《斜拉桥与悬索桥》

合集下载

斜拉桥和悬索桥的总体布置和结构体系

斜拉桥和悬索桥的总体布置和结构体系

主跨跨径
索 塔 高 度
索面形式(辐射式、竖琴式或扇式) 双塔:H/l2=0.18~0.25
拉索的索距
单塔:H/l2=0.30~0.45
拉索的水平倾角
6
拉索布置
斜拉索横向布置
空间布置形式
单索面
竖直双索面 双索面
倾斜双索面
7
拉索在平面内的布置型式
辐射式 竖琴式 扇式

拉索间距
早期:稀索
混凝土达 15m~30m 钢斜拉桥达 30m~50m
31
1)斜拉桥施工的理论计算
斜拉桥施工的理论计算方法主要有以下几种:1、倒拆法;2)正算法
倒拆法从斜拉桥成桥状态出发(即理想的恒载状态出发)用与实际施工 步骤相反的顺序,进行逐步倒退计算来获得各施工节段的控制参数,根据 这些参数对施工进行控制与调整,并按正装顺序施工。
正算法是按斜拉桥的施工顺序,依次计算出各施工节段架设时的内力和 位移。并依据一定的计算原则,选定相应的计算参数作为未知变量,通过 求解方程得到相应的控制参数。
1)主梁的边跨和主跨比 2) 主梁端部处理 3) 主梁高度沿跨长的变化
混凝土主梁横截面形式
1)实体双主梁截面;2)板式边主梁截面;3)分 离双箱截面;4)整体箱形截面;5)板式梁截面
双索面钢主梁横截面形式
双主梁、单箱单室钢梁、两个单箱单室钢梁、 多室钢梁和钢桁梁
21
3、主梁构造特点(续)
主要尺寸拟定
混凝土斜拉桥的拉索一般为柔性索,高强钢丝外包的索套仅作为保护材 料,不参加索的受力,在索的自重作用下有垂度,垂度对索的受拉性能有影 响,同时索力大小对垂度也有影响。 为了简化计算,在实际计算中索一般采 用一直杆表示,以索的弦长作为杆长。关健 问题是考虑索垂度效应对索的伸长与轴力的 关系影响,这种影响采用修正弹性模量来考 虑。

中班悬索桥和斜拉桥课后反思

中班悬索桥和斜拉桥课后反思

中班悬索桥和斜拉桥课后反思
1. 悬索桥和斜拉桥是常见的桥梁类型,都采用了悬挂索的结构。

悬索桥可以支持更长的跨距,但斜拉桥更适合用于较短的跨距。

2. 建设悬索桥或斜拉桥需要进行大量的规划和计算工作,确保桥梁的结构稳定和安全。

3. 在使用悬索桥或斜拉桥时,需要注意以下事项:
- 遵循桥梁设计者的使用规定,不要超过桥梁的载荷限制。

- 注意遵守交通规则,按照交通标志和标线行驶。

- 如果是步行悬索桥或斜拉桥,需要注意行走的姿势和安全,
不要跳跃或晃动桥梁。

4. 悬索桥和斜拉桥都需要定期维护和检查,以确保结构稳定和安全。

维护和检查工作需要由专业人员进行,并遵循相关的标准和规定。

斜拉桥和悬索桥的区别

斜拉桥和悬索桥的区别

斜拉桥和悬索桥的区别斜拉桥和悬索桥的区别在于:斜拉桥的主缆横向布置,悬索桥的主缆竖直布置。

一般说来,斜拉桥跨度小、结构轻巧,而且它可以看作是“吊”起来的;悬索桥则比较笨重,但它形成的强大的横向刚度却使它能够承受巨大的垂直荷载。

另外,由于斜拉桥用的索塔和主梁都是像弹簧一样彼此独立地支撑在各自的基础上的,所以,斜拉桥不仅外观雄伟壮丽,而且内部空间开阔,便于布置管线等设施。

因为这些优点,所以斜拉桥被广泛应用于城市道路交通中。

不过,悬索桥也有它自己的特点。

从历史记录上看,公元前二世纪左右就出现了悬索桥。

当时修建悬索桥是为了军事目的,只要把桥的一端固定住,桥就会稳如泰山,而不必担心会断裂或垮塌。

后来,悬索桥的建造技术逐渐发展,到了19世纪末期,才正式出现了具有完整技术体系的悬索桥。

这种桥利用缆索起重机将桥面吊到高处,再把桥面的重量转移到锚锭上去。

这样做,虽然增加了施工难度,但却减少了许多不安全的因素。

随着科学技术的进步,悬索桥的技术性能已经达到了很高水平。

如今,人类的足迹几乎遍及世界每个角落,而越来越多的人喜欢在大江河流上架设悬索桥。

悬索桥是现代钢铁工业的产物。

第一座真正意义上的悬索桥是1937年建成的美国跨度为1178米的明尼苏达州圣保罗市的金门大桥。

此后不久,德国人首先采用了钢丝绳悬索桥,而后英国人又推出了钢箱形截面悬索桥,这两种桥型一直沿用至今。

日本是亚洲第一个掌握悬索桥制造技术的国家。

该国制造的预应力混凝土悬索桥长1153米,居世界第三位。

这里还需提醒读者注意的是,在悬索桥中有一种半悬索桥。

它实际上是悬索桥与斜拉桥相结合的产物,既有斜拉桥的刚度,又有悬索桥的柔韧性。

这种桥的跨径比单纯的悬索桥要大得多,其结构非常复杂,它既能充分利用悬索桥的柔韧性,又可以避免斜拉桥的笨重。

在我国的南方,也曾有过不少半悬索桥,例如著名的贵州省坝陵河大桥。

半悬索桥既有索桥的刚劲挺拔,又有拱桥的曲线玲珑,它同时兼备了两者的优势,堪称“桥梁新秀”。

斜拉桥&悬索桥

斜拉桥&悬索桥

第六章悬索桥及斜拉桥第一节悬索桥及斜拉桥的分类及构造一、悬索桥、斜拉桥的分类(一)悬索桥悬索桥也称吊桥,是指利用主缆和吊索作为加劲梁的悬挂体系,将桥跨所承受的荷载传递到桥塔、锚碇的桥梁。

其主要结构由主缆、索塔、锚碇、吊索、加劲梁组成。

悬索桥的类型可根据悬吊跨数、主缆锚固方式及悬吊方式等方面加以划分。

1.按悬吊跨数分类其结构形式如图6-1。

其中单跨悬索桥和三跨悬索桥最为常用。

图6-1 悬吊跨数不同的悬索桥a)单跨悬索桥;b)三跨悬索桥;c)四跨悬索桥;d)五跨悬索桥1)单跨悬索桥2)三跨悬索桥3)多跨悬索桥图6-2 联袂布置的悬索桥2.按主缆的锚固方式分类按主缆的锚固形式划分,可分为地锚式悬索桥和自锚式悬索桥。

3.根据悬吊方式分类1)采用竖直吊索并以钢桁架作加劲梁,如图6-4所示。

2)采用三角布置的斜吊索,并以扁平流线形钢箱梁作加劲梁,如图6-5所示。

3)混合式,即采用竖直吊索和斜吊索,流线形钢箱梁作加劲梁。

如图6-6所示。

图6-4 采用竖直吊索桁式加劲梁悬索桥图6-5 采用斜吊索钢箱加劲梁的悬索桥图6-6 带斜拉索的悬索桥4.按支承结构分类图6-7 按支承构造划分悬索桥形式a)单跨两铰加劲梁;b)三跨两铰加劲梁;c)三跨连续加劲梁(二)斜拉桥斜拉桥的主要组成部分为主梁、索塔及拉索。

1.按索塔布置方式分1)单塔式斜拉桥采用图6-8-b)的单塔式斜拉桥。

2)双塔式斜拉桥桥下净空要求较大时,多采用图6-8 a)所示的双塔式斜拉桥。

图6-8 斜拉桥跨径布置3)多塔式斜拉桥在跨越宽阔水面时,由于桥梁长度大,可采用图6-8c)所示的多塔斜拉桥。

2.按主梁的支承条件分1)连续梁式斜拉桥如图6-9 a)。

2)单悬臂式斜拉桥如图6-9 b)。

3)T形刚架式斜拉桥如图6-9 c)。

图 6-9按主梁支承条件划分斜拉桥形式二、悬索桥、斜拉桥的构造(一)悬索桥上部结构的主要形式和构造特点现代悬索桥通常主要由主缆、主塔、锚碇与加劲梁等四大主体结构以及塔顶主索鞍、锚口散索鞍座或散索箍和悬吊系统等重要附属系统组成。

斜拉桥与悬索桥

斜拉桥与悬索桥
由力学知识可知:在截面相同的情况下,塔的抗水平位移 刚度与塔高的三次方成反比,因而塔高降低则塔身刚度迅 速提高,但塔高降低后拉索的水平倾角也将减小,拉索对 主梁的支撑作用减弱,而水平压力增大,这相当于拉索对 主梁施加了一个较大的体外预应力。矮塔部分斜拉桥由于 拉索不能提供足够的支撑刚度,故要求主梁的刚度较大。
索塔
索塔
索塔
吊索
吊索
吊索
主梁
主梁 主梁
索塔 吊索 主梁
(a)
(b)
(c)
(a)
13
索塔的横向形式-2
索塔 吊索 主梁 (a)
索塔 索塔
吊索 主梁 吊索 主梁
索塔 吊索
吊索 主梁
索塔 主梁
(b)
(c)
(d)
(e)
14
二、塔的高跨比Байду номын сангаас
双塔:H/l2=1/4~1/7,单塔:H/l2=1/2.7~1/4.7
10
§4.1.3 索塔布置
一、索塔的形式 1、纵向形式(见附图) 单柱形、倒V形或A形、倒Y形。 2、横向形式(见附图) (1)单索面桥:单柱形、倒V形或A形、倒Y形。 (2)双索面桥:双柱式、门式、H形、倒V形、
倒Y形
11
桥塔的纵向形式
(a)单柱形
(b)倒V形
(c)倒Y形
12
索塔的横向形式-1
间距约5~15m 优点:索间距小,可使主梁弯矩减小 目前斜拉桥大多采用密索布置。
21
稀索和密索
(a) 稀索
(b) 密索
22
§4.1.5 主要结构体系
斜拉桥的结构体系,可以有几种不同的划分方式:
(1)按照塔、梁、墩相互结合方式:漂浮体系、半漂浮 体系、塔梁固结体系和刚构体系;

斜拉桥与悬索桥简介

斜拉桥与悬索桥简介

建成年份 1998 1994 2001 2000 2000 1993 1996 1997 1991 1999 1991 2000 1991 1999 1993 1999 1986 1989 1992 1996
世界第一斜拉桥-多多罗大桥
位于日本Nishi-Seto高速公路上的Tatara桥
法国Normandy桥
斜拉桥
由斜拉索与主梁共同承受荷载,斜拉索的纵桥向水平分力在主梁中 引起较大的轴向力,恒载内力所占比重很大。
悬索桥只有通过调整垂跨比才能改变主缆的恒载内力, 而斜拉桥可直接通过张拉斜拉索就能调整索、梁的恒载内力。
(2)材料方面
◎(大跨度)悬索桥 加劲梁多采用自重较轻的钢材。 ◎斜拉桥 主梁材料可以是钢、混凝土或钢-混凝土结合。
e· 自锚式悬索桥:
~与组合体系中的系杆拱相似, ~悬索水平拉力不传给锚碇而传给加劲 梁。
f·缆索中段同加劲桁架的上弦合为一体。
汕头海湾大桥
广东虎门大桥
厦门海沧大桥(主跨648m)
主 跨 一 三 七 七 米 公 铁 两 用 桥
香 港 青 马 大 桥
江阴长江大桥
润扬长江大桥(主跨1490m)
桥名 南京长江第二大桥 青州闽江大桥 武汉白沙洲大桥 杨浦大桥 徐浦大桥 汕头大桥 荆沙长江公路大桥 鄂黄长江公路大桥 军山长江公路大桥 润阳长江公路大桥 汲水门桥 海口世纪大桥 珠海淇澳大桥 高平大桥(台湾) 广东会马大桥 重庆石门大桥
结构型式 双塔双索面钢箱梁 双塔双索面叠合梁 双塔双索面混合梁 双塔双索面叠合梁 双塔双索面叠合梁 双塔双索面混合梁 双塔双索面PC梁 双塔双索面PC梁 双塔双索面钢箱梁 双塔双索面钢箱梁 双塔双索面钢桁梁 双塔双索面PC梁 双塔单索面PC梁 单塔双索面混合梁 单塔双索面PC梁 单塔单索面Pc梁

斜拉桥与悬索桥之比较

斜拉桥与悬索桥之比较

斜拉桥与悬索桥之比较令狐采学斜拉桥与悬索桥作为现代桥梁的主要建筑方式,二者之间又存在着怎样的区别与联系呢?下面我们通过结构力学的方法对其进行受力方面的定性分析,来解决一些现实中的现象。

首先我们来了解一下他们的定义:斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。

其可看作是拉索代替支墩的多跨弹性支承连续梁。

其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。

斜拉桥由索塔、主梁、斜拉索组成。

悬索桥,又名吊桥(suspension bridge)指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁。

其缆索几何形状由力的平衡条件决定,一般接近抛物线。

从缆索垂下许多吊杆,把桥面吊住,在桥面和吊杆之间常设置加劲梁,同缆索形成组合体系,以减小活载所引起的挠度变形。

斜拉桥与悬索桥的结构简图如图a,b所示。

下面对一些现实现象进行定性分析。

1.为什么斜拉桥和悬索桥可以比其他桥梁的跨度大很多?通过斜拉桥和悬索桥的结构简图可以看出,斜拉桥和悬索桥都是通过钢索的拉力来代替了桥墩的支持力。

因此可以减少桥墩的数量,实现桥梁的大跨度。

2.为什么悬索桥可以比斜拉桥的跨度更大?通过斜拉桥和悬索桥的结构简图可以看出,斜拉桥的钢索是斜着的,以a图C点进行受力分析,为了在C点提供足够的竖直拉力Fcy随着AC距离的增加,Fc和Fcx将会不断增大,这样会不断增大钢索的拉力和桥面的轴向压力,这也是为什么斜拉桥的钢索大多集中在索塔的上端的原因。

因此AC之间的距离不能太大,即斜拉桥的跨度不能太大。

而通过悬索桥的结构简图可以看出,悬索桥的钢索受力是竖直方向的,随着跨度的增加并不会增加钢索的受力。

因此悬索桥的跨度可以比斜拉桥更大。

3.为什么斜拉桥比悬索桥稳定?由斜拉桥的结构简图可以看出绷紧的钢索与索塔及桥面根据三钢片原则构成了不变体系,而有悬索桥的结构简图不难看出悬索桥的主索、细钢索、索塔及桥面之间构成的是可变体系。

斜拉桥和悬索桥基本受力原理

斜拉桥和悬索桥基本受力原理

斜拉桥和悬索桥基本受力原理斜拉桥和悬索桥是现代桥梁工程学中最常见的桥梁类型之一。

与其他类型的桥梁相比,斜拉桥和悬索桥在结构构造、受力原理以及建造技术方面都具有独特的特点。

斜拉桥是一种由主体梁、斜拉索和塔组成的桥梁结构。

主体梁通常由桥面板、箱梁或钢桁架等构成。

斜拉索由高强度的钢丝绳或钢缆制成,用于固定主体梁。

塔是支撑斜拉索的主要悬挂结构。

斜拉桥的受力原理是利用斜拉索对主体梁进行牵拉,从而使主体梁能够承受大约90%的桥面荷载。

在斜拉桥的受力分析中,通过牵拉斜拉索,使力沿着斜拉索传递到塔的支撑墩上,然后再传递到地基。

因此,斜拉桥的塔和支撑墩必须足够坚固,以承受主体梁的重量和拉力。

在斜拉桥的结构设计中,斜拉索的数量、长度和位置是非常关键的。

斜拉索的正确设置可以增强桥梁的稳定性,减少对主体梁的振动和抖动。

同时,斜拉索的拉力方向也需要考虑,以确保它们不会相互冲突或互相干扰。

悬索桥的受力原理是靠索在两个或多个支撑点上承载主体梁和荷载。

索的支撑在塔顶,塔的重力传递到地面,自然就形成了一个悬挂状态。

此时,由于主体梁的承载能力有限,悬挂在索上的荷载必须分散到多个支撑位置上。

在悬索桥的结构设计中,索的支撑点的距离、索的长度和角度等都是非常关键的。

如果索的支撑点距离太远,索的结构就会变得不稳定。

如果角度太小,索的滞后效应就会变得越来越大。

这些因素都需要在悬索桥的设计阶段得到充分考虑。

3. 两种桥梁类型的比较尽管斜拉桥和悬索桥在受力原理方面存在差异,两种结构类型在一些方面都具有相似之处。

例如,它们都依靠主体梁承载荷载,并且都需要塔来支撑索或斜拉索。

此外,两种结构类型都需要进行静态和动态受力计算,以确保结构的稳定性和安全性。

但是,斜拉桥和悬索桥在实际应用中也有许多不同之处。

例如,由于斜拉索承担了大部分的荷载,斜拉桥的主体梁可以相对较轻,而悬索桥的主体梁需要更多的材料和设计。

另外,在建造过程中,斜拉桥需要更长时间的预构件制作和拼装,而悬索桥则需要更多的和更高的起重设备来安装长而重的索。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
31
主要尺寸拟定 主梁高度h:h=1/50~1/200, 主梁宽度B:主梁宽与主跨的比值宜大于1/30,与
主梁高的比宜大于8, 主梁各细部尺寸:主要根据轴力来确定, 截面调试。 钢筋布置 普通钢筋的配置 纵向预应力筋:分段布置,一般在主跨跨中和边
跨端部 横向预应力筋
.
32
一、实体梁式和板式主梁
.
33
在双索面混凝土斜拉桥中,箱形截面的主梁常以 分离式的两个箱体各自锚固于拉索,两箱之间 的则以横梁和桥面板拉结,双箱梁的典型截面 为倒梯形。在双箱梁的两个分离式箱体之间用 底板将其封闭,即成为三室的单箱梁截面。双 索面与单索面的三室箱梁截面应有所不同,采 用双索面时,应将两个中间竖腹板尽量拉大, 使中室大于边室,以期取得较大的横向惯距, 对于单索面,则应将其尽量靠拢,以便斜拉索 锚固于较小的中室内。
具有以下特点(1)塔较矮,(2)梁的无索区较长,没有端
锚索,(3)边跨与主跨的比值较大,一般大于0.5,(4)
梁高较大,高跨比为1/30~1/40,甚至做成高度梁,(5)
拉索对竖向恒活载的分担率小于30%,受力以梁为主,索
为辅,(6)由于梁的刚度大,活载作用下斜拉索的应力
变幅较小,可按体外预应力索设计。
.
37
§4.2.2 索塔
一、索塔构件组成
.
38
二、混凝土塔的构造
混凝土索塔常采用的截面形式见表4-2-2,实心体 索塔一般适用于中小跨度的斜拉桥,对于小跨 度可采用等截面,对于中等跨度可采用空心截 面,矩形截面索塔的构造简单,其四角宜做成 倒角或圆角,以利抗风,所有其他多边形截面 的索塔均比矩形截面的抗风有利,还能增加桥 梁外形的美观,八角形截面有利于配置封闭式 环向预应力筋,但构造复杂。各种空心截面包 含H截面一般均需在每一层拉索锚头处增设水平 隔板。
.
39
§4.2.3 拉索
一、拉索的构造
在近代大跨度斜拉桥中,拉索的构造基本上分 为整体安装的拉索(平行钢丝索配冷铸锚)和 分散安装的拉索(平行钢绞线索配夹片锚)两 大类。
1、平行钢丝索陪冷铸锚
平行钢丝索是把φ5mm或φ7mm镀锌钢丝捆扎成股, 一般排列成六角形,表层由玻璃丝布包扎定型 后用热挤高密塑造成正圆形,这种斜索具有厚 镀锌层和厚PE层的双重防腐保护。
.
40
.
41
2、平行钢绞线索配夹片锚
将平行钢丝索中的钢丝换成等截面的钢绞线即 成为平行钢绞线索。钢索丝在索中是平行排列 的。
二、拉索的锚固
1、斜拉索与混凝土梁的锚固
.
42
.
43
2、拉索在索塔的锚固
(1)在实体塔上交错锚固,其具体构造是在塔柱中埋设钢 管,再将斜拉索穿入和用锚头锚固在钢管上端的锚垫板上。
.
47
三、拉索的拉力
拉索的应力控制需要考虑三个因素,有效弹性 模量、破断强度和疲劳。
E
Eeq
2l 2E
1
12 3
若拉索的应力过低,则斜索的垂度大,索的有 效模量就小,这也反应了斜拉索必须采用高强 度钢材的直接原因。
.
51
四、拉索的减振
1、气动控制法
将斜拉索原来的光滑表面做成带有螺旋凸纹、条形凸纹、 V形凸纹或圆形凹点的非光滑表面。
.
24
三、塔梁固结体系
塔梁固结并支撑在墩上。
特点:主梁的内力与挠度直接同主梁与索塔的弯曲刚度 比有关,这种体系的主梁一般只在一个塔柱处设置固 定支座,而其余均为纵向活动支座。优点是显著减小 主梁中央段承受的轴向拉力,并且索塔和主梁的温度 力极小。
四、连续刚构式(刚构体系形式)
主梁与塔、墩固结形成整体,其结构形式是有弹性支承 的连续刚构。
.
26
七、矮塔部分斜拉桥
由力学知识可知:在截面相同的情况下,塔的抗水平位移 刚度与塔高的三次方成反比,因而塔高降低则塔身刚度迅 速提高,但塔高降低后拉索的水平倾角也将减小,拉索对 主梁的支撑作用减弱,而水平压力增大,这相当于拉索对 主梁施加了一个较大的体外预应力。矮塔部分斜拉桥由于 拉索不能提供足够的支撑刚度,故要求主梁的刚度较大。
边墩(或桥台)
(a)双塔(三跨式)
(b)独塔(双跨式)
.
3
.
4
二、斜拉桥的主要特点
1、斜缆是主梁的弹性支座,使主梁跨度减小,节 约材料并增大了桥梁的跨越能力
2、斜缆的水平分力相当于混凝土梁的预压力,可 提高抗裂性能
3、建筑高度小,可增大桥下净空 4、结构轻巧美观 5、高次超静定结构,设计计算复杂 6、拉索两端的连接构造复杂 7、施工控制要求严格(张拉程度要求相同)
§4 斜拉桥
§4.1 总体布置 §4.2 斜拉桥的构造 §4.3 斜拉桥的计算
.
1
§4.1.1 概述
一、斜拉桥的组成(见附图)
斜拉桥由斜拉索、塔柱和主梁组成
二、斜拉桥的主要特点
.
2
斜拉桥简图
边跨L1 端锚索
主跨L2
桥塔
桥塔
边跨L1 端锚索
主跨L2 桥塔
边跨L1 端锚索
边墩(或桥台)
边墩(或桥台) 边墩(或桥台)
三、三塔四跨和多塔多跨式
斜拉桥和悬索桥一样,很少采用三塔四跨和多塔 多跨式。原因就是多塔多跨式斜拉桥中间塔塔 顶没有端锚索来有效限制它的位移,已经是柔 性结构的斜拉桥或悬索桥采用多塔多跨式使结 构柔性进一步增大,变形过大。如必须采用多 塔多跨式斜拉桥时,可将中间塔做成刚性索塔。
.
8
三塔斜拉桥(湖南洞庭湖大桥)
较大的截面) 设置在桥梁纵轴线上。
.
16
索面布置形式
(a)
(b)
(c)
.
17
二、索面形状
(1)辐射式
拉索上端锚固于塔柱同一位置,成辐射状。
特点:拉索倾角大,受力较小;但塔身自由长度 大,对塔身受力不利;且塔顶锚头拥挤。
(2)平行式(竖琴式)
各斜索相互平行,但倾角相同
特点:与塔柱的连接点分散,连接构造易处理; 但斜索倾角小,对其受力不利,且斜索用量较 大。
(e)
(f)
8812 2.08%
8812 15261526 17624
3658
三角形构架
(g)
(h)
斜拉桥的主梁横断面
抑流板
细部图
带有抑流板的护栏 护栏
(a)梯形单箱 风嘴
(c)扁平多室箱
风嘴
(b)异形箱
导流板 导流板
扰流板 (d)超扁平多室箱
.
36
三、不同材料主梁的适宜跨径
斜拉桥主梁有下列四种不同的组成方式:(1) 预应力混凝土梁称为混凝土斜拉桥,跨径 200~400m;(2)钢—混凝土组合梁称为组 合梁斜拉桥,跨径400~600m;(3)钢柱梁 称为钢斜拉桥,大于600m。另外,当跨径处 于400m和600m两个临界区域时,应考虑其他 因素分别对两种不同材料主梁作经济比较。
.
34
215 71
3658
1.2~1.5m
混凝土主梁常用截面形式
2250
20
213
15~20
15~20m 50~60cm
(a) 25~30m
1260
(c) 2900
380
1260
430
340
27 181 412
1247 2433
(b) 3010
30
30
(d) 1300
25 28
23
应变仪 980
15
辐射式或扇式:260~300,竖琴式:210~300。
.
15
§4.1.4 拉索布置
一、索面位置
(1)双索面 平行双索面:作用在桥梁上的扭矩可由拉索轴力来抵抗,
主梁可采用抗扭刚度较小的截面 斜向双索面:两个索平面的上端均向内侧倾斜。(对桥
面梁体抵抗风力扭振特别有利) (2)单索面(拉索对抗扭不起作用,主梁采用抗扭刚度
.
27
.
28
.
29
§4.2 斜拉桥的构造
§4.2.1 主梁的构造 §4.2.2 索塔 §4.2.3 拉索
.
30
§4.2.1 主梁的构造
主梁的主要作用有三个方面: (1)将恒、活载分散传给拉索,梁的刚度越小,
则承担的弯矩越小; (2)与拉索及索塔一起成为整个桥梁的一部分,
主梁承受的力主要是拉索的水平分力所形成的 轴压力,因而需要有足够的刚度防止压屈; (3)抵抗横向风载和地震荷载,并把这些力传 给下部结构。
(2)在空心塔上做非交错锚固,其构造与上述相同,但需 要在箱形桥塔的壁板内配置环向预应力筋,以抵抗拉索在 箱壁内产生的拉力。
(3)采用钢锚固梁来锚固,将钢锚固梁搁置在混凝土塔柱 内侧的牛腿上,斜索通过埋设在塔壁中的钢管锚固在钢锚 固梁两端的锚块上。
(4)利用钢锚梁锚固,整个钢锚箱是由各层的钢锚箱进行 上下焊接而成,然后将锚箱用焊钉使之与混凝土塔身连结, 另外还要用环形预应力筋将钢锚箱夹在混凝土塔柱内,以 增加对拉索水平荷载的抵抗力。
.
5
§4.1.2 孔跨布局
一、双塔三跨式 可跨越较大河流,为了在视觉上清楚地表现主跨,
边跨L1与主跨L2与比例应小于0.5。
3
1.3
3
1
2
1
.
6
二、独塔双跨式 一般采用不对称形式,主跨和边跨之比为0.5~
0.6,但多数接近于0.66倍。跨度较小时,也 可采用单跨。
153
22.5 锚碇 地下梁
.
7
特点:便于平衡对称施工,抵抗跨中变形的刚度较大
.
25
五、T构体系
T构体系斜拉桥与刚构体系的区别主要是主梁跨 中区域无轴拉力,具体做法两种:在斜拉桥主 跨中央部分插入一小跨悬挂结构,以剪力铰代 替悬挂结构,这种铰的功能是只传递弯矩、剪 力,不传轴力。
相关文档
最新文档