴长方形周长为:2(2a+b+a-b)=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.12.两个完全相同的大长方形,长为a,各放入四个完全一样的小长方形后,得到图(1)、图(2),那么图(1)阴影部分的周长与图(2)阴影部分的周长的差是()(用含a的代数式表示)A. 12a B.32a C. a D.54a【答案】C【解析】【分析】设小长方形的长为x,宽为y,大长方形宽为b,表示出x、y、a、b之间的关系,然后求出阴影部分周长之差即可.【详解】设图中小长方形的长为x,宽为y,大长方形的宽为b,根据题意,得:x+2y=a、x=2y,则4y=a,图(1)中阴影部分周长为2b+2(a-x)+2x=2a+2b,图(2)中阴影部分的周长为2(a+b-2y)=2a+2b-4y,图(1)阴影部分周长与图(2)阴影部分周长之差为:(2a+2b)-(2a+2b-4y)=4y=a,故选C.【点睛】考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.二、填空题(共6小题,总分18分)13.请写出一个系数是-2,次数是3的单项式:________________.【答案】-2a3(答案不唯一)【解析】分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解】解:系数是-2,次数是3单项式有:-2a3.(答案不唯一)故答案是:-2a3(答案不唯一).【点睛】考查了单项式的定义,注意确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.14.若5m x n3与-6m2n y是同类项,则xy的值等于_________.【答案】6【解析】【分析】根据同类项定义即可求x 、y 的值出答案.【详解】∵5m x n 3与-6m 2n y 是同类项,∴x=2,y=3∴xy=6.故答案是:6.【点睛】考查同类项的概念,解题的关键是熟练运用同类项的概念(含相同字母,且相同字母的指数也相同)求出x 、y 的值.15.若整式(8x 2-6ax +14)-(8x 2-6x +6)的值与x 的取值无关,则a 的值是________.【答案】1【解析】【分析】把多项式(8x 2-6ax+14)-(8x 2-6x+6)化简整理成(6-6a)x+8的形式,再根据其值与x 无关,可得关于a 的方程,解方程即可.【详解】原式=8x 2-6ax+14-8x 2+6x-6=(6-6a)x+8,∵整式(8x 2-6ax+14)-(8x 2-6x+6)的值与x 无关,∴6-6a=0,解得:a=1,故答案是:1.【点睛】考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.16.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.【答案】2【解析】试题分析:由题意可得:2x 2+3x+7=10,所以移项得:2x 2+3x=10-7=3,所求多项式转化为:6x 2+9x ﹣7=3(6x 2+9x)-7=3×3-7=9-7=2,故答案为2.考点:求多项式的值.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母,则的值为__________.【答案】1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为118.观察下面的一列单项式:2x,-4x2,8x3,-16x4,…根据你发现的规律,第n个单项式为__________.【答案】(-1)n+1·2n·x n【解析】分析】通过观察题意可得:n为奇数时,单项式为正数;n为偶数时,单项式为负数.x的指数为n的值,2的指数为(n-1).由此可解出本题.【详解】解:∵2x=(-1)1+1•21•x1;-4x2=(-1)2+1•22•x2;8x3=(-1)3+1•23•x3;-16x4=(-1)4+1•24•x4;第n个单项式为(-1)n+1•2n•x n,故答案为:(-1)n+1•2n•x n.三、解答题(共8小题,总分66分)19.化简:(1)3x2-3x2-y2+5y+x2-5y+y2; (2) a2b-0.4ab2-12a2b+25ab2.【答案】(1) x2;(2)12a2b.【解析】【分析】直接合并同类项即可.【详解】(1)原式=(3x2-3x2+x2)+(y2-y2)+(5y-5y)=x2.(2)原式=(a2b-12a2b)+(-0.4a b2+25ab2)=12a2b.【点睛】考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.20.先化简,再求值:(1)2xy -12 (4xy -8x 2y 2)+2(3xy -5x 2y 2),其中x =13,y =-3. (2)-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ),其中a =1,b =-2.【答案】(1)-12;(2)-4.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值;【详解】(1)2xy -12(4xy -8x 2y 2)+2(3xy -5x 2y 2) =2xy -2xy +4x 2y 2+6xy -10x 2y 2=6xy -6x 2y 2,当x =13,y =-3时,原式=6×13×(-3)-6×21()3×(-3)2=-6-6=-12. (2)原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b=(-1-1+2)a 2b +(3-4)ab 2=-ab 2,当a =1,b =-2时,原式=-1×(-2)2=-4. 【点睛】考查了整式的加减-化简求值,熟练掌握整式的运算法则是解本题的关键.21.如果x 2-x+1的2倍减去一个多项式得到3x 2+4x-1,求这个多项式.【答案】263x x --+【解析】试题分析:==这个多项式为考点: 整式的加减22.若3x m y n 是含有字母x 和y 的五次单项式,求m n 的最大值.【答案】9【解析】【分析】根据单项式的概念即可求出答案.【详解】因为3x m y n是含有字母x和y的五次单项式,所以m+n=5,且m、n均为正整数.当m=1,n=4时,m n=14=1;当m=2,n=3时,m n=23=8;当m=3,n=2时,m n=32=9;当m=4,n=1时,m n=41=4,故m n的最大值为9.【点睛】考查单项式的概念,解题关键是运用单项式的概念和分类讨论的思想.23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:-(a2+4ab+4b2)=a2-4b2(1)求所捂的多项式;(2)当a=-1,b=2时,求所捂的多项式的值.【答案】(1) 2a2+4ab;(2)-6.【解析】【分析】(1)根据题意列出整式相加减的式子,再去括号,合并同类项即可;(2)把3(1)中的式子即可.【详解】(1)所捂的多项式为:(a2-4b2)+(a2+4ab+4b2)=a2-4b2+a2+4ab+4b2=2a2+4ab.(2)当a=-1,b=2时,2a2+4ab=2×(-1)2+4×(-1)×2=2-8=-6.【点睛】考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.24.已知A=2a2-a,B=-5a+1.(1)化简:3A-2B+2;(2)当a=-12时,求3A-2B+2的值.【答案】(1)6a2+7a(2)-2 【解析】试题分析:(1)把A、B代入3A﹣2B+2,再去括号、合并同类项;(2)把a=-12代入上式计算.试题解析:解:(1)3A﹣2B+2, =3(2a2﹣a)﹣2(﹣5a+1)+2,=6a2﹣3a+10a﹣2+2,=6a2+7a;(2)当a=-12时,3A﹣2B+2=6×(-12)2+7×(-12)=-2.考点:整式的加减—化简求值;整式的加减25.先化简,再求值:已知a2﹣1=0,求(5a2+2a﹣1)﹣2(a+a2)的值.【答案】2.【解析】【分析】原式去括号整理后,将已知等式变形后代入计算即可求出值.【详解】解:(5a2+2a-1)-2(a+a2)=5a2+2a-1-2a-2a2=3a2-1,因为a2-1=0,所以a2=1,所以原式=3×1-1=2.【点睛】考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.26.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).【答案】101a+5050m.【解析】【分析】由阅读材料可以看出,100个数相加,用第一项加最后一项可得101,第二项加倒数第二项可得101,…,共100项,可分成50个101,在计算a+(a+m)+(a+2m)+(a+3m)+…+(a+100d)时,可以看出a共有100个,m,2m,3m,…100m,共有100个,m+100m=101m,2m+99d=101d,…共有50个101m,根据规律可得答案.【详解】a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m+…+100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m)=101a+101m×50=101a+5050m.【点睛】考查了整式的加法,关键是根据阅读材料找出其中的规律,根据规律得出解题的技巧.。
人教版数学七年级上册第二章整式的加减《单元综合测试》含答案

人教版数学七年级上学期第二章整式的加减测试第Ⅰ卷(选择题)一.选择题(共10小题)1.多项式3x3﹣2x2y2+x+3是( )A. 三次四项式B. 四次四项式C. 三次三项式D. 四次三项式2.﹣2x2y3n与3x m y3是同类项,则n﹣m的值是( )A. ﹣1B. 1C. 2D. 33.如果–2x2y n与–5x m–1y的和是单项式,那么m,n的值分别是A. m=2,n=1B. m=1,n=2C. m=3,n=1D. m=3,n=24.在3a,x+1,﹣2,3b-,0.72xy,2π,314x-中单项式个数有( )A. 2个B. 3个C. 4个D. 5个5.下列说法正确是( )A. 1x是单项式 B. πr2的系数是1C. 5a2b+ab﹣a是三次三项式D. 12xy2的次数是26.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是( )A 2x2﹣5x﹣1 B. ﹣2x2+5x+1 C. 8x2﹣5x+1 D. 8x2+13x﹣17.如图所示:两个圆的面积分别为19、11,两个空白部分的面积分别为a、b(a>b),则a﹣b的值为( )A. 5B. 6C. 7D. 88.若A与B都是二次多项式,则A﹣B:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零.上述结论中,不正确的有( )个.A. 5B. 4C. 3D. 29.已知:关于x、y多项式mx3+3nxy2﹣2x3﹣xy2+y中不含三次项,则代数式2m+3n值是( )A. 2B. 3C. 4D. 5第Ⅱ卷(非选择题)二.填空题(共6小题)10.一个多项式加上2x 2﹣4x ﹣3得-x 2﹣3x ,则这个多项式为_____. 11.单项式3215a bc 的次数是______.12.若x m ﹣1y 3与2xy n 的和仍是单项式,则(m ﹣n)2018的值等于_____. 13.若4x 2y 3+2ax 2y 3=4bx 2y 3,则3+a ﹣2b=_____. 14.多项式12x |m|﹣(m ﹣3)x+6是关于x 的三次三项式,则m 的值是_____. 15.某多项式按字母x 的降幂排列为:﹣7x 4+3x m +4x ﹣5,则m 的整数值可能为_____.三.解答题(共7小题)16.(1)化简:﹣2(x 2﹣3xy)+6(x 2﹣12xy) (2)先化简,再求值:a ﹣2(14a ﹣13b 2)+(﹣32a+13b 2).其中a=32,b=﹣12.17.对于有理数a ,b 定义a △b =3a +2b ,化简式子[(x +y )△(x -y )]△3x 18.若(2mx 2﹣x+3)﹣(3x 2﹣x ﹣4)的结果与x 的取值无关,求m 的值. 19.(3m-4)x 3-(2n-3)+x 2+(2m+5n)x ﹣6是关于x 的多项式. (1)当m 、n 满足什么条件时,该多项式是关于x 二次多项式; (2)当m 、n 满足什么条件时,该多项式是关于x 的三次二项式.20.有这样一道题:“先化简,再求值:(3x 2﹣2x+4)﹣2(x 2﹣x)﹣x 2,其中x =100”甲同学做题时把x =100错抄成了x =10,乙同学没抄错,但他们做出来的结果却一样,你能说明这是为什么吗?并求出这个结果. 21.解答下列问题:(提示:为简化问题,往往把一个式子看成一个数或一个整体解决问题) (1)若代数式 2x+3y 的值为﹣5,求代数式 4x+6y+3 的值; (2)已知 A=3x 2﹣5x+1,B=﹣2x+3x 2﹣5,求当x=13时,A ﹣B 的值. 22.观察下表我们把表格中字母的和所得的多项式称为“特征多项式”,例如:第1格的“特征多项式”为4x+y;第2格的“特征多项式”为8x+4y,回答下列问题:(1)第3格的“特征多项式”为,第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第m格的“特征多项式”与多项式﹣24x+2y﹣5的和不含有x项,求此“特征多项式”.答案与解析一.选择题(共10小题)1.多项式3x3﹣2x2y2+x+3是( )A. 三次四项式B. 四次四项式C. 三次三项式D. 四次三项式【答案】B【解析】【分析】本题考查多项式的定义,若干个单项式的和组成的式子叫做多项式.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.【详解】根据多项式的定义,多项式3x3−2x2y2+x+3有4项,最高项的指数是4,因此是四次四项式.故答案选B.【点睛】本题考查了多项式的定义,解题的关键是熟练的掌握多项式的定义.2.﹣2x2y3n与3x m y3是同类项,则n﹣m的值是( )A. ﹣1B. 1C. 2D. 3【答案】A【解析】【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项与字母的顺序无关,与系数无关.【详解】根据题意得m=2,3n=3,∴n-m=1-2=-1.故答案选A.【点睛】本题考查了多项式的定义,解题的关键是熟练的掌握多项式的定义.3.如果–2x2y n与–5x m–1y的和是单项式,那么m,n的值分别是A. m=2,n=1B. m=1,n=2C. m =3,n =1D. m =3,n =2【答案】C 【解析】 【分析】两个单项式的和为单项式,则这两个单项式是同类项,再根据同类项的定义列出关于m,n 的方程组,即可求出m,n 的值.【详解】﹣2x 2y n 与﹣5x m ﹣1y 的和是单项式, 则﹣2x 2y n 与﹣5x m ﹣1y 是同类项,121,m n -=⎧⎨=⎩解得:m=3,n=1 故选C.【点睛】考查同类项的概念,掌握两个单项式的和为单项式,则这两个单项式是同类项是解题的关键. 4.在3a ,x+1,﹣2,3b -,0.72xy,2π,314x -中单项式的个数有( ) A 2个 B. 3个C. 4个D. 5个【答案】C 【解析】 【分析】根据单项式的定义逐一判断即可. 【详解】其中是单项式的有:-2,-3b ,0.72xy,2π.故答案选C.【点睛】本题考查了单项式的定义,解题的关键是熟练的掌握单项式的定义. 5.下列说法正确的是( ) A.1x是单项式 B. πr 2的系数是1 C. 5a 2b+ab ﹣a 是三次三项式 D.12xy 2的次数是2 【答案】C【分析】根据单项式的概念、多项式的概念分别判断即可.【详解】A.1x分母含有字母x,不是单项式,此选项错误;B.πr2的系数是π,不是1,此选项错误;C.5a2b+ab﹣a是三次三项式,此选项正确;D.12xy2次数是3,不是2,此选项错误.故选C.【点睛】本题主要考查了单项式、多项式的概念,需要注意的是π不是字母,是常数.6.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是( )A. 2x2﹣5x﹣1B. ﹣2x2+5x+1C. 8x2﹣5x+1D. 8x2+13x﹣1【答案】A【解析】【分析】根据由题意可得被减式为5x2+4x-1,减式为3x2+9x,求出差值即是答案.详解】由题意得:5x2+4x−1−(3x2+9x),=5x2+4x−1−3x2−9x,=2x2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.7.如图所示:两个圆的面积分别为19、11,两个空白部分的面积分别为a、b(a>b),则a﹣b的值为( )A. 5B. 6C. 7D. 8【答案】D【分析】直接利用已知图形列出a+S=19,b+S=11,再加减运算即可得出a﹣b的值.【详解】设阴影部分的面积为S,∴a+S=19,b+S=11,∴a+S-(b+S)=19-11,∴a+S-b-S=8,∴a-b=8.故答案选:D.【点睛】本题考查了整式的加减,解题的关键是根据题意列出整式加减运算即可.8.若A与B都是二次多项式,则A﹣B:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零.上述结论中,不正确的有( )个.A. 5B. 4C. 3D. 2【答案】C【解析】【分析】多项式相减,也就是合并同类项,合并同类项时只是把系数相加减,字母和字母的指数不变,所以结果的次数一定不高于2次,由此可以判定正确个数.【详解】∵多项式相减,也就是合并同类项,而合并同类项时只是把系数相加减,字母和字母的指数不变,∴结果的次数一定不高于2次,当二次项的系数相同时,合并后结果为0,所以(1)和(2)(5)是错误的.故答案选C.【点睛】本题考查了多项式的定义,解题的关键是熟练的掌握多项式的定义.9.已知:关于x 、y 的多项式mx 3+3nxy 2﹣2x 3﹣xy 2+y 中不含三次项,则代数式2m+3n 值是( ) A. 2 B. 3C. 4D. 5【答案】D 【解析】 【分析】将多项式合并后,令三次项系数为0,求出m 与n 的值,即可求出2m+3n 的值. 【详解】∵mx 3+3nxy 2−2x 3−xy 2+y=(m−2)x 3+(3n−1)xy 2+y ,多项式中不含三次项, ∴m−2=0,且3n−1=0, 解得:m=2,n=13, 则2m+3n=4+1=5. 故答案选D【点睛】本题考查了多项式的定义,解题的关键是熟练的掌握多项式的定义.第Ⅱ卷(非选择题)二.填空题(共6小题)10.一个多项式加上2x 2﹣4x ﹣3得-x 2﹣3x ,则这个多项式为_____. 【答案】﹣3x 2+x+3 【解析】【详解】解:设多项式为A .由题意得:A=(﹣x 2﹣3x )﹣(2x 2﹣4x ﹣3)=﹣3x 2+x+3.故答案为﹣3x 2+x+3. 11.单项式3215a bc 的次数是______. 【答案】六次 【解析】 【分析】根据单项式中数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答可得.【详解】单项式321a bc 5-的次数是3126++=次, 故答案为六次.【点睛】本题主要考查单项式,掌握单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.12.若x m ﹣1y 3与2xy n 的和仍是单项式,则(m ﹣n)2018的值等于_____. 【答案】1 【解析】试题解析:由题意得:m-1=1,n=3, 解得:m=2,n=3, (m-n)2018=(2-3)2018=1, 故答案为1.13.若4x 2y 3+2ax 2y 3=4bx 2y 3,则3+a ﹣2b=_____. 【答案】1 【解析】 【分析】合并同类项可得:4x 2y 3+2ax 2y 3=(4+2a )x 2y 3,进而得出4+2a =4b ,整理得a -2b =﹣2,将a ﹣2b 整体代入要求的式子计算出结果即可.【详解】∵4x 2y 3+2ax 2y 3=(4+2a )x 2y 3=4bx 2y 3, ∴4+2a =4b , ∴2a ﹣4b =﹣4, ∴a ﹣2b =﹣2, ∴3+a ﹣2b =3﹣2=1. 故答案为1.【点睛】本题主要考查整式的加减运算法则以及整体代入的思想. 14.多项式12x |m|﹣(m ﹣3)x+6是关于x 的三次三项式,则m 的值是_____. 【答案】-3 【解析】 【分析】由题意可知:|m|=3,且m-3≠0即可作答.【详解】由题意可知:|m|=3,且m-3≠0;∴m= -3;故答案为-3.【点睛】本题考查了单项式与多项式的概念,掌握一个单项式中,所有字母的指数的和叫做这个单项式的次数.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数是解题的关键.15.某多项式按字母x的降幂排列为:﹣7x4+3x m+4x﹣5,则m的整数值可能为_____.【答案】3或2【解析】【分析】先分清多项式的各项,然后按多项式降幂排列的定义即可求解.【详解】∵某多项式按字母x的降幂排列为:−7x4+3x m+4x−5,∴m的整数值可能为3或2.故答案为3或2.【点睛】本题考查了多项式降幂排列定义,解题的关键是熟练的掌握多项式降幂排列的定义.三.解答题(共7小题)16.(1)化简:﹣2(x2﹣3xy)+6(x2﹣12 xy)(2)先化简,再求值:a﹣2(14a﹣13b2)+(﹣32a+13b2).其中a=32,b=﹣12.【答案】(1)4x2+3xy;(2)﹣a+b2,﹣5 4【解析】【分析】(1)先去括号得﹣2x2+6xy+6x2﹣3xy,在整理即可得4x2+3xy;(2)先运用乘法法则运算,再运用加减法则运算得﹣a+b2,再代入a、b的值即可【详解】(1)﹣2(x2﹣3xy)+6(x2﹣xy)=﹣2x2+6xy+6x2﹣3xy=4x2+3xy;(2)a﹣2(a﹣b2)+(﹣a+b2)=a﹣a+b2﹣a+b2=﹣a+b2,当a=,b=﹣时,原式=﹣+=﹣.【点睛】本题考查了有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算法则.17.对于有理数a,b定义a△b=3a+2b,化简式子[(x+y)△(x-y)]△3x【答案】21x+3y【解析】整体分析:根据定义a△b=3a+2b,先小括号,后中括号依次化简[(x+y)△(x-y)]△3x.解:原式=[3(x+y)+2(x-y)]△3x=(3x+3y+2x-2y)△3x=(5x+y)△3x=3(5x+y)+6x=15x+3y+6x=21x+3y.18.若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值.【答案】3 2【解析】【分析】与x无关说明含x的项都被消去,由此可得出m的值. 【详解】(2mx2﹣x+3)﹣(3x2﹣x﹣4)=2mx2﹣x+3﹣3x2+x+4=(2m﹣3)x2+7,∵(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关, ∴2m﹣3=0,解得:m=32.【点睛】本题考查整式的加减,解题的关键是正确理解(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关.19.(3m-4)x3-(2n-3)+x2+(2m+5n)x﹣6是关于x的多项式.(1)当m、n满足什么条件时,该多项式是关于x的二次多项式;(2)当m、n满足什么条件时,该多项式是关于x的三次二项式.【答案】(1)m=43,n≠32;(2)n=32,m=﹣154.【解析】【分析】根据多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数. 【详解】解:(1)由题意得:3m﹣4=0,且2n﹣3≠0,解得:m=43,n≠32;(2)由题意得:2n﹣3=0,2m+5n=0,且3m﹣4≠0,解得:n=32,m=﹣154.【点睛】本题考查了用学生待定系数法来考查多项式次数概念,掌握多项式相关定义概念是解决此题的关键.20.有这样一道题:“先化简,再求值:(3x2﹣2x+4)﹣2(x2﹣x)﹣x2,其中x=100”甲同学做题时把x=100错抄成了x=10,乙同学没抄错,但他们做出来的结果却一样,你能说明这是为什么吗?并求出这个结果.【答案】4【解析】【分析】原式去括号合并得到结果,即可做出判断.【详解】∵原式=3x2﹣2x+4﹣2x2+2x﹣x2=4,∴无论x=100,还是x=10,代数式的值都为4.【点睛】本题考查了整式的加减运算,解题的关键是熟练的掌握整式的加减运算法则.21.解答下列问题:(提示:为简化问题,往往把一个式子看成一个数或一个整体解决问题)(1)若代数式2x+3y 的值为﹣5,求代数式4x+6y+3 的值;(2)已知A=3x2﹣5x+1,B=﹣2x+3x2﹣5,求当x=13时,A﹣B 的值.【答案】(1)-7(2)5 【解析】试题分析:(1)将4x+6y+3化为2(2x+3y)+3,将2x+3y的值代入求解即可;(2)先将A-B化简,然后将x=13代入化简后的式子求出结果即可.试题解析:解:(1)4x+6y+3=2(2x+3y)+3=2×(-5)+3=-7;(2)A-B=(3x2-5x+1)-(-2x+3x2-5)=3x2-5x+1+2x-3x2+5=-3x+6,当x=13时,-3x+6=-3×13+6=5.点睛:掌握整体代入求值的思想.22.观察下表我们把表格中字母的和所得的多项式称为“特征多项式”,例如:第1格的“特征多项式”为4x+y;第2格的“特征多项式”为8x+4y,回答下列问题:(1)第3格的“特征多项式”为,第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第m格的“特征多项式”与多项式﹣24x+2y﹣5的和不含有x项,求此“特征多项式”.【答案】(1)12x+9y,16x+16y,4nx+n2y;(2)24x+36y.【解析】整体分析:(1)根据第1格,第2格,第3格,第4格中的“特征多项式”的特征归纳出第n格的“特征多项式”的特征;(2)不含有x项,即是合并同类项后,x项的系数为0.解:(1)由表格可得,第3格的“特征多项式”为12x+9y,第4格的“特征多项式”为16x+16y,第n格的“特征多项式”为4nx+n2y, 故答案为12x+9y,16x+16y,4nx+n2y;(2)∵第m格的“特征多项式”是4mx+m2y,∴(4mx+m2y)+(﹣24x+2y﹣5)=4mx+m2y﹣24x+2y﹣5=(4m﹣24)x+(m2+2)y﹣5,∵第m格的“特征多项式”与多项式﹣24x+2y﹣5的和不含有x项,∴4m﹣24﹣0,得m=6,∴此“特征多项式”是24x+36y.。
人教版数学七年级上册第二章整式的加减单元检测题(含答案)

人教版数学七年级上学期第二章整式的加减测试一、选择题1.化简-16(x-0.5)的结果是( )A. -16x-0.5B. -16x+0.5C. 16x-8D. -16x+82.以下判断正确的是( )A. 单项式xy没有系数B. -1是单项式C. 23x2是五次单项式D. 是单项式3.已知整式x2y的值是2,则5x2y+5xy-7x-(4x2y+5xy-7x)的值是( )A. -4B. -2C. 2D. 44.单项式-32xy2z3的系数和次数分别是( )A. -1,8B. -3,8C. -9,6D. -9,35.如果-33a m b2是7次单项式,则m的值是( )A. 6B. 5C. 4D. 26.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为( )A. 29B. -6C. 14D. 247.已知a<b,那么a-b和它的相反数的差的绝对值是( )A. b-aB. 2b-2aC. -2aD. 2b8.下面不是同类项的是( )A. -2与12B. 2m与2nC. -2a2b与a2bD. -x2y2与12x2y2二、填空题9.若单项式2x2y m与−x n y3的和仍为单项式,则m+n的值是___________.10.若单项式-a2x b m与a n b y-1可合并为a2b4,则xy-mn=___________.11.把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,排在第三项的是___________.12.若a2m−5b2与-3ab3-n的和为单项式,则m+n=___________.13.把(x-1)当做一个整体,合并3(x-1)2-2(x-1)3-5(1-x)2+(1-x)3的结果为___________.14.如果在数轴上表示a,b 两个实数的点的位置如图所示,那么|a﹣b|+|a+b|化简的结果为_____.15.数a在数轴上的位置如图所示,式子|a-1|-|a|的化简结果是___________.16.化简:-2a2-[3a2-(a-2)]=___________.三、解答题17.完成下表18.若-mx2y|n-3|是关于x、y的10次单项式,且系数是8,求m+n的值.19.去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(a−3)+2a2]+4.20.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和21.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.答案与解析一、选择题1.化简-16(x-0.5)的结果是( )A. -16x-0.5B. -16x+0.5C. 16x-8D. -16x+8【答案】D【解析】【分析】根据去括号法则及乘法分配律解答即可.【详解】由去括号法则及乘法分配律可得:-16(x-0.5)=-16x+8.故选D.【点睛】本题考查了去括号法则及乘法分配律,熟练运用去括号法则及乘法分配律是解决问题的关键.2.以下判断正确的是( )A. 单项式xy没有系数B. -1是单项式C. 23x2是五次单项式D. 是单项式【答案】B【解析】【分析】根据单项式的有关概念进行解答即可.【详解】A、单项式xy的系数是1,故错误;B、-1是单项式,故正确;C、23x2是2次单项式,故错误;D、是分式,故错误.故选:B.【点睛】本题考查了单项式,单项式的系数,次数,熟记单项式的系数,次数的定义是解题的关键.3.已知整式x2y的值是2,则5x2y+5xy-7x-(4x2y+5xy-7x)的值是( )A. -4B. -2C. 2D. 4【答案】C【解析】【分析】原式去括号合并后,将已知整式的值代入计算即可求出值.【详解】∵x2y=2,∴原式=5x2y+5xy-7x-4x2y-5xy+7x=x2y=2.故选:C.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.4.单项式-32xy2z3的系数和次数分别是( )A. -1,8B. -3,8C. -9,6D. -9,3【答案】C【解析】分析:根据单项式系数和次数的定义求解.详解:单项式﹣32xy2z3的系数和次数分别是﹣9,6.故选C.点睛:本题考查了单项式的系数和次数,注意单项式中数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.如果-33a m b2是7次单项式,则m的值是( )A. 6B. 5C. 4D. 2【答案】B【解析】【分析】根据单项式次数的定义来求解.所有字母的指数和叫做单项式的次数.【详解】根据单项式次数的定义,所有字母的指数和为7,即m+2=7,则m=5.故选:B.【点睛】灵活掌握单项式次数的定义,根据题意列方程,是解题的关键.6.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为( )A. 29B. -6C. 14D. 24【答案】B【解析】【分析】先对原式合并同类项,再把a=-5代入化简后的式子计算即可.【详解】原式=a-1,当a=-5时,原式=-5-1=-6.故选:B.【点睛】本题考查了整式的化简求值.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.7.已知a<b,那么a-b和它的相反数的差的绝对值是( )A. b-aB. 2b-2aC. -2aD. 2b【答案】B【解析】试题分析:a﹣b的相反数是b﹣a,可得a﹣b和它的相反数为:(a﹣b)﹣(b﹣a)=2a﹣2b,又因为a<b,可知2a ﹣2b<0,所以|(a﹣b)﹣(b﹣a)|=2b﹣2a.解:依题意可得:|(a﹣b)﹣(b﹣a)|=2b﹣2a.故选B.考点:整式的加减.8.下面不是同类项的是( )A. -2与12B. 2m与2nC. -2a2b与a2bD. -x2y2与12x2y2【答案】B【解析】【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,结合选项即可得出答案.【详解】A、-2与12是同类项,所以A选项错误;B、在2m与2n中,字母不相同,它们不是同类项,所以B选项正确;C、﹣2a2b与a2b是同类项,所以C选项错误;D、与是同类项,所以D选项错误.故选B.【点睛】此题考查同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,难度一般.二、填空题9.若单项式2x2y m与−x n y3的和仍为单项式,则m+n的值是___________.【答案】5【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m=3,n=2,再代入代数式计算即可.【详解】由题意知单项式2x2y m与−x n y3是同类项,∴n=2,m=3,∴m+n=5,故答案为:5.【点睛】本题考查同类项的知识,注意掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.若单项式-a2x b m与a n b y-1可合并为a2b4,则xy-mn=___________.【答案】-3【解析】【分析】因为单项式-a2x b m与a n b y-1可合并为a2b4,而只有几个同类项才能合并成一项,非同类项不能合并,可知此三个单项式为同类项,由同类项的定义可先求得x、y、m和n的值,从而求出xy-mn的值.【详解】∵单项式-a2x b m与a n b y-1可合并为a2b4,则此三个单项式为同类项,则m=4,n=2,2x=2,y-1=4,x=1,y=5,则xy-mn=1×5-4×2=-3.【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.11.把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,排在第三项的是___________.【答案】-5a2b【解析】【分析】先把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,然后找出符合条件的项即可.【详解】多项式2ab2-5a2b-7+a3b3按字母b的降幂排列为:a3b3+2ab2-5a2b-7.故答案为:-5a2b.【点睛】本题主要考查的是多项式概念,掌握多项式按照某一字母的升降幂排列的方法是解题的关键.12.若a2m−5b2与-3ab3-n的和为单项式,则m+n=___________.【答案】4【解析】【分析】直接利用合并同类项法则得出关于m,n的等式进而求出答案.【详解】∵a2m−5b2与-3ab3-n的和为单项式,∴2m-5=1,2=3-n,解得:m=3,n=1.故m+n=4.故答案为:4.【点睛】此题主要考查了单项式,正确把握合并同类项法则是解题关键.13.把(x-1)当做一个整体,合并3(x-1)2-2(x-1)3-5(1-x)2+(1-x)3的结果为___________.【答案】-2(x-1)2-3(x-1)3【解析】【分析】根据互为相反数的偶次幂相等,互为相反数的奇次幂互为相反数,可化成同类项,根据合并同类项,可得答案.【详解】原式=3(x-1)2-2(x-1)3-5(x-1)2-(x-1)3=-2(x-1)2-3(x-1)3,故答案为:-2(x-1)2-3(x-1)3.【点睛】本题考查了合并同类项,利用互为相反数的偶次幂相等,互为相反数的奇次幂互为相反数化成同类项是解题关键.14.如果在数轴上表示a,b 两个实数的点的位置如图所示,那么|a﹣b|+|a+b|化简的结果为_____.【答案】-2a【解析】【分析】先由数轴上a,b的位置判断出其符号,再根据其与原点的距离距离判断出a,b绝对值的大小,代入原式求值即可.【详解】由数轴可a<0,b>0,a<b,|a|>b,所以a-b<0,a+b<0,∴|a-b|+|a+b|=-a+b-a-b=-2a,故答案为:-2a.【点睛】本题考查了数轴的概念、整式的加减、绝对值的性质等,熟练掌握正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0是解题的关键.15.数a在数轴上的位置如图所示,式子|a-1|-|a|的化简结果是___________.【答案】1【解析】先根据点a在数轴上的位置判断出a的符号,再去绝对值符号,合并同类项即可.解:∵由图可知,a<0,∴a﹣1<0,∴原式=1﹣a+a=1.故答案为:1.16.化简:-2a2-[3a2-(a-2)]=___________.【答案】-5a2+a-2【解析】【分析】去括号,然后合并同类项即可.【详解】-2a2-[3a2-(a-2)]= -2a2-[3a2-a+2]= -2a2-3a2+a-2=-5a2+a-2.故答案为:-5a2+a-2【点睛】本题考查整式的化简,注意去括号时符号的变化.三、解答题17.完成下表【答案】详见解析.【解析】【分析】根据单项式的系数和次数的定义解答即可.【详解】x的系数是1,次数是1;-2mn的系数是-2,次数是2;的系数是,次数是4.填表如下:【点睛】此题考查了单项式的有关定义,熟练掌握单项式的系数和次数的的定义是解答此题的关键.18.若-mx2y|n-3|是关于x、y的10次单项式,且系数是8,求m+n的值.【答案】m+n=3或m+n=-13.【解析】【分析】利用单项式的定义得出m的值,进而利用单项式次数的定义得出n的值,进而得出答案.【详解】因为-mx2y|n-3|是关于x、y的10次单项式,且系数是8,所以m=-8,且2+|n-3|=10,解得n=11或-5,则m+n=3或m+n=-13.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数的定义是解题关键.19.去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(a−3)+2a2]+4.【答案】(1)4x-3y;(2)a2-a+1.【解析】【分析】(1)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变;(2)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变.【详解】(1)(x-2y)-(y-3x)=x-2y-y+3x=4x-3y;(2)3a2−[5a−(a−3)+2a2]+4=3a2−(5a−a+3+2a2)+4=3a2−5a+a-3-2a2+4=a2-a+1.【点睛】解决本题是要注意去括号时符号的变化,并且不要漏乘.有多个括号时要注意去各个括号时的顺序.20.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和【答案】这三名同学的年龄的和是(4m-5)岁.【解析】解:因为小红的年龄比小明的年龄的2倍少4岁,所以小红的年龄为岁.又因为小华的年龄比小红的年龄的还多1岁,所以小华的年龄为(岁),则这三名同学的年龄的和为答:这三名同学的年龄的和是岁.21.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.【答案】-5.【解析】【分析】根据单项式及单项式次数的定义,可得出a、b的值,代入代数式即可得出答案.【详解】∵(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,∴,解得:,则a2-3ab+b2=9-18+4=-5.【点睛】本题考查了单项式的知识,属于基础题,掌握单项式的定义及单项式次数的定义是解答本题的关键。
七年级上册第二章整式的加减(人教版)单元测试题(含答案)

七年级上册第二章整式的加减(人教版)单元测试题(含答案)一﹨填空题〖每题3分,共36分〗1﹨单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
2﹨当2-=x 时,代数式-122-+x x = ,122+-x x = 。
3﹨写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
4﹨已知:11=+x x ,则代数式51)1(2010-+++xx x x 的值是 。
5﹨张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。
6﹨计算:=-+-7533x x , )9()35(b a b a -+-= 。
7﹨计算:)2008642()200953(m m m m m m m m ++++-++++ = 。
8﹨-bc a 2+的相反数是 , π-3= ,最大的负整数是 。
9﹨若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。
10﹨若≠+-m y x yx m n 则的六次单项式是关于,,)2(232 ,n = 。
11﹨已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。
12﹨多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。
二﹨选择题〖每题3分,共30分〗13﹨下列等式中正确的是〖 〗A ﹨)25(52x x --=-B ﹨)3(737+=+a aC ﹨-)(b a b a --=-D ﹨)52(52--=-x x14﹨下面的叙述错误的是〖 〗A ﹨倍的和的平方的与的意义是2)2(2b a b a +。
B ﹨222b a b a 与的意义是+的2倍的和C ﹨3)2(ba 的意义是a 的立方除以2b 的商D ﹨b a b a 与的意义是2)(2+的和的平方的2倍15﹨下列代数式书写正确的是〖 〗A ﹨48aB ﹨y x ÷C ﹨)(y x a +D ﹨211abc 16﹨-)(c b a +-变形后的结果是〖 〗A ﹨-c b a ++B ﹨-c b a -+C ﹨-c b a +-D ﹨-c b a -- 17﹨下列说法正确的是〖 〗A ﹨0不是单项式B ﹨x 没有系数C ﹨37x x+是多项式 D ﹨5xy -是单项式 18﹨下列各式中,去括号或添括号正确的是〖 〗A ﹨c b a a c b a a +--=+--2)2(22B ﹨)123(123-+-+=-+-y x a y x aC ﹨1253)]12(5[3+--=---x x x x x xD ﹨-)1()2(12-+--=+--a y x a y x 19﹨代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是〖 〗 A ﹨3 B ﹨4 C ﹨5 D ﹨620﹨若A 和B 都是4次多项式,则A+B 一定是〖 〗A ﹨8次多项式B ﹨4次多项式C ﹨次数不高于4次的整式D ﹨次数不低于4次的整式21﹨已知y x x n m n m 2652与-是同类项,则〖 〗A ﹨1,2==y xB ﹨1,3==y xC ﹨1,23==y x D ﹨0,3==y x 22﹨下列计算中正确的是〖 〗A ﹨156=-a aB ﹨x x x 1165=-C ﹨m m m =-2D ﹨33376x x x =+ 三﹨化简下列各题〖每题3分,共18分〗23﹨)312(65++-a a 24﹨b a b a +--)5(225﹨-32009)214(2)2(++--y x y x 26﹨-[]12)1(32--+--n m m27﹨)(4)()(3222222y z z y y x ---+- 28﹨1}1]1)1([{2222-------x x x x四﹨化简求值〖每题5分,共10分〗29﹨)]21(3)13(2[22222x x x x x x ------- 其中:21=x .30﹨)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a .五﹨解答题〖31﹨32题各6分,33﹨34题各7分,共20分〗31﹨已知:22,,(1)(5)50;3m x y x m -+=满足:2312722a b b a y 与+-)(是同类项. 求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。
人教版七年级数学上册《第二章整式的加减》单元测试卷(附答案)

人教版七年级数学上册《第二章整式的加减》单元测试卷(附答案)一、单选题(每题3分,共24分) 1.下列代数式书写规范的是( )A .22x yB .2m n ÷C . 5a ⨯D .213a 2.多项式22325xy xy -+的次数及最高次项的系数分别是( )A .3,-3B .2,-3C .5,-3D .3,33.若单项式242ab c -3的系数、次数分别是m 、n ,则( ) A .m=23,n=6 B .-m=23,n=6 C .m=23,n=7 D .-m=23,n=7 4.下列说法中,不正确...的是( ) A .13xy - 是整式 B .22+R R ππ是二次二项式C .多项式233a b ab --的三次项的系数为3- D .263+1x x -的项有 26 3 1x x -,, 5.若2110x +=,则42x +=( )A .19B .20C .21D .226.已知25x y -+=,则23(2)6125x y x y --+-的值是( )A .40B .100C .20-D .57.若12m x y -与2n x y 的和仍是单项式,则m n 的值( )A .3B .6C .8D .98.当1x =时,代数式334ax bx -+的值为7,则当=1x -时,这个式子的值为( )A .7B .6C .2D .1二、填空题(每题3分,共24分) 9.单项式235x yz π-的系数是 10.已知320a b -++=,则2+a b = .11.一个两位数的个位数字为m ,十位数字为n ,则这两位数表示为 .12.多项式25323ab a π+-的次数是 .三、解答题(共72分)17.化简:(1)3245a a +--;(2)()()22235x x +--;(3)()()22643241m m m m --+-+.18.先化简,再求值:()()22222825a b ab a b ab a b -+----,其中1a =-和13b =.19.有理数a ,b ,c 在数轴上的位置如图,化简a c a b c b -++--.20.若关于,x y 的多项式:2223332m m m m x y mx y nx y x y m n ----++-++,化简后是四次三项式,求m n +的值.21.如果关于x ,y 的单项式2m ax y 与235m bx y -的次数相同.(1)求m 的值.(2)若23250m m ax y bx y +=﹣且0xy ≠,求20132(25)m a b ++的值.22.已知22321A a ab a =+--和21B a ab =-+-.(1)若1a =-,15b =求()432A A B --的值. (2)若2A B +的值与a 的取值无关,求b 的值.23.如图,某公园有一块长为()21a -米,宽为a 米的长方形土地(一边靠着墙),现将三面留出宽都是x 米的小路,余下部分设计成花圃进行美化,并用篱笆把不靠墙的三边围起来.(1)用代数式表示所用篱笆的总长度;(2)6,3a x ==米,若篱笆的造价为60元/米,请计算全部篱笆的造价.24.如图是一所住宅的建筑平面图(图中长度单位:米).(1)用式子表示这所住宅的建筑面积.x 时,试计算该住宅的面积.(2)当6参考答案: 1.A2.A3.D4.C5.B6.B7.C8.D9.35π-10.1-11.10n m +/10m n + 12.3/三13.23x - -114.202315.()21826m y x ++ 16.1017.(1)3a --(2)231x +(3)2882m m --18.218ab -,2 19.2a -20.421.(1)3m =(2)022.(1)2-(2)25b =23.(1)()662a x --米;(2)篱全部篱笆的造价是960元24.(1)()22218m x x ++(2)266m。
人教版七年级上册第2章《整式的加减》单元测试卷(含答案)

人教版七年级上册第2章《整式的加减》单元测试卷满分100分姓名:___________班级:___________学号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.下列整式中,单项式是()A.3a+1B.C.3a D.x=12.代数式1﹣的意义是()A.1与x的差的倒数B.1与x的倒数的差C.x的倒数与1的差D.1与1除以x的商3.下列说法正确的是()A.整式就是多项式B.π是单项式C.x4+2x3是七次二项次D.是单项式4.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y25.下列运算正确的是()A.4m﹣m=3B.a3﹣a2=a C.2xy﹣yx=xy D.a2b﹣ab2=06.去括号1﹣(a﹣b)=()A.1﹣a+b B.1+a﹣b C.1﹣a﹣b D.1+a+b7.以下各组多项式按字母a降幂排列的是()A.3a﹣7a2+2﹣a3B.﹣7a2+3a+2﹣a3C.﹣a3+3a+2﹣7a2D.﹣a3﹣7a2+3a+28.李老师用长为6a的铁丝做了一个长方形教具,其中一边长为b﹣a,则另一边的长为()A.7a﹣b B.2a﹣b C.4a﹣b D.8a﹣2b9.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定10.已知a﹣b=3,c+d=2,则(a﹣d)﹣2(b﹣c)+(b+3d)的值为()A.7B.5C.1D.﹣5二.填空题(共6小题,满分24分,每小题4分)11.单项式的系数是m,多项式a2b+2ab﹣3的次数是n,则m+n=.12.若3x n y3和﹣x2y m是同类项,则n﹣m=.13.去括号7x3﹣[3x2﹣(x+1)]=.14.“直播带货”是今年的热词.某“爱心助农”直播间推出特产甜瓜,定价8元/千克,并规定直播期间一次下单超过5千克时,可享受九折优惠.李叔叔在直播期间购买此种甜瓜m千克(m>5),则他共需支付元.(用含m的代数式表示)15.若x2+3x=2,则代数式2x2+6x﹣4的值为.16.若多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,则m=.三.解答题(共7小题,满分46分)17.(6分)把下列各代数式填在相应的大括号里.(只需填序号)(1)x﹣7,(2),(3)4ab,(4),(5)5﹣,(6)y,(7),(8)x+,(9),(10)x2++1,(11),(12)8a3x,(13)﹣1单项式集合{};多项式集合{};整式集合{}.18.(6分)合并同类项(1)3a+2a﹣7a (2)﹣4x2y+8xy2﹣9x2y﹣21xy2.19.(6分)如果关于x的多项式x4﹣(a﹣1)x3+5x2﹣(b+1)x﹣1不含x3项和x项,求a,b的值.20.(6分)先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.21.(7分)学完了《整式的加减》后,小刚与小强玩起了数字游戏:小刚对小强说:你任意写一个两位数,满足十位数字比个位数字大2;然后交换十位数字与个位数字,得到一个新的两位数;最后用其中较大的两位数减去较小的两位数.我就能知道这个差是多少.你知道这是为什么吗?这个差是多少呢?22.(7分)已知A=a2﹣2b2+2ab﹣3,B=2a2﹣b2﹣ab﹣(1)求2(A+B)﹣3(2A﹣B)的值(结果用化简后的a、b的式子表示);(2)当a=﹣,b=0时,求(1)中式子的值.23.(8分)某国际化学校实行小班制教学,七年级四个班共有学生(6m﹣3n)人,一班有学生m人,二班人数比一班人数的两倍少n人,三班人数比二班人数的一半多12人.(1)求三班的学生人数(用含m,n的式子表示);(2)求四班的学生人数(用含m,n的式子表示);(3)若四个班共有学生120人,求二班比三班多的学生人数?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、3a+1是多项式,故此选项不合题意;B、是分式,故此选项不合题意;C、3a是单项式,符合题意;D、x=1是方程,故此选项不合题意.故选:C.2.解:由代数式的定义得,代数式1﹣表示1与x的倒数的差,故B答案正确.故选:B.3.解:A、根据整式的概念可知,单项式和多项式统称为整式,故A错误;B、π是单项式,故B正确;C、x4+2x3是4次二项式,故C错误;D、是多项式,故D错误.故选:B.4.解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.5.解:(A)原式=3m,故A错误;(B)原式=a3﹣a2,故B错误;(D)原式=a2b﹣ab2,故D错误;故选:C.6.解:1﹣(a﹣b)=1﹣a+b,故选:A.7.解:多项式按字母a降幂排列的是﹣a3﹣7a2+3a+2.故选:D.8.解:另一边长=3a﹣(b﹣a)=3a﹣b+a=4a﹣b.故选:C.9.解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.10.解:原式=a﹣d﹣2b+2c+b+3d=(a﹣b)+2(c+d),当a﹣b=3,c+d=2时,原式=3+4=7,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵单项式的系数是m,∴m=﹣,∵多项式a2b+2ab﹣3的次数是n,∴n=3,则m+n=3﹣=.故答案为:.12.解:根据题意可得:n=2,m=3,∴n﹣m=2﹣3=﹣1.故答案为:﹣1.13.解:7x3﹣[3x2﹣(x+1)]=7x3﹣(3x2﹣x﹣1)=7x3﹣3x2+x+1.故答案为:7x3﹣3x2+x+1.14.解:由题意得:8×0.9m=7.2m,则他共需支付7.2m元.故答案为:7.2m.15.解:2x2+6x﹣4=2(x2+3x)﹣4把x2+3x=2代入上式,得原式=2×2﹣4=0故答案为016.解:3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值=3mx2﹣x2+4x﹣2+4x2﹣4x+5=(3m+3)x2+3,∵多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,∴3m+3=0,∴m=﹣1,故答案为:﹣1.三.解答题(共7小题,满分46分)17.解:单项式有:,4ab,y,8a3x,﹣1;多项式有:x﹣7,x+,,x2++1;整式有:x﹣7,,4ab,y,x+,,x2++1,8a3x,﹣1.故答案为:(2)(3)(6)(12)(13);(1)(8)(9)(10);(1)(2)(3)(6)(8)(9)(10)(12)(13).18.解:(1)原式=(3+2﹣7)a=﹣2a;(2)原式=(﹣4﹣9)x2y+(8﹣21)xy2=﹣13x2y﹣13xy2.19.解:根据题意得﹣(a﹣1)=0,﹣(b+1)=0,解得a=1,b=﹣1.20.解:原式=4xy﹣[x2+5xy﹣y2﹣2x2﹣6xy+y2]=4xy﹣[﹣x2﹣xy]=x2+5xy,当x=﹣1,y=2时,原式=x2+5xy=(﹣1)2+5×(﹣1)×2=﹣9.21.解:设原来的十位数,十位数字为x,则个位数字为:(x﹣2),故两位数是:10x+x﹣2=11x﹣2,交换十位数字与个位数字,得到的十位数是:10(x﹣2)+x=11x﹣20,故11x﹣2﹣(11x﹣20)=18,即较大的两位数减去较小的两位数的差为18.22.解:(1)2(A+B)﹣3(2A﹣B)=2A+2B﹣6A+3B=﹣4A+5B=﹣4(a2﹣2b2+2ab﹣3)+5(2a2﹣b2﹣ab﹣)=﹣4a2+8b2﹣8ab+12+10a2﹣5b2﹣2ab﹣1=6a2+3b2﹣10ab+11;(2)∵a=﹣,b=0,∴6a2+3b2﹣10ab+11=6×+11=12.23.解:(1)一班人数为:m人.二班人数为:(2m﹣n)人.三班人数为:人;(2)四班人数为:==;(3)由题意可得:6m﹣3n=120,则2m﹣n=40,故二班比三班多的学生数为:===20﹣12=8(人)答:二班比三班多8人.。
人教版数学七年级上册:第2章 整式的加减 单元测试卷(含答案)

第二章《整式的加减》单元测试(满分:150分时间:120分钟) 一、选择题(每小题4分,共40分)1.下列各式中不是单项式的是( )A.a3B.-15C.0 D.3a2.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费( )A.(3a+4b)元 B.(4a+3b)元C.4(a+b)元 D.3(a+b)元3.-[a-(b-c)]去括号正确的是( )A.-a-b+c B.-a+b-cC.-a-b-c D.-a+b+c4.多项式xy2+xy+1是( )A.二次二项式 B.二次三项式C.三次二项式 D.三次三项式5.下列运算中,正确的是( )A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b-3ba2=0 D.5a2-4a2=16.若-x3y a与x b y是同类项,则a+b的值为( )A.2 B.3 C.4 D.57.若A=3x2-4y2,B=-y2-2x2+1,则A-B等于( )A.x2-5y2+1 B.x2-3y2+1C.5x2-3y2-1 D.5x2-3y2+18.已知x-3y=-3,则5-x+3y的值为( )A.0 B.2 C.5 D.89.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.此空格的地方被钢笔水弄污了,那么空格中的一项是( )A.-xy B.xy C.-7xy D.7xy10.如图,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个长方形,(不重复无缝隙),则长方形的长为( )A .2 cmB .2a cmC .4a cmD .(2a -2)cm二、填空题(每小题3分,共30分) 11.计算:2x +x =____________.12.单项式-2xy25的系数是____________,次数是____________.13.任写一个与-12a 2b 是同类项的单项式:____________.14.将多项式1-ab 2+a 3b -13a 2按字母a 降幂排列是________________.15.一个长方形的长为2a +3b ,宽为a +b ,则此长方形的周长为____________. 16.若式子mx 2+y 2-5x 2+5的值与字母x 的取值无关,则m 的值为____________. 17.某种商品原价是m 元,第一次降价打八折,第二次降价每件又减15元,第二次降价后每件的售价是____________元.18.一个多项式与2x 2-xy +3y 2的和是-2xy +x 2-y 2,则这个多项式是________________. 19.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________________.20.观察图形,则第n 个图形中三角形的个数为____________(用含n 的式子表示).三、(本大题12分) 21.(1)计算:①(3a 2+1)-(4a 3-3a 2); ②6a 2-[(5ab +a 2)+2ab];(2)先化简,再求值:2(x +x 2y)-23(6x 2y +3x)-y ,其中x =1,y =3.四、(本大题12分)22.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的12还多1岁,求这三名同学的年龄的和.五、(本大题14分)23.小明在计算一种多项式减去2a 2+a -5的差时,因忘了对两个多项式用括号括起来,因此减式后面的两项没有变号,结果得到的差是a 2+3a -1.据此你能求出这个多项A 式吗?这两个多项式的差应该是多少?六、(本大题14分)24.如图所示,将面积为a 2的小正方形和面积为b 2的大正方形放在同一水平面上(b >a >0).(1)用a ,b 表示阴影部分的面积;(2)计算当a =3,b =5时,阴影部分的面积.七、(本大题12分)25.阅读材料:我们知道,4x+2x-x=(4+2-1)x=5x,类似地,我们把(a+b)看成一个整体,则4(a +b)+2(a+b)-(a+b)=(4+2-1)(a+b)=5(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)看成一个整体,合并3(a-b)2-7(a-b)2+2(a-b)2的结果是____________;A.-6(a-b)2 B.6(a-b)2C.-2(a-b)2 D.2(a-b)2(2)已知x2+2y=5,求3x2+6y-21的值;拓广探索:(3)已知a-2b=3,2b-c=-5,c-d=10,求(a-c)+(2b-d)-(2b-c)的值.八、(本大题16分)26.某校团委组织了有奖征文活动,并设立了一、二、三等奖,根据设奖情况买了50件奖品,其二等奖奖品的件数比一等奖奖品的件数的2倍少10,各种奖品的单价如下表所示:如果计划一等奖奖品买x件,买50件奖品的费用是y元.(1)先填表,再用含x的式子表示y,并化简;(2)若一等奖奖品买10件,则共花费多少?参考答案:11.3x 12. 52-3 13. a 2b(答案不唯一) 14.1ab -a 31-b a 223+ 15.6a+8b 16.517. (0.8m-15) 18. -x 2-xy-4y 219.-b+c+a 20.4n21.①原式=3a 2+1-4a 3+3a 2=-4a+6a 2+1.②原式=6a 2-5ab-2ab=5a 2-7ab (2)原式=2x+2x 2y-4x 2y-2x-y=-2x 2y-y当x=1,y=3时,原式=-2×12×3-3=922. 因为小红的年龄比小明的年龄的2倍少4岁,所以小红的年龄为(2m-4)岁, 又因为小华的年龄比小红的年龄的21还多1岁, 所以小华的年龄为[21(2m-4)+1]岁, 则这三名同学的年龄的和为:m+(2m-4)+[21(2m-4)+1]=m+2m-4+(m-2+1)=4m-5(岁), 答:这三名同学的年龄的和是(4m-5)岁23.根据题意,得A=a 2+3a-1+2a 2-a+5=3a 2+2a+4.这两个多项式的差应该是(3a 2+2a+4)-(2a 2+a-5)=3a 2+2a+4-2a 2-a+5=a 2+a+9.24.(1)阴影部分的面积为21b 2+21a(a+b). (2)当a=3,b=5时,21b 2+21a(a+b)=21×25+21×3×(3+5)=249,即阴影部分的面积为249.25.(1)C(2)因为x2+2y=5,所以原式=3(x2+2y)-21=15-21=-6(3)因为a-2b=3,2b-c=-5,c-d=10,所以原式=a-c+2b-d-2b+c=a-d=a-2b+2b-c+c-d=(a-2b)+(2b-c)+(c-d)=3-5+10=826.(1)2x-10 60-3x依题意,得y=12x+10(2x-10)+5(60-3x)=12x+20x-100+300-15x=17x+200(2)当x=10时,17x+200=17×10+200=370.答:若一等奖奖品买10件,共花费370元。
人教版七年级数学上册《第二章 整式的加减》单元测试卷-含参考答案

人教版七年级数学上册《第二章整式的加减》单元测试卷-含参考答案一、选择题1.下列多项式中,是二次三项式的是()A.-x2-y3B.x3-y3C.x2+2xy+y2D.x+y+72.下列各式:−15a2b2,12x−1,−25,1x,x−y2,a2−2ab,其中单项式的个数有()A.1个B.2个C.3个D.4个3.下列各组式子中,是同类项的为()A.2a与2b B.a2b与2ab2C.2ab与−3ba D.3a2b与a2bc 4.下列说法正确的是()A.4a3b的次数是3 B.多项式x2−1是二次三项式C.2a+b−1的各项分别为2a,b,1 D.−3ab2的系数是−35.下列各组中的两个项不属于...同类项的是()A.3x2y和−2x2y B.−xy和2yx C.-1和114D.a2和326.多项式x2−3kxy−3y2+13xy−8合并同类项后不含xy项,则k的值是()A.13B.16C.19D.07.下列计算正确的是()A.3a+2b=5ab B.5y2−2y=3yC.a+6a=6a2D.m2n−2nm2=−nm28.若2x2−3xy−1−(−x2−7xy+2)=Ax2−Bxy+C,则A,B,C的值分别为()A.3,4,3 B.1,10,1 C.3,4,-3 D.3,-4二、填空题9.若单项式−3ab的次数是.10.多项式3x2+x−22中的常数项是.11.计算-x2+ 2x2的结果是.12.若2x3y2和−x m y2是同类项,则m的值是.13.多项式2x3−5x2+x−1与多项式3x3+(2m−1)x2−5x+3的和不含x2项,则m=.三、解答题14.计算:(1)(x2﹣x+4)+(2x﹣4+3x2);(2)6ab﹣2a2b2+4+3ab2﹣(2+6ab﹣2a2b2).15.若关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是2,求m2+n3的值.16.先化简,再求值.2(x3−2y2)−(x−2y)−(x−4y2+2x3),其中x=−2,y=3.17.先化简,再求值:已知和(1)化简.(2)当,时,求的值.18.小丽放学回家后准备完成下面的题目:化简,发现系数“□”印刷不清楚.(1)她把“□”猜成3,请你化简;(2)她妈妈说:你猜错了,我看到该题的标准答案是6.请通过计算说明题中“□”是几.参考答案1.C2.B3.C4.D5.D6.C7.D8.D9.210.-111.x212.313.314.解:(1)原式=x2﹣x+4+2x﹣4+3x2=4x2+x.(2)原式=6ab﹣2a2b2+4+3ab2﹣2﹣6ab+2a2b2=6ab﹣6ab﹣2a2b2+2a2b2+3ab2﹣2+4=3ab2+2.15.解:∵关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是3,∴m+1=2,﹣n=2,解得:m=1,n=﹣2,∴m2+n3=1﹣8=﹣7.16.解:原式=2x3−4y2−x+2y−x+4y2−2x3=−2x+2y当x=−2,y=3时,原式=−2×(−2)+2×3=4+6=10.17.(1)解:(2)解:把,代入得:18.(1)解:;(2)解:设“□”是a∵标准答案是6∴.解得.∴题中“□”是5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 整式的加减 单元测试题
一、选择题(每小题3分,共30分)
1.在代数式:n 2,33-m ,22-,3
2
m -,22b π中,单项式的个数有( ) A. 1个 B.2个 C.3个 D.4个
2.下列语句正确的是( )
A .中一次项系数为-2
B .是二次二项式
C .是四次三项式
D .
是五次三项式 3.下列各组中的两项,属于同类项的是( )
A. y x 22-与2xy
B.5y x 2与—0.5z x 2
C.3mn 与—4nm
D.-05
.ab 与abc 4.单项式-3
22
4c ab 的系数与次数分别是( ) A. -2, 6 B.2, 7 C.-32, 6 D.-3
2, 7 5.下列合并同类项正确的是( )
A. 325a b ab +=
B.770m m -=
C.33622ab ab a b +=
D.-+=a b a b ab 222
6.)]([c b a ---去括号应得()
A. c b a -+-
B.c b a +--
C.c b a ---
D.c b a ++-
7.一个长方形的一边长是b a 32+,另一边的长是b a +,则这个长方形的周长是( )
A .b a 1612+ B.b a 86+ C.b a 83+ D.b a 46+
8.化简)2()2()2(++---x x x 的结果等于( )
A .63-x B.2-x C.23-x D.3-x
9.已知235x x ++的值为7,那么代数式2392x x +-的值是( )
A .0
B .2
C .4
D .6
10.下列判断:(1)π2xy -
不是单项式;(2)3y x -是多项式;(3)0不是单项式;(4)x
x +1是整式,其中正确的有( ) A .1个 B .2个 C .3个 D .4个
二、填空(每小题3分,共24分)
11.25ab π-的系数是_____________.
12.多项式223x x -+是_______次________项式.
13.一个多项式加上22x x -+-得21x -,则此多项式应为_________.
14.如果-13
m x y 与221n x y +是同类项,则m=_______,n=________. 15. 已知a 是正数,则=-a a 73 __________.
16.张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入__________元.
17.当1-=x 时,代数式k x x --42的值为0,则当3=x 时,这个代数式的值是__________.
18.观察下面的单项式:
4328,4,2,x x x x --……
根据你发现的规律,写出第6个式子是 ,第n 个式子是__________.
三、解答题(共46分)
19.化简(每小题5分,共20分)
(1))69()3(522x x x +--++-.(2))34()135(232a a a a --+-.
(3)-32009)2
14(2)2(++--y x y x (4)-[]12)1(32--+--n m m
20.化简求值(每小题6分,共12分)
(1))]21(3)13(2[22222x x x x x x -------其中:2
1=
x
(2))22()(3)2(2222222b a ab b a ab b a ab -+---其中:1,2==b a
21.(7分)一位同学做一道题:已知两个多项式A 、B ,计算2A+B ,他误将“2A+B•”看成“A+2B ”求得的结果为2927x x -+,已知232B x x =+-,求2A+B 的正确答案.
22.(7分)如图所示,是两种长方形铝合金窗框已知窗框的长都是y 米,窗框宽都是x 米,若一用户需(1)型的窗框2个,(2)型的窗框5个,则共需铝合金多少米?
附加题.阅读下列解题过程,然后答题:
已知如果两个数互为相反数,则这两个数的和为0,例如,若x 和y 互为相反数,则必有x+y=0.
(1)已知:|a |+a=0,求a 的取值范围.
(2)已知:|a-1|+(a-1)=0,求a 的取值范围.
第二章 整式的加减 (答案)
一.选择题;
1---5 CACDB 6---10 ABCCA
二.填空题;
11. -5π 12.二,三 13.221x x -+14. 2, 0 15. -4a 16. 0.3b-0.2a
17. -8 18. 632x -,
n n x 11n 21--+)( 三.解答题;
19. (1)435-2++x x (2) -4a 3+5a+1 (3)-14x +2y +2009 (4)m -3n +4
20.(1)51262--x x -
2
19(2)b a ab 223- -10 21. A=7x 2-8x+11 2A+B=15x 2-13x+20 22. )1416()22(5)23(2y x y x y x +=+++米
附加题:(1)a ≤0,(2)a ≤1。