七年级数学整式的加减知识点
七年级数学整式的加减-知识点总结

整式的加减---知识总结4.1整式 单项式定义:表示数或字母的积的代数式(单独的一个数或一个字母也是单项式) 系数:单项式中的数字因数(包括它前面的符号;单项式的系数是1或-1时,1通常不写;当单项式的系数是带分数时,通常写成假分数)次数:一个单项式中,所有字母的指数的和(单项式的系数只与字母有关,且是所有字母的指数之和,与系数无关)注意:(1)单项式中不含加减运算,只含字母与字母或数与字母的乘法(包括乘方)运算(2)分母中含有字母的式子不是单项式(3)n 是常数,在单项式中相当于数字因数(4)定义中的“数”可以是小数,也可以是分数或整数(5)常数没有系数,圆周率x 是常数,单项式中出现x 时,要将其看成系数(6)单独一个字母的次数是1,而不是0.如单项式b 的次数是1,而不是0判断一个式子是不是单项式,关键看两点:一是式子中是否只有乘法运算(包括乘方运算);二是式子的分母中是否只有数字.二者有一项不符合,则不为单项式.多项式定义:几个单项式的和项:多项式中的每个单项式常数项:多项式不含字母的项次数:多项式中次数最高的次数注意:1.一个式子是多项式需具备两个条件:(1)式子中含有运算符号“+”或“-”(2)分母中不含有字母2.识别多项式的各项时,应连同它们前面的符号一起进行识别,特别注意当项的符号为负号时,一定不要将其漏掉.3.多项式的次数不能看成是多项式中各项的次数的和4.一个多项式最高次项的次数是几次、含有几项就叫几次几项式.整式整式:单项式和多项式统称为整式注意:1.判断一个式子是否为整式,就是判断一个式子是否为单项式或多项式;2.单项式、多项式都是整式,所以整式可能是单项式,也可是多项式知识点1 知识点2 知识点34.2整式的加法与减法 同类项定义:所含字母相同,并且相同字母的指数也相同(几个常数项也是同类型)1.判断同类项时的“两相同,两无关”:(1)两相同:①所含字母相同;②相同字母的指数相同.(2)两无关:①与系数无关;②与字母的排列顺序无关.2.同类项不一定是两项,也可以是三项、四项等,但至少为两项合并同类项定义:把多项式中的同类项合并成一项.合并同类项后,所得项的系数是合并前各同类项的合并同类项的方法系数的和,字母连同它的指数不变.“一相加,两不变”,就是把同类项的系数相加,字母不变,字母的指数不变。
人教版七年级数学上册第二章 整式的加减知识点归纳

人教版七年级数学上册第二章 整式的加减知识点归纳1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式系数:单项式中不为零的数字因数,叫单项式数字系数,简称单项式的系数;3.单项式的次数:单项式中所有字母的指数的和,叫单项式的次数.4.多项式:几个单项式的和叫做多项式。
5.多项式的项与项数:多项式中每个单项式叫多项式的项; 不含字母的项叫做常数项。
多项式里所含单项式的个数就是多项式的项数;6.多项式的次数:多项式里,次数最高项的次数叫多项式的次数;常数项的次数为0注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式.7.多项式的升幂排列:把一个多项式的各项按某个字母的指数从小到大排列起来,叫做按这个字母的升幂排列。
多项式的降幂排列:把一个多项式的各项按某个字母的指数从大到小排列起来,叫做按这个字母的降幂排列。
(注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.8.整式:单项式和多项式统称为整式,即凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.9.整式分类: . ( 注意:分母上含有字母的不是整式。
)⎩⎨⎧多项式单项式整式10.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.11.合并同类项法:各同类项系数相加,所得结果作为系数,字母和字母指数不变。
12.去括号的法则:(原理:乘法分配侓)(1)括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;(2)括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项的符号都要改变。
13.添括号的法则:(1)若括号前边是“+”号,括号里的各项都不变号;(2)若括号前边是“-”号,括号里的各项都要变号.14. 整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项;整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.整式加减的步骤:(1)列出代数式;(2)去括号;(3)添括号(4)合并同类项。
初一数学知识点整式的加减

初一数学知识点整式的加减
数学知识点整式的加减1.单项式:在代数式中,假定只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中一切字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;留意:(假定a、b、c、p、q是常数)ax2+bx+c和x2+px+q是罕见的两个二次三项式.
5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.
整式分类为:.
6.同类项:所含字母相反,并且相反字母的指数也相反的单项式是同类项.
7.兼并同类项法那么:系数相加,字母与字母的指数不变.
8.去(添)括号法那么:去(添)括号时,假定括号前边是+号,括号里的各项都不变号;假定括号前边是-号,括号里的各项都要变号.
9.整式的加减:整式的加减,实践上是在去括号的基础上,
把多项式的同类项兼并.
10.多项式的升幂和降幂陈列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)陈列起来,叫做按这个字母的升幂陈列(或降幂陈列).留意:多项式计算的最后结果普通应该停止升幂(或降幂)陈列.。
初中数学知识点七年级上册 整式的加减

初中数学知识点七年级上册整式的加减1、单项式:数字与字母的积或者字母与宇母的积。
一个单独的数字或者具体的数字也是单项式。
注意:数宇与字母或者字母与字母相乘时乘号省略不写,且把数字写在字母的前面。
2、单项式的系数:单项式中的数字蛋数。
如果在一个单项式中没有出现具体的数字,则它的系数是1例如:xy 它的系数是1,-n它的系数是-1•常数项(具体的数宇)的系数就是它本身,例如:3的系数就是了,π的系数就是π。
π是一个常数(具体的数字),不是字母。
3、单项式的次数:单项式中所以字母指数的和。
例如:6xy 的次数是2次,3m2n3的次数是5 次,33X2Y的次数是3次。
常数(具体的数宇)的次数是0次,例如:3的次数就是0,π的次数是0。
4、多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的项叫常数项。
例如:多项式2XY2- 2M + 3Y一4是由单项式2xy2、— 2M、3Y、一7相加组成,所以2XY2、一2m、3y、一7就是多项式2XY2—2M+3Y—4的项,一7就是常数项。
5、多项式的次数:多项式中次数最高项的次数。
要求一个多项式的次数,应该先求出它的每一个项的次数,然后再看哪个项的次数最高,那么次数最高项的次数就是这个多项式的次数。
其中次数最高的项叫最高次项,例如:多项式2XY2—2M+3Y—4,2XY2的次数是3次,—2M的次数是1次,3Y的次数是1次,—7的次数是0次,所以2xy2的次数最高,那么2xy2就是最高次项,则这个多项式的次数就是3次。
6、整式:多项式和单项式统称为整式。
如果一个式子的分母中出现了字母(π除外),那么它就不是整式(即它不是单项式,也不是多项式)。
7、同类项:含有相同的字母且相同字母的指数也相同的项叫做同类项,例如—3M3N2和5N2M3是同类项,因为这两个项中都含有字母M、N,并且字母M的指数都是3,字母N的指数都是2,所以他们是同类项。
同类项与系数和字母的顺序无关,只与字母和字母的指数有关。
七年级整式的加减知识点

七年级整式的加减知识点整式是由常数、变量及它们的积或幂次积,以及它们的和或差组成的代数式。
整式的加减是初中阶段数学中基础且重要的知识点,本文将从整式的定义、基本概念、加减法规则等方面,为大家详细介绍七年级整式的加减知识点。
一、整式的定义及基本概念1. 整式的定义:由常数和变量的积、幂以及它们的和或差组成的关于变量的代数式。
例如:2xy+3y-5a²b+4ab²+a²b+2a²b²2. 同类项:整式中,含有相同的字母和相同的次数的代数式称为同类项。
例如:2xy, 5xy, -9xy都是同类项;4a²b², -3a²b², 2a²b²也都是同类项。
3. 非同类项:整式中,不是同类项的代数式称为非同类项。
例如:2xy, 5xz, -9y都是非同类项;4a²b, -3h²j, 2cd也都是非同类项。
二、整式的加法原则两个整式相加,将它们的同类项合并在一起,非同类项则保留原样。
具体来说,可按如下方法进行:1. 去括号:如果有括号,先把括号去掉。
例如:(3x + 4y) + (2x - 5y) = 3x + 4y + 2x - 5y2. 合并同类项:把其中相同的项相加或相减,并保留非同类项。
例如:3x + 4y + 2x - 5y = 5x - y三、整式的减法原则整式相减时,也是先合并同类项,再保留非同类项。
具体来说,可按如下方法进行:1. 按一般加法步骤准备整式,要注意被减式的所有项都要取相反数。
例如:(5x² - 3x + 2) - (2x² - 4x + 1) = 5x² - 3x + 2 + (-2x² + 4x - 1)2. 合并同类项。
例如:5x² - 3x + 2 + (-2x² + 4x - 1) = 3x² + x + 1四、整式加减混合运算整式加减混合运算是指在同一道题目中,既有整式的加法运算,又有整式的减法运算。
七年级数学整式的加减

七年级数学整式的加减【原创实用版】目录1.整式的概念2.整式的加减运算法则3.整式的加减运算实例4.整式的加减运算技巧和方法5.整式的加减运算在实际问题中的应用正文一、整式的概念整式是指由常数、变量和它们的积或和所组成的代数式,其中变量的次数是非负整数。
整式是代数学的基本对象之一,它在数学的各个领域中都有广泛的应用。
二、整式的加减运算法则整式的加减运算是指将两个或多个整式按照一定的规则进行合并。
整式的加减运算法则主要包括以下几点:1.同类项相加减:同类项是指具有相同变量和相同次数的项,例如 3x 和 2x 就是同类项,而 3x 和 2y 就不是同类项。
在进行整式的加减运算时,我们只需要将同类项的系数相加减,变量和次数保持不变。
2.合并同类项:将所有同类项的系数相加减,得到一个新的系数,然后将新的系数与原变量和次数组合成新的项。
3.保持变量和次数不变:在进行整式的加减运算时,我们只能改变项的系数,不能改变变量和次数。
三、整式的加减运算实例例如,对于整式 3x+2y-5x+y,我们可以按照以下步骤进行加减运算:1.找出同类项:3x 和 -5x 是同类项,2y 和 y 也是同类项。
2.合并同类项:3x 和 -5x 的和为 -2x,2y 和 y 的和为 3y。
3.将新的同类项组合成新的整式:-2x+3y。
四、整式的加减运算技巧和方法在进行整式的加减运算时,我们可以使用以下一些技巧和方法,以提高运算效率和准确性:1.先找出同类项,再进行加减运算。
2.使用括号将整式分组,以避免运算错误。
3.先化简每个括号内的整式,再进行加减运算。
五、整式的加减运算在实际问题中的应用整式的加减运算在实际问题中有广泛的应用,例如在物理、化学、经济等领域的问题中,我们常常需要对一些变量进行加减运算,以得到新的变量或结果。
七年级整式加减知识点

七年级整式加减知识点在七年级数学课程中,整式加减是重要的基础知识点。
掌握了整式加减,对学习其他数学知识也会产生积极的影响。
下面,本文将介绍七年级整式加减的一些基本知识点。
一、整式的基本概念整式是指由常数和各种字母乘方及它们的积的和构成的代数式。
比如,x + 3、2x² - 5x + 1、y³ + 2y² - y 等都是整式。
二、同类项的概念同类项是指只有字母的指数不同的代数式。
例如,3x²和-2x²是同类项,因为它们都只有x的平方,并且它们的系数不同。
三、整式的加减整式的加减实际上就是把同类项合并起来,得到简化的整式。
比如,对于3x² + 2xy - 5x² + 3xy + 7,我们可以先把同类项3x²和-5x²合并,把同类项2xy和3xy合并,得到-2x² + 5xy + 7。
四、加减的练习方法对于初学者来说,整式的加减并不是一件容易的事情。
因此,我们需要进行一些练习,以提高我们的能力。
1.练习识别同类项。
在练习中,我们需要将不同的整式拆分成同类项,然后再进行合并。
2.练习合并同类项。
在练习中,我们需要手动计算每个同类项的系数,然后再把它们相加或相减。
3.练习整理整式。
在练习中,我们需要把整式溯源到它最简单的形式,也就是没有括号和乘积的形式。
五、常见的错误在学习整式加减过程中,有一些常见的错误需要注意:1.错误识别同类项。
如果我们没有正确地识别同类项,我们就无法正确地计算整式。
2.错误加减系数。
如果我们没有正确地计算系数,我们就会得到错误的结果。
3.错误理解复杂的整式。
在处理复杂的整式时,我们需要仔细分析它们,并考虑清楚每个步骤的细节。
总之,七年级的整式加减是数学的基本知识,它对学习其他数学知识也是至关重要的。
我们需要了解整式的基本概念和概念,练习合并同类项,并避免常见的错误。
只有通过反复练习,我们才能提高自己的技能。
七年级数学整式的加减的知识点

七年级数学整式的加减的知识点数学整式的加减是中学数学中非常基础的一部分内容。
整式是指由单项式相加或相减而得到的代数式。
整式的加减可以说是计算整式的基础,也是后续高阶计算的基础,因此,掌握好七年级数学整式的加减知识点是非常重要的。
本文将从整式的定义及性质、加减的基本法则、加减的特殊情况等方面全面介绍七年级数学整式的加减知识点。
一、整式的定义及性质整式不是单项式,而是由单项式相加或相减得到的代数式,通式为f(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0,其中a_n,a_{n-1},……,a_0为常数,n为非负整数。
整式中变量的最高指数n叫做整式的次数。
整式的次数与单项式不同,可以是0次,也可以是0次以上的整数次。
两个整式相等,当且仅当它们的各项系数相等,次数相等。
二、加减的基本法则整式的加减与数的加减相似,只需将同类项合并,并对各项常数进行相加或相减。
整式相加减的基本法则如下:1、同类项相加减同类项是指具有相同变量的指数的项,例如,对于整式F(x)=3x^2+4x+1和G(x)=2x^2+2x+2,它们的同类项分别为3x^2和2x^2、4x和2x、1和2。
将同类项相加减,可以得到下列结果:F(x)+G(x)=(3+2)x^2+(4+2)x+(1+2)=5x^2+6x+3F(x)-G(x)=(3-2)x^2+(4-2)x+(1-2)=x^2+2x-12、去括号在整式中进行加减运算时,需要先将括号内各项进行相加减,再将相加减得到的整式与括号外面的整式进行相加减。
具体地说,可以运用“分配律”和“结合律”的规则,将括号内的数先乘以括号前的数,再进行加减运算。
举个例子,对于整式F(x)=(2x+4)(3x-2),先用“分配律”将整式展开,得到:F(x)=2x(3x-2)+4(3x-2)=6x^2-4x+12x-8=6x^2+8x-83、合并同类项在计算加减时,需要将同类项合并,得到一个简化的整式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的加减
1.都是数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。
2.单项式中的数字因数叫做这个单项式的系数。
3.一个单项式中,所有字母的指数的和叫做这个单项式的次数。
4.几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
5.多项式里次数最高项的次数,叫做这个多项式的次数。
6.把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
7.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
8.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
9.一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。