高中物理人造卫星变轨问题专题
高中物理人造卫星变轨问题专题

人造卫星变轨问题专题(一) 人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供..轨道半径r 确定后;与之对应的卫星线速度r GM v =、周期GM r T 32π=、向心加速度2r GMa =也都是唯一确定的..如果卫星的质量是确定的;那么与轨道半径r 对应的卫星的动能E k 、重力势能E p 和总机械能E 机也是唯一确定的..一旦卫星发生了变轨;即轨道半径r 发生变化;上述所有物理量都将随之变化E k 由线速度变化决定、E p 由卫星高度变化决定、E 机不守恒;其增减由该过程的能量转换情况决定..同理;只要上述七个物理量之一发生变化;另外六个也必将随之变化..(二) 常涉及的人造卫星的两种变轨问题1. 渐变由于某个因素的影响使原来做匀速圆周运动的卫星的轨道半径发生缓慢的变化逐渐增大或逐渐减小;由于半径变化缓慢;卫星每一周的运动仍可以看做是匀速圆周运动..解决此类问题;首先要判断这种变轨是离心还是向心;即轨道半径r 是增大还是减小;然后再判断卫星的其他相关物理量如何变化..1) 人造卫星绕地球做匀速圆周运动;无论轨道多高;都会受到稀薄大气的阻力作用..如果不及时进行轨道维持即通过启动星上小型发动机;将化学能转化为机械能;保持卫星应具有的状态;卫星就会自动变轨;偏离原来的圆周轨道;从而引起各个物理量的变化..这种变轨的起因是阻力..阻力对卫星做负功;使卫星速度减小;卫星所需要的向心力r mv 2减小了;而万有引力2r GMm的大小没有变;因此卫星将做向心运动;即轨道半径r 将减小..由基本原理中的结论可知:卫星线速度v 将增大;周期T 将减小;向心加速度a 将增大;动能E k 将增大;势能E p 将减小;有部分机械能转化为内能摩擦生热;卫星机械能E 机将减小..为什么卫星克服阻力做功;动能反而增加了呢 这是因为一旦轨道半径减小;在卫星克服阻力做功的同时;万有引力即重力将对卫星做正功..而且万有引力做的正功远大于克服空气阻力做的功;外力对卫星做的总功是正的;因此卫星动能增加..根据E机=E k+E p;该过程重力势能的减少总是大于动能的增加..2)有一种宇宙学的理论认为在漫长的宇宙演化过程中;引力常量G是逐渐减小的..如果这个结论正确;那么环绕星球将发生离心现象;即环绕星球到中心星球间的距离r将逐渐增大;环绕星球的线速度v将减小;周期T将增大;向心加速度a将减小;动能E k将减小;势能E p将增大..2.突变短时间启动飞行器上的发动机;使飞行器轨道发生突变;使其进入预定的轨道..1)发射同步卫星时;可以先将卫星发送到近地轨道Ⅰ;使其绕地球做匀速圆周运动;速率为v1;变轨时在P点点火加速;短时间内将速率由v1增加到v2;使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点Q时的速率为v3;此时进行第二次点火加速;在短时间内将速率由v3增加到v4;使卫星进入同步轨道Ⅲ;绕地球做匀速圆周运动..例题1. 某人造卫星运动的轨道可近似看作是以地心为中心的圆.由于阻力作用;人造卫星到地心的距离从r 1慢慢变到r 2;用E Kl .E K2分别表示卫星在这两个轨道上的动能;则A.r 1<r 2;E K1<E K2B.r 1>r 2;E K1<E K2C.r 1<r 2;E K1>E K2D.r 1>r 2;E K1>E K22. 1飞船在椭圆轨道1上运行;Q 为近地点;P 为远地点;当飞船运动到P 点时点火;使飞船沿圆轨道2运行;A .飞船在QB .飞船在PC .飞船在轨道1上P的速度小于在轨道2上P 的速度D .飞船在轨道1上P 的加速度大于在轨道2上P 的加速度 2假设由于飞船的特殊需要;美国的一艘原来在圆轨道运行的飞船前往与之对接;则飞船一定是A .从较低轨道上加速B .从较高轨道上加速C .从同一轨道上加速D .从任意轨道上加速3. 航天飞机在完成对哈勃太间望远镜的维修任务后;在A 点短时A间开动小型发动机进行变轨;从圆形轨道Ⅰ进入椭圆道Ⅱ;B 为轨道Ⅱ上的一点;如图所示..下列说法中正确的有A.在轨道Ⅱ上经过A的机械能大于经过B的机械能B.在A点短时间开动发动机后航天飞机的动能增大了C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度4.我国成功实施了“神舟”七号的载入航天飞行;并实现了航天员首次出舱..飞船先沿椭圆轨道飞行;后在远地点343千米处点火加速;把飞船运行轨道由椭圆轨道变成离地面高度为343千米的圆轨道;在此圆轨道上飞船运行周期约为90分钟..下列正确的是A.飞船变轨前后的机械能相等B.飞船在圆轨道上时航天员出舱前后都处于超重状态C.飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度1.B2.BC A3.C4.C。
高中物理卫星变轨问题

作业:
C 卫星在轨道1上经过Q点时的加速度
大于它在轨道2上经过Q点时的加速度 D 卫星在轨道2上经过P点时的加速度 等于它在轨道3上经过P点时的加速度
p
1 23 Q
❖ 卫星变轨
练习如图所示;a b c是在地球大气层外圆形轨道上运行的3颗
人造卫星;下列说法正确的是:
A b c的线速度大小相等;且大于a的线速度 B b c的向心加速度大小相等;且大于a的向心加速度 C c加速可追上同一轨道上的b;b减速可等到同一轨道上的c D a卫星由于某种原因;轨道半径缓慢减小;其线速度将变小
卫星在圆轨 道运行速度
V1
R
1
2
V2
mv12 r
G
Mm r2
F引
θ>900
v 减小
卫星变轨原理
r
v3
F引
椭圆mv32 r
GMr2m
使
卫
星
进
v4
入
更
v3
高
轨
道
做
圆
周
运 动
使卫星 v4, 加m 使 速 r42v到 GM r2 m
卫 星 的 回 收
❖ 卫星变轨
卫星如何变轨 以发射同步卫星为例;先进入一
专题 万有引力定律的应用
1 卫星比较问题 2 卫星变轨 问题
两颗人造地球卫星;都在圆形轨道上运行;它 们的质量相等;轨道半径不同;比较它们的向心加 速度an 线速度v 角速度ω 周期T
地球
计算中心天体的质量M 密度ρ
1某星体m围绕中心天体M做圆 周运动的周期为T;圆周运动
的轨道半径为r
M
4 2r3
练习发射地球同步卫星时;先将卫星发射至近地圆轨道1;然后
卫星运动的三类问题-高考物理复习

图9
目录
研透核心考点
解析 火星和地球均绕太阳运动,由于火星与地球的
轨道半径之比约为 3∶2,根据开普勒第三定律有rr3火 3地=
TT2火 2地,可得TT火 地=
rr3火 3地=23
3,故 2
A
错误;当火星与地球
相距最远时,两者的速度方向相反,此时两者相对速
度最大,故 B 正确;在星球表面,根据万有引力定律有 GMRm2 =mg,由于不知道 火星和地球的质量比和半径比,所以无法得出火星和地球表面的自由落体加速度
③两颗星的轨道半径与它们之间的距离关系为 r1+r2=L。
图5
目录
研透核心考点
④两颗星到圆心的距离 r1、r2 与星体质量成反比,即mm21=rr21。
⑤双星的运动周期 T=2π
L3
。
G(m1+m2)
⑥双星的总质量 m1+m2=4Tπ22GL3。
目录
研透核心考点
2.多星模型 所研究星体所受万有引力的合力提供做圆周运动的向心力,除中央星体外,各 星体的角速度或周期相同。常见的多星及规律:
Hale Waihona Puke 目录研透核心考点解析 根据开普勒第三定律知,卫星的轨道半长轴越大,周 期越大,故A正确;由开普勒第二定律知,卫星在近地点P的 速度大于在远地点Q的速度,故B错误;卫星在P点由圆轨道 变为椭圆轨道是离心运动,需要加速,故C正确;卫星从P点 运动到Q点的过程中,只有万有引力做功,卫星的机械能守 恒,故D错误。
进入椭圆轨道Ⅱ。
(3)在 B 点(远地点)再次点火加速进入圆形轨道Ⅲ。
目录
研透核心考点
2.对接 航天飞船与宇宙空间站的“对接”实际上就是两个做匀速圆周运动的物体追赶 问题,本质仍然是卫星的变轨运行问题。
专题六:卫星变轨问题问题的理解及相关问题的解决思路

P地球 Q 轨道1 轨道2 专题六:卫星变轨问题问题的理解及相关问题的解决思路1.假如一个作匀速圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作匀速圆周运动,则:A.根据公式,可知卫星运动的线速度将增大到原来的2倍。
B.根据公式,可知卫星所需的向心力将减小到原来的。
C.根据公式,可知地球提供的向心力将减小到原来的。
D.根据上述(B)和(C)中给出的公式,可知卫星运动的线速度将减小到原来的。
2. 发射地球同步卫星时,先将卫星发射至近地圆形轨道1,然后经点火使其沿椭圆轨道2运行,最后再次点火将卫星送入同步轨道3。
轨道1、2相切于P 点如图所示,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是( )A.卫星在轨道3上的运行速率大于轨道1上的速率B.卫星在轨道3上的角速度小于在轨道3上的角速度C.卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度D.卫星在椭圆轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度3.某人造地球卫星因受高空稀薄气体的阻力作用,绕地球运转的轨道会慢慢改变.某次测量中卫星的轨道半径为1r ,后来变为2r 且1r >2r 。
以1K E 、2K E 分别表示卫星在这两个轨道的动能.1T 、2T 分别表示卫星在这两个轨道绕地球运动的周期,则有 ( )A. 1K E <2K E 2T <1TB. 1K E <2K E 2T >1TC. 1K E >2K E 2T <1T D .1K E >2K E 2T >1T4.某人造卫星运动的轨道可近似看作是以地心为中心的圆.由于阻力作用,人造卫星到地心的距离从r 1慢慢变到r 2,用E Kl .E K2分别表示卫星在这两个轨道上的动能,则(A)r 1<r 2,E K1<E K2 (B)r 1>r 2,E K1<E K2 (C)r 1<r 2,E K1>E K2 (D)r 1>r 2,E K1>E K25.人造飞船首先进入的是距地面高度近地点为200km ,远地点为340km 的的椭圆轨道,在飞行第五圈的时候,飞船从椭圆轨道运行到以远地点为半径的圆行轨道上,如图所示,试处理下面几个问题(地球的半径R=6370km ,g=9.8m/s 2):(1)飞船在椭圆轨道1上运行,Q 为近地点,P 为远地点,当飞船运动到P 点时点火,使飞船沿圆轨道2运行,以下说法正确的是A .飞船在Q 点的万有引力大于该点所需的向心力B .飞船在P 点的万有引力大于该点所需的向心力C .飞船在轨道1上P 的速度小于在轨道2上P 的速度D .飞船在轨道1上P 的加速度大于在轨道2上P 的加速度(2)假设由于飞船的特殊需要,美国的一艘原来在圆轨道运行的飞船前往与之对接,则飞船一定是A .从较低轨道上加速B .从较高轨道上加速C .从同一轨道上加速D .从任意轨道上加速6.发射地球同步卫星时,先将卫星发射到近地圆轨道1,然后点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送人同步圆轨道3。
高中物理必修二科学思维系列(一)——卫星变轨及飞船对接问题

核心素养提升微课堂科学思维系列(一)——卫星变轨及飞船对接问题1.变轨原理及过程人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图所示.(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.(2)在A点点火加速,速度变大,进入椭圆轨道Ⅱ.(3)在B点(远地点)再次点火加速进入圆轨道Ⅲ.2.卫星变轨问题分析方法(1)速度大小的分析方法.①卫星做匀速圆周运动经过某一点时,其速度满足GMm r2=m v2r即v=GMr.以此为依据可分析卫星在两个不同圆轨道上的速度大小.②卫星做椭圆运动经过近地点时,卫星做离心运动,万有引力小于所需向心力:GMmr2<m v2r.以此为依据可分析卫星沿椭圆轨道和沿圆轨道通过近地点时的速度大小(即加速离心).③卫星做椭圆运动经过远地点时,卫星做近心运动,万有引力大于所需向心力:GMmr2>m v2r.以此为依据可分析卫星沿椭圆轨道和沿圆轨道通过远地点时的速度大小(即减速近心).④卫星做椭圆运动从近地点到远地点时,根据开普勒第二定律,其速率越来越小.以此为依据可分析卫星在椭圆轨道的近地点和远地点的速度大小.(2)加速度大小的分析方法:无论卫星做圆周运动还是椭圆运动,只受万有引力时,卫星的加速度a n=Fm=G M r2.3.飞船对接问题(1)低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.【典例】“嫦娥三号”探测器由“长征三号乙”运载火箭从西昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察,“嫦娥三号”的飞行轨道示意图如图所示.假设“嫦娥三号”在环月段圆轨道和椭圆轨道上运动时,只受到月球的万有引力,则以下说法正确的是()A.若已知“嫦娥三号”环月段圆轨道的半径、运动周期和引力常量,则可以计算出月球的密度B.“嫦娥三号”由环月段圆轨道变轨进入环月段椭圆轨道时,应让发动机点火使其加速C.“嫦娥三号”在从远月点P向近月点Q运动的过程中,加速度变大D.“嫦娥三号”在环月段椭圆轨道上P点的速度大于Q点的速度【解析】根据“嫦娥三号”环月段圆轨道的半径、运动周期和引力常量可以求出月球的质量,但是由于不知道月球的半径,故无法求出月球的密度,A错误;“嫦娥三号”由环月段圆轨道变轨进入环月段椭圆轨道时,轨道半径减小,故应让发动机点火使其减速,B 错误;“嫦娥三号”在从远月点P 向近月点Q 运动的过程中所受万有引力逐渐增大,故加速度变大,C 正确;“嫦娥三号”在环月段椭圆轨道上运动时离月球越近速度越大,故P 点的速度小于Q 点的速度,D 错误.【答案】 C变式训练1 如图所示是“嫦娥三号”奔月过程中某阶段的运动示意图,“嫦娥三号”沿椭圆轨道Ⅰ运动到近月点P 处变轨进入圆轨道Ⅱ,“嫦娥三号”在圆轨道Ⅱ上做圆周运动的轨道半径为r ,周期为T ,已知引力常量为G ,下列说法正确的是( )A .由题中(含图中)信息可求得月球的质量B .由题中(含图中)信息可求得月球的第一宇宙速度C .“嫦娥三号”在P 处变轨时必须点火加速D .“嫦娥三号”沿椭圆轨道Ⅰ运动到P 处时的加速度大于沿圆轨道Ⅱ运动到P 处时的加速度解析:万有引力提供向心力,G Mm r 2=m 4π2T 2r ,得M =4π2r 3GT 2,故A 正确;万有引力提供向心力,G Mm ′R 2=m ′v 2R ,得v =GM R ,由于不知道月球半径,所以不能求得月球的第一宇宙速度,故B 错误;椭圆轨道和圆轨道是不同的轨道,“嫦娥三号”在P 点不可能自主改变轨道,只有在减速后,才能进入圆轨道,故C 错误;“嫦娥三号”沿椭圆轨道Ⅰ运动到P 处时和沿圆轨道Ⅱ运动到P 处时,所受万有引力大小相等,所以加速度大小也相等,故D 错误.答案:A变式训练2(多选)如图所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P点变轨,进入椭圆形转移轨道(该椭圆轨道的近地点为近地圆轨道上的P点,远地点为同步卫星圆轨道上的Q点),到达远地点Q时再次变轨,进入同步卫星轨道.设卫星在近地圆轨道上运行的速率为v1,在椭圆形转移轨道的近地点P点的速率为v2,沿转移轨道刚到达远地点Q时的速率为v3,在同步卫星轨道上的速率为v4,三个轨道上运动的周期分别为T1、T2、T3,则下列说法正确的是()A.在P点变轨时需要加速,Q点变轨时要减速B.在P点变轨时需要减速,Q点变轨时要加速C.T1<T2< T3D.v2>v1>v4>v3答案:CD变式训练3发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2 3相切于P点,如图所示,则当卫星分别在1、2、3轨道上正常运行时,以下说法不正确的是()A.要将卫星由圆轨道1送入圆轨道3,需要在圆轨道1的Q点和椭圆轨道2的远地点P分别点火加速一次B.由于卫星由圆轨道1送入圆轨道3点火加速两次,则卫星在圆轨道3上正常运行速度大于卫星在圆轨道1上正常运行速度C.卫星在椭圆轨道2上的近地点Q的速度一定大于7.9 k m/s,而在远地点P的速度一定小于7.9 km/sD .卫星在椭圆轨道2上经过P 点时的加速度一定等于它在圆轨道3上经过P 点时的加速度解析:从轨道1变轨到轨道2需在Q 处点火加速,从轨道2变轨到轨道3需要在P 处点火加速,故A 说法正确;根据公式GMm r 2=m v 2r 解得v =GMr ,即轨道半径越大,速度越小,故卫星在轨道3上正常运行的速度小于在轨道1上正常运行的速度,B 说法错误;第一宇宙速度是近地圆轨道环绕速度,即7.9 km/s ,轨道2上卫星在Q 点做离心运动,则速度大于7.9 km/s ,在P 点需要点火加速,则速度小于在轨道3上的运行速度,而轨道3上的运行速度小于第一宇宙速度,C 说法正确;卫星在椭圆轨道2上经过P 点时和在圆轨道3上经过P 点时所受万有引力相同,故加速度相同,D 说法正确.故选B.答案:B变式训练4 (多选)如图所示a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )A .b 、c 的线速度大小相等,且大于a 的线速度B .a 加速可能会追上bC .c 加速可追上同一轨道上的b ,b 减速可等到同一轨道上的cD .a 卫星由于某种原因,轨道半径缓慢减小,仍做匀速圆周运动,则其线速度将变大解析:因为b 、c 在同一轨道上运行,故其线速度大小、加速度大小均相等.又由b 、c 轨道半径大于a 轨道半径,v =GMr ,可知v b =v c <v a ,故A 错误;当a 加速后,会做离心运动,轨道会变成椭圆,若椭圆与b 所在轨道相切(或相交),且a 、b 同时来。
人教版(2019)必修第二册第七章万有引力与航天 专题 变轨与双星

专题 卫星变轨问题和双星问题班级 姓名 学号一、人造卫星的变轨问题 1.变轨问题概述 (1)稳定运行卫星绕天体稳定运行时,万有引力提供了卫星做圆周运动的向心力,即G Mmr 2=m v 2r.(2)变轨运行卫星变轨时,先是线速度v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.①当卫星减速时,卫星所需的向心力F 向=m v 2r减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变迁.②当卫星加速时,卫星所需的向心力F 向=m v 2r增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变迁. 2.实例分析同步卫星的发射、变轨问题如图所示,发射地球同步卫星时,先将卫星发射至近地圆轨道1,在Q 点点火加速做离心运动进入椭圆轨道2,在P 点点火加速,使其满足GMmr 2=m v 2r,进入同步圆轨道3做圆周运动.例1如图为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法中正确的是( ) A.卫星在轨道3上的速率大于在轨道1上的速率 B.卫星在轨道3上的周期大于在轨道2上的周期C.卫星在轨道1上经过Q 点时的速率大于它在轨道2上经过Q 点时的速率D.卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P 点时的加速度针对训练1航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图4所示.关于航天飞机的运动,下列说法中正确的有( ) A.在轨道Ⅱ上经过A 的速度小于经过B 点的速度 B.在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度 C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度二、双星问题1.双星模型(1)如图所示,宇宙中有相距较近、质量相差不大的两个星球,它们离其他星球都较远,其他星球对它们的万有引力可以忽略不计.在这种情况下,它们将围绕其连线上的某一固定点做周期相同的匀速圆周运动,通常,我们把这样的两个星球称为“双星”. (2)双星问题的特点①两星围绕它们之间连线上的某一点做匀速圆周运动,两星的运行周期、角速度相同. ②两星的向心力大小相等,由它们间的万有引力提供. ③两星的轨道半径之和等于两星之间的距离,即r 1+r 2=L .(3)双星问题的处理方法:双星间的万有引力提供了它们做圆周运动的向心力,即Gm 1m 2L 2=m 1ω2r 1,G m 1m 2L2=m 2ω2r 2.例2 两个质量不同的天体构成双星系统,它们以二者连线上的某一点为圆心做匀速圆周运动,下列说法正确的是( ) A.质量大的天体线速度较大 B.质量小的天体角速度较大 C.两个天体的向心力大小一定相等 D.两个天体的向心加速度大小一定相等针对训练2 两个靠得很近的天体,离其他天体非常遥远,它们以其连线上某一点O 为圆心各自做匀速圆周运动,两者的距离保持不变,科学家把这样的两个天体称为“双星”,如图所示.已知双星的质量分别为m 1和m 2,它们之间的距离为L ,引力常量为G ,求双星的运行轨道半径r 1和r 2及运行周期T .巩固训练1.2019年春节期间,中国科幻电影里程碑的作品《流浪地球》热播,影片中为了让地球逃离太阳系,人们在地球上建造特大功率发动机,使地球完成一系列变轨操作,其逃离过程如图所示,地球在椭圆轨道 Ⅰ 上运行到远日点B 变轨,进入圆形轨道 Ⅱ.在圆形轨道 Ⅱ 上运行到B 点时再次加速变轨,从而最终摆脱太阳束缚.对于该过程,下列说法正确的是( ) A.沿轨道 Ⅰ 运动至B 点时,需向前喷气减速才能进入轨道 Ⅱ B.沿轨道Ⅰ运行的周期小于沿轨道Ⅱ运行的周期C.沿轨道 Ⅰ 运行时,在A 点的加速度小于在B 点的加速度D.在轨道 Ⅰ 上由A 点运行到B 点的过程,速度逐渐增大2.如图所示,我国发射的“神舟十一号”飞船和“天宫二号”空间实验室于2016年10月19日自动交会对接成功.假设对接前“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( )A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室轨道半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室轨道半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接3.冥王星与其附近的另一星体卡戎可视为双星系统,冥王星与星体卡戎的质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动,由此可知,冥王星绕O 点运动的( ) A.轨道半径约为卡戎的17 B.角速度大小约为卡戎的17C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍4.1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图1所示,设卫星在近地点、远地点的速度分别为v 1、v 2,近地点到地心的距离为r ,地球质量为M ,引力常量为G .则( ) A.v 1>v 2,v 1=GM r B.v 1>v 2,v 1>GMr C.v 1<v 2,v 1=GMr D.v 1<v 2,v 1>GMr5.如图,“嫦娥三号”探测器经轨道 Ⅰ 到达P 点后经过调整速度进入圆轨道 Ⅱ,再经过调整速度变轨进入椭圆轨道 Ⅲ,最后降落到月球表面上.下列说法正确的是( ) A.“嫦娥三号”在地球上的发射速度大于11.2 km/s B.“嫦娥三号”由轨道Ⅰ经过P 点进入轨道Ⅱ时要加速C.“嫦娥三号”在轨道Ⅲ上经过P 点的速度大于在轨道Ⅱ上经过P 点的速度D.“嫦娥三号”稳定运行时,在轨道Ⅱ上经过P 点的加速度与在轨道Ⅲ上经过P 点的加速度相等6.(多选)如图所示,a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )A.b 、c 的线速度大小相等,且大于a 的线速度B.a 加速可能会追上bC.c 加速可追上同一轨道上的b ,b 减速可等到同一轨道上的cD.a 卫星由于某种原因,轨道半径缓慢减小,仍做匀速圆周运动,则其线速度将变大 7.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕其连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2,下列说法中正确的是( )A.m 1、m 2做圆周运动的线速度之比为3∶2B.m 1、m 2做圆周运动的角速度之比为3∶2C.m 1做圆周运动的半径为25LD.m 2做圆周运动的半径为25L8.中国自行研制、具有完全自主知识产权的“神舟号”飞船,目前已经达到或优于国际第三代载人飞船技术,其发射过程简化如下:飞船在酒泉卫星发射中心发射,由长征运载火箭送入近地点为A 、远地点为B 的椭圆轨道上,A 点距地面的高度为h 1,飞船飞行5圈后进行变轨,进入预定圆轨道,如图9所示.设飞船在预定圆轨道上飞行n 圈所用时间为t ,若已知地球表面重力加速度为g ,地球半径为R ,忽略地球的自转,求: (1)飞船在B 点经椭圆轨道进入预定圆轨道时是加速还是减速? (2)飞船经过椭圆轨道近地点A 时的加速度大小. (3)椭圆轨道远地点B 距地面的高度h 2. 参考答案例1 答案 B解析 卫星在圆轨道上做匀速圆周运动时有: G Mmr 2=m v 2r,v =GMr因为r 1<r 3,所以v 1>v 3,A 项错误, 由开普勒第三定律知T 3>T 2,B 项正确;在Q 点从轨道1到轨道2需要做离心运动,故需要加速. 所以在Q 点v 2Q >v 1Q ,C 项错误.在同一点P ,由GMmr 2=ma n 知,卫星在轨道2上经过P 点的加速度等于它在轨道3上经过P点的加速度,D 项错误. 针对训练1答案 ABC解析 在轨道Ⅱ上由A 点运动到B 点,由开普勒第二定律可得经过A 的速度小于经过B 的速度,A 正确;从轨道Ⅰ的A 点进入轨道Ⅱ需减速,使万有引力大于所需要的向心力,做近心运动,所以在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度,B 正确;根据开普勒第三定律R 3T 2=k ,椭圆轨道的半长轴小于圆轨道的半径,所以在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期,C 正确;在轨道Ⅱ上和在轨道Ⅰ上通过A 点时所受的万有引力相等,根据牛顿第二定律,加速度相等,D 错误. 例2 答案 C解析 双星系统的结构是稳定的,故它们的角速度相等,故B 项错误;两个星球间的万有引力提供向心力,根据牛顿第三定律可知,两个天体的向心力大小相等,而天体质量不一定相等,故两个天体的向心加速度大小不一定相等,故C 项正确,D 错误;根据牛顿第二定律,有:G m 1m 2L 2=m 1ω2r 1=m 2ω2r 2,其中:r 1+r 2=L 故r 1=m 2m 1+m 2L ,r 2=m 1m 1+m 2L ,故v 1v 2=r 1r 2=m 2m 1故质量大的天体线速度较小,故A 错误. 针对训练2答案 Lm 2m 1+m 2 Lm 1m 1+m 24π2L 3G (m 1+m 2)解析 双星间的万有引力提供了各自做圆周运动的向心力,对m 1:Gm 1m 2L 2=m 1r 1ω2, 对m 2:Gm 1m 2L2=m 2r 2ω2,且r 1+r 2=L ,解得r 1=Lm 2m 1+m 2,r 2=Lm 1m 1+m 2.由G m 1m 2L 2=m 1r 14π2T 2及r 1=Lm 2m 1+m 2得周期T =4π2L 3G (m 1+m 2).巩固训练 1.答案 B 2.答案 C解析 飞船在同一轨道上加速追赶空间实验室时,速度增大,所需向心力大于万有引力,飞船将做离心运动,不能实现与空间实验室的对接,选项A 错误;同时,空间实验室在同一轨道上减速等待飞船时,速度减小,所需向心力小于万有引力,空间实验室将做近心运动,也不能实现对接,选项B 错误;当飞船在比空间实验室半径小的轨道上加速时,飞船将做离心运动,逐渐靠近空间实验室,可实现对接,选项C 正确;当飞船在比空间实验室半径小的轨道上减速时,飞船将做近心运动,远离空间实验室,不能实现对接,选项D 错误. 3.答案 A解析 双星系统内的两颗星运动的角速度相等,B 错误.双星的向心力为二者间的万有引力,所以向心力大小相等,D 错误.根据m 1ω2r 1=m 2ω2r 2,得r 1r 2=m 2m 1=17,A 正确.根据v =ωr ,得v 1v 2=r 1r 2=17,C 错误. 4.答案 B解析 根据开普勒第二定律知,v 1>v 2,在近地点画出近地圆轨道,因为过近地点做匀速圆周运动的速度为v =GMr,由于“东方红一号”在椭圆轨道上运动,所以v 1>GMr,故B 正确.5.答案 D6.答案 BD解析 因为b 、c 在同一轨道上运行,故其线速度、加速度大小均相等.又由b 、c 轨道半径大于a 轨道半径,由v =GMr可知,v b =v c <v a ,故选项A 错;当a 加速后,会做离心运动,轨道会变成椭圆,若椭圆与b 所在轨道相切(或相交),且a 、b 同时来到切(或交)点时,a 就追上了b ,故选项B 正确;当c 加速时,c 受的万有引力F <m v c 2r c,故它将偏离原轨道,做离心运动,当b 减速时,b 受的万有引力F >m v b 2r b ,它将偏离原轨道,做近心运动,所以无论如何c 也追不上b ,b 也等不到c ,故选项C 错;对a 卫星,当它的轨道半径缓慢减小时,由v =GMr可知,r 减小时,v 逐渐增大,故选项D 正确. 7.答案 C解析 设双星m 1、m 2距转动中心O 的距离分别为r 1、r 2,双星绕O 点转动的角速度均为ω,据万有引力定律和牛顿第二定律得G m 1m 2L 2=m 1r 1ω2=m 2r 2ω2,又r 1+r 2=L ,m 1∶m 2=3∶2,所以可解得r 1=25L ,r 2=35Lm 1、m 2运动的线速度分别为v 1=r 1ω,v 2=r 2ω, 故v 1∶v 2=r 1∶r 2=2∶3.综上所述,选项C 正确. 8.答案 (1)加速 (2)gR 2(R +h 1)2 (3)3gR 2t 24n 2π2-R 解析 (2)在地球表面有mg =GMmR 2① 根据牛顿第二定律有:G Mm(R +h 1)2=ma A ②由①②式联立解得,飞船经过椭圆轨道近地点A 时的加速度大小为a A =gR 2(R +h 1)2.(3)由万有引力提供向心力,有G Mm (R +h 2)2=m 4π2T 2(R +h 2)③由题意可知,飞船在预定圆轨道上运行的周期为T =tn ④由①③④式联立解得h 2=3gR 2t 24n 2π2-R .。
专题强化训练二 卫星(近地、同步、极地)的宇宙航行运动规律与变轨问题

专题强化训练二:卫星(近地、同步、极地)的宇宙航行运动规律与变轨问题技巧归纳:人造卫星的变轨问题1.变轨问题概述 (1)稳定运行卫星绕天体稳定运行时,万有引力提供了卫星做圆周运动的向心力,即G Mmr 2=m v 2r .(2)变轨运行卫星变轨时,先是线速度大小v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.①当卫星减速时,卫星所需的向心力F 向=m v 2r 减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变轨.②当卫星加速时,卫星所需的向心力F 向=m v 2r 增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变轨. 2.实例分析 (1)飞船对接问题①低轨道飞船与高轨道空间站对接时,让飞船合理地加速,使飞船沿椭圆轨道做离心运动,追上高轨道空间站完成对接(如图甲所示).②若飞船和空间站在同一轨道上,飞船加速时无法追上空间站,因为飞船加速时,将做离心运动,从而离开这个轨道.通常先使后面的飞船减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度,如图乙所示.(2)卫星的发射、变轨问题如图发射卫星时,先将卫星发射至近地圆轨道1,在Q 点点火加速做离心运动进入椭圆轨道2,在P 点点火加速,使其满足GMmr 2=m v 2r,进入圆轨道3做圆周运动.一、单选题1.(2022·江苏省江都中学高三开学考试)据报道,一颗来自太阳系外的彗星擦火星而过。
如图所示,设火星绕太阳在圆轨道上运动,运动半径为r ,周期为T 。
该彗星在穿过太阳系时由于受到太阳的引力,轨道发生弯曲,彗星与火星在圆轨道的A 点“擦肩而过”。
已知万有引力常量G ,则( )A.可计算出火星的质量B.可计算出彗星经过A点时受到的引力C.可确定太阳分别对彗星和火星的引力在A点产生的加速度相等D.可确定彗星在A点的速度大小为2r vTπ=2.(2022·云南·昆明一中模拟预测)随着“嫦娥奔月”梦想的实现,我国不断刷新深空探测的“中国高度”。
2024年高考物理一轮复习(全国版) 第5章 专题强化7 卫星变轨问题 双星模型

例7 (多选)如图所示,质量相等的三颗星体组成三星系统,其他星体对
它们的引力作用可忽略.设每颗星体的质量均为m,三颗星体分别位于边
长为r的等边三角形的三个顶点上,它们绕某一共同的圆心O在三角形所
在的平面内以相同的角速度做匀速圆周运动.已知引力常量为G,下列说
法正确的是
A.每颗星体所需向心力大小为
m2 2G r2
1.双星模型
(1)定义:绕公共圆心转动的两个星体组成的系统,我们
称之为双星系统.如图所示.
(2)特点
①
各
自
所需的
向
心
力
由
彼此间
的
万
有
引力提
供
,
即
Gm1m2 L2
=
m1ω12r1
,
GmL12m2=m2ω22r2.
②两星的周期、角速度相同,即T1=T2,ω1=ω2.
③两星的轨道半径与它们之间的距离关系为r1+r2=L.
例4 北京时间2021年10月16日神舟十三号载人飞船与在轨飞行的天和核心舱 顺利实现径向自主交会对接,整个交会对接过程历时约6.5小时.为实现神舟十 三号载人飞船与空间站顺利对接,飞船安装有几十台微动力发动机,负责精 确地控制它的各种转动和平动.对接前飞船要先到达和空间站很近的相对静止 的某个停泊位置(距空间站200 m).为到达这个位置,飞船由惯性飞行状态转入 发动机调控状态,下列说法正确的是 A.飞船先到空间站同一圆周轨道上同方向运动,合适位置减速靠近即可 B.飞船先到与空间站圆周轨道垂直的同半径轨道上运动,合适位置减速靠近即可 C.飞船到空间站轨道下方圆周轨道上同方向运动,合适的位置减速即可
①G2Rm22+GRM2m=ma 向 ②GLm2 2×cos 30°×2=ma 向
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人造卫星变轨问题专题
(一) 人造卫星基本原理
绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。
轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GM r T 32π=、向心加速度
2r GM a =也都是唯一确定的。
如果卫星的质量是确定的,那么与轨道半径r 对应的卫星的动能E k 、重力势能E p 和总机械能E 机也是唯一确定的。
一旦卫星发生了变轨,即轨道半径r 发生变化,上述所有物理量都将随之变化(E k 由线速度变化决定、E p 由卫星高度变化决定、E 机不守恒,其增减由该过程的能量转换情况决定)。
同理,只要上述七个物理量之一发生变化,另外六个也必将随之变化。
(二) 常涉及的人造卫星的两种变轨问题
1. 渐变
由于某个因素的影响使原来做匀速圆周运动的卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。
解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径r 是增大还是减小,然后再判断卫星的其他相关物理量如何变化。
1) 人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。
如果不及时进行轨道维持(即通过启动星上小型发动机,将化学能转化为机械能,保持卫星应具有的状态),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。
这种变轨的起因是阻力。
阻力对卫星做负功,使卫星速度减小,卫星所需要的向心力r m v 2减小了,而万有引力2r GMm
的大小没有变,因此卫星将
做向心运动,即轨道半径r 将减小。
由基本原理中的结论可知:卫星线速度v 将增大,周期T 将减小,向心加速度a 将增大,动能E k 将增大,势能E p 将减小,有部分机械能转化为内能(摩擦生热),卫星机械能E 机将减小。
为什么卫星克服阻力做功,动能反而增加了呢?这是因为一旦轨道半径减小,
在卫星克服阻力做功的同时,万有引力(即重力)将对卫星做正功。
而且万有引力做的正功远大于克服空气阻力做的功,外力对卫星做的总功是正的,因此卫星动能增加。
根据E 机=E k +E p ,该过程重力势能的减少总是大于动能的增加。
2) 有一种宇宙学的理论认为在漫长的宇宙演化过程中,引力常量G 是逐渐减小的。
如果这个结论正确,那么环绕星球将发生离心现象,即环绕星球到中心星球间的距离r 将逐渐增大,环绕星球的线速度v 将减小,周期T 将增大,向心加速度a 将减小,动能E k 将减小,势能E p 将增大。
2. 突变 由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道。
1) 发射同步卫星时,可以先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v 1;变轨时在P 点点火加
速,短时间内将速率由v 1增加到v 2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点Q 时的速率为v 3;此时进
行第二次点火加速,在短时间内将速率由v 3增加到v 4,使
卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动。
例题
1. 某人造卫星运动的轨道可近似看作是以地心为中心的圆.由于阻力作用,人造卫
星到地心的距离从r 1慢慢变到r 2,用E Kl .E K2分别表示卫星在这两个轨道上的动能,则
A.r 1<r 2,E K1<E K2
B.r 1>r 2,E K1<E K2
C.r 1<r 2,E K1>E K2
D.r 1>r 2,E K1>E K2
2. (1)飞船在椭圆轨道1上运行,Q 为近地点,P 为远地点,当飞船运动到P 点时
点火,使飞船沿圆轨道2运行,以下说法正确的是( )
A .飞船在Q 点的万有引力大于该点所需的向心力
B .飞船在P 点的万有引力大于该点所需的向心力
C .飞船在轨道1上P 的速度小于在轨道2上P 的速度
D .飞船在轨道1上P 的加速度大于在轨道2上P 的加速度
(2)假设由于飞船的特殊需要,美国的一艘原来在圆轨道运行的飞船前往与之对接,则飞船一定是
A .从较低轨道上加速
B .从较高轨道上加速
C .从同一轨道上加速
D .从任意轨道上加速
3.航天飞机在完成对哈勃太间望远镜的维修任务后,在A点短时间开动小型发动机
进行变轨,从圆形轨道Ⅰ进入椭圆道Ⅱ,B为轨道Ⅱ上的一点,如图所示。
下列说法中正确的有
A.在轨道Ⅱ上经过A的机械能大于经过B的机械能Array B.在A点短时间开动发动机后航天飞机的动能增大了
A
C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期
D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度
4.我国成功实施了“神舟”七号的载入航天飞行,并实现了航天员首次出舱。
飞船
先沿椭圆轨道飞行,后在远地点343千米处点火加速,把飞船运行轨道由椭圆轨道变成离地面高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟。
下列正确的是( )
A.飞船变轨前后的机械能相等
B.飞船在圆轨道上时航天员出舱前后都处于超重状态
C.飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度
D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度
1. B
2.BC A
3. C
4. C。