数列常见题型分析与方法总结

合集下载

数列题型及解题方法

数列题型及解题方法

数列题型及解题方法题型1:等差数列解题方法:首先确定数列的首项和公差,然后使用递推公式an = a1 + (n-1)d,其中an表示数列的第n项,a1表示首项,d表示公差。

根据题目给出的条件,可以求得所求的项或者公式中的未知数。

题型2:等比数列解题方法:首先确定数列的首项和公比,然后使用递推公式an = a1 * r^(n-1),其中an表示数列的第n项,a1表示首项,r表示公比。

根据题目给出的条件,可以求得所求的项或者公式中的未知数。

题型3:斐波那契数列解题方法:斐波那契数列是指后一项等于前两项之和的数列,即an = an-1 + an-2。

根据题目给出的条件,可以使用递归或循环的方式计算斐波那契数列的第n项。

题型4:数列求和解题方法:对于等差数列和等比数列,可以使用求和公式直接计算数列的和。

等差数列的和用Sn = (n/2)(a1 + an)表示,等比数列的和用Sn = a1(1 - r^n)/(1 - r)表示。

根据题目给出的条件,代入公式计算即可得到所求的和。

题型5:数列拓展解题方法:有时候题目需要在基本的数列模型上进行拓展,可以根据数列的特点和题目的要求进行分析和解答。

可以使用递推公式或者递推关系式进行推导,并根据题目给出的条件计算所求的项或和。

题型6:递推关系式解题方法:有时候数列无法使用基本的递推公式进行求解,需要根据数列的特点建立递推关系式。

递推关系式是指数列的每一项与前面的若干项之间存在某种关系,通过这个关系可以递推求解数列的项或和。

根据题目给出的条件,建立递推关系式,并根据初始条件求解所求的项或和。

数列常见题型总结经典

数列常见题型总结经典

高中数学《数列》常见、常考题型总结题型一数列通项公式的求法1.前n 项和法(知n S 求n a )⎩⎨⎧-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122-=,求数列|}{|n a 的前n 项和n T 练习:1234.n S 52.(1(2例1.例2.例3.3.(11-n q .(2例1、在数列}{n a 中111,1-+==n n a n n a a )2(≥n ,求数列的通项公式。

答案:12+=n a n 练习:1、在数列}{n a 中1111,1-+-==n n a n n a a )2(≥n ,求n n S a 与。

答案:)1(2+=n n a n2、求数列)2(1232,111≥+-==-n a n n a a n n 的通项公式。

4.形如sra pa a n n n +=--11型(取倒数法)例1.已知数列{}n a 中,21=a ,)2(1211≥+=--n a a a n n n ,求通项公式n a练习:1、若数列}{n a 中,11=a ,131+=+n n n a a a ,求通项公式n a .答案:231-=n a n2、若数列}{n a 中,11=a ,112--=-n n n n a a a a ,求通项公式n a .答案:121-=n a n5.形如0(,1≠+=+c d ca a n n ,其中a a =1)型(构造新的等比数列)(1)若c=1时,数列{n a }为等差数列;(2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求. 方法如下:设,利用待定系数法求出A例126.(1)若例题.所以{=∴n b (2)若①若②若令n b 例1.在数列{}n a 中,521-=a ,且)(3211N n a a n n n ∈+-=--.求通项公式n a1、已知数列{}n a 中,211=a ,n n n a a 21(21+=-,求通项公式n a 。

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结

知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

一、典型题的技巧解法 1、求通项公式 (1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)2434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。

高中数列题型总结

高中数列题型总结

高中数列题型总结高中数学中,数列是一个重要的概念。

数列题型主要包括等差数列、等比数列、递推数列等。

下面将对这些常见的数列题型进行总结。

一、等差数列1. 等差数列的概念:等差数列是指一个数列,其中相邻两项之间的差值是一个常数d。

数列的通项公式为an=a1+(n-1)d。

2. 等差数列的性质:- 若数列首项为a1,公差为d,则数列的第n项为an=a1+(n-1)d。

- 数列的前n项和Sn可以表示为Sn=(a1+an)n/2。

- 等差数列的性质还包括数列的前n项和与项数n的关系、等差数列的倒数第n项与第n项之和等。

3. 等差数列的题型:- 求等差数列的通项公式;- 求等差数列的前n项和;- 求等差数列中满足某些条件的项数;- 求等差数列中满足某些条件的项的和等。

二、等比数列1. 等比数列的概念:等比数列是指一个数列,其中相邻两项之间的比值是一个常数q。

数列的通项公式为an=a1*q^(n-1)。

2. 等比数列的性质:- 若数列首项为a1,公比为q,则数列的第n项为an=a1*q^(n-1)。

- 数列的前n项和Sn可以表示为Sn=a1*(1-q^n)/(1-q)。

- 等比数列的性质还包括数列的前n项和与项数n的关系、等比数列的倒数第n项与第n项之积等。

3. 等比数列的题型:- 求等比数列的通项公式;- 求等比数列的前n项和;- 求等比数列中满足某些条件的项数;- 求等比数列中满足某些条件的项的和等。

三、递推数列1. 递推数列的概念:递推数列是指一个数列,其中每一项都通过前一项来递推得到。

数列的通项公式一般无法表示。

2. 递推数列的性质:- 若数列的第n项为an,第n-1项为an-1,则数列的通项公式无法表示为an=f(an-1),其中f为一个函数。

- 递推数列的性质通常通过给定的递推规则来描述,如斐波那契数列等。

3. 递推数列的题型:- 求递推数列的前n项;- 求递推数列满足某些条件的项数;- 求递推数列满足某些条件的项等。

职高数列知识点总结及题型归纳

职高数列知识点总结及题型归纳

职高数列知识点总结及题型归纳一. 数列的定义和性质数列是按照一定规律排列的一组数的集合。

它可以有无穷个数,也可以有有限个数。

数列中的每个数被称为数列的项,用 a1, a2, a3...表示。

1. 等差数列等差数列是一种常见的数列形式,其特点是每一项与它的前一项之差相等。

设等差数列的首项为 a,公差为 d,则其通项公式为 an = a + (n-1)d,其中 n 表示数列中的第 n 项。

常用等差数列公式:- 数列前 n 项和公式:Sn = (a + an) * n / 2- 前 n 项和与项数的关系:Sn = (2a + (n-1)d) * n / 2- 前 n 项和与差数的关系:Sn = (a2 - an) / (2d)例题1:某数列的首项是 3,公差是 4,求该数列的第 10 项。

解:根据等差数列的通项公式,an = a + (n-1)d = 3 + (10-1)4 = 3 + 36 = 39。

所以该数列的第 10 项是 39。

例题2:某数列的首项是 2,公差是 3,求数列的前 5 项和。

解:使用等差数列前 n 项和公式,Sn = (a + an) * n / 2 = (2 + (2 + (5-1)3)) * 5 / 2 = 35。

所以数列的前 5 项和为 35。

2. 等比数列等比数列是一种常见的数列形式,其特点是每一项与它的前一项之比相等。

设等比数列的首项为 a,公比为 r,则其通项公式为 an = a * r^(n-1),其中 n 表示数列中的第 n 项。

常用等比数列公式:- 数列前 n 项和公式:Sn = a * (1 - r^n) / (1 - r)- 前 n 项和与项数的关系:Sn = a * (1 - r^n) / (1 - r)- 无穷项和公式:S∞= a / (1 - r)例题3:某数列的首项是 2,公比是 3,求该数列的第 4 项。

解:根据等比数列的通项公式,an = a * r^(n-1) = 2 * (3^(4-1)) = 2 * 27 = 54。

数列题型及解题方法

数列题型及解题方法

数列题型及解题方法数列是高中数学中的重要内容,也是考试中经常出现的题型之一。

掌握数列的相关知识和解题方法对于提高数学成绩至关重要。

本文将从常见的数列题型入手,结合解题方法进行详细介绍,希望能够帮助大家更好地理解和掌握数列的相关知识。

一、等差数列。

等差数列是指一个数列中,从第二项开始,每一项与它的前一项之差都是一个常数。

这个常数就是公差,通常用d表示。

等差数列的通项公式为,$a_n = a_1 + (n-1)d$,其中$a_n$表示第n项,$a_1$表示首项,n表示项数,d表示公差。

解题方法:1. 求和公式,等差数列的前n项和公式为$S_n =\frac{n}{2}(a_1 + a_n)$,利用这个公式可以快速求得等差数列的前n项和。

2. 求首项和公差,已知等差数列的前几项或者部分信息,可以通过列方程组求得首项和公差。

3. 求项数,已知等差数列的前几项和或者部分信息,可以通过列方程求得项数。

二、等比数列。

等比数列是指一个数列中,从第二项开始,每一项与它的前一项的比值都是一个常数。

这个常数就是公比,通常用q表示。

等比数列的通项公式为,$a_n = a_1 q^{(n-1)}$,其中$a_n$表示第n 项,$a_1$表示首项,n表示项数,q表示公比。

解题方法:1. 求和公式,等比数列的前n项和公式为$S_n =\frac{a_1(1-q^n)}{1-q}$,利用这个公式可以快速求得等比数列的前n项和。

2. 求首项和公比,已知等比数列的前几项或者部分信息,可以通过列方程组求得首项和公比。

3. 求项数,已知等比数列的前几项和或者部分信息,可以通过列方程求得项数。

三、特殊数列。

除了等差数列和等比数列之外,还有一些特殊的数列,如斐波那契数列、等差-等比数列等。

这些数列在考试中也可能会出现,需要我们对其特点和解题方法有所了解。

解题方法:1. 斐波那契数列,斐波那契数列的特点是每一项都是前两项的和,即$a_n = a_{n-1} + a_{n-2}$。

数列题型及解题方法归纳总结

数列题型及解题方法归纳总结一、等差数列等差数列是指数列中的相邻项之差都相等的数列。

下面对等差数列的题型及解题方法进行归纳总结。

1. 求第n项的值设等差数列的首项为a,公差为d,第n项的值为an,则有公式:an = a + (n-1)d2. 求前n项和设等差数列的首项为a,公差为d,前n项和为Sn,则有公式:Sn = (n/2)(2a + (n-1)d)3. 求公差已知等差数列的首项为a,第m项与第n项的和为s,则公差d的值可以通过以下公式计算得出:d = (sm - sn)/(m - n)4. 求项数已知等差数列的首项为a,公差为d,第n项的值为an,可以通过以下公式求解项数n:n = (an - a)/d + 15. 应用题解题思路在解等差数列应用题时,关键是要找到规律。

可以通过观察数列的特点,列出方程,再解方程求解。

二、等比数列等比数列是指数列中的相邻项之比都相等的数列。

下面对等比数列的题型及解题方法进行归纳总结。

1. 求第n项的值设等比数列的首项为a,公比为q,第n项的值为an,则有公式:an = a * q^(n-1)2. 求前n项和(当公比q不等于1时)设等比数列的首项为a,公比为q,前n项和为Sn,则有公式:Sn = a * (q^n - 1) / (q - 1)3. 求前n项和(当公比q等于1时)当公比q等于1时,等比数列的前n项和为n * a。

4. 求公比已知等比数列的首项为a,第m项与第n项的比为r,则公比q的值可以通过以下公式计算得出:q = (an / am)^(1/(n-m))5. 求项数已知等比数列的首项为a,公比为q,第n项的值为an,可以通过以下公式求解项数n:n = log(an/a) / log(q)6. 应用题解题思路在解等比数列应用题时,关键是要找到规律。

可以通过观察数列的特点,列出方程,再解方程求解。

三、斐波那契数列斐波那契数列是指数列中第一、第二项为1,后续项为前两项之和的数列。

(完整版)数列题型及解题方法归纳总结

1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

一、典型题的技巧解法 1、求通项公式 (1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。

数列题型及解题方法归纳总结

知识框架数列的分类数列的通项公式数列的递推关系等差数列的疋义a n a n 1d(n2)等差数列的通项公式a n a1 (n1)d等差数列等差数列的求和公式Sn n /(a1a n) na1n(n 1)d 22等差数列的性质a n a m a p a q(m n p q)两个基本数列等比数列的定义ana n 1q(n2)等比数列的通项公式a n a1q n 1数列等比数列a1a n q a1(1q n)(q1)等比数列的求和公式S n 1 q 1 qn a© 1)等比数列的性质a n a m a p a q (m n [)q)公式法分组求和(1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

⑴递推式为a n+i=a+d及a n+i=qa n(d,q为常数)例1、已知{a n}满足a n+i=a n+2,而且a i=1。

求a n。

例1、解■/a n+i-a n=2为常数••• {a n}是首项为1,公差为2的等差数列--a n=1+2 (n-1 )即a n=2n-11例2、已知{a n}满足a n 1 a n,而a1 2,求a n =?2(2)递推式为a n+1=a n+f (n)1例3、已知{a n}中a1,a n 12+ ( a n-a n-1 )数列求和错位相减求和裂项求和倒序相加求和解:由已知可知a n 1 a n1(2n 1)(2 n 1)1 1 12(2n 1 2n 1)累加累积令n=1,2,…,(n-1 ),代入得(n-1 )个等式累加,即(a2-a 1) + (a3-a 2) + …数列的应用分期付款其他掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

一、典型题的技巧解法1、求通项公式★ 说明只要和a n C £(1f (1) +f (2) +…+f1 ) 4n 32n 1) 4n 2(n-1 )是可求的,就可以由a n+1=a n+f (n)以n=1,2,…,(n-1 )代入,可得n-1个等式累加而求a n ⑶递推式为a n+1=pa n+q (p, q为常数)数列的概念函数角度理解归纳猜想证明例 4、{a *}中,a i 1,对于 n > 1 (n € N )有 a n 3a “ 1 2,求 a n .求a * 。

数列的通项6种常见题型总结(解析版)--2024高考数学常考题型精华版

数列的通项6种常见题型总结【题型目录】题型一:已知()n f S n =,求n a 题型二:叠加法(累加法)求通项题型三:叠乘法(累乘法)求通项题型四:构造法求通项题型五:已知通项公式n a 与前n 项的和n S 关系求通项问题【典型例题】题型一:已知()n f S n =,求na 【例1】已知数列{}n a 的前n 项和211n S n n =-.若710k a <<,则k =()A .9B .10C .11D .12【答案】B【分析】先求得n a ,然后根据710k a <<求得k 的值.【详解】依题意211n S n n =-,当1n =时,110a =-;当2n ≥时,211n S n n =-,()()22111111312n S n n n n -=---=-+,两式相减得()2122n a n n =-≥,1a 也符合上式,所以212n a n =-,*N k ∈,由721210k <-<解得911k <<,所以10k =.故选:B【例2】(2022·甘肃·高台县第一中学高二阶段练习(理))已知n S 为数列{}n a 的前n 项和,且121n n S +=-,则数列{}n a 的通项公式为()A .2n n a =B .3,12,2n nn a n =⎧=⎨≥⎩C .12n n a -=D .12n n a +=【答案】B【分析】当2n ≥时,由1n n n a S S -=-求出2n n a =;当1n =时,由11a S =求出1a ;即可求解.【详解】当2n ≥时,121n n S -=-,1112212n n nn n n a S S +---+=-==;当1n =时,1111213a S +==-=,不符合2n n a =,则3,12,2n n n a n =⎧=⎨≥⎩.故选:B.【例3】(2022·全国·高三专题练习)已知数列{}n a 满足123235n a a a na n ++++= ,求{}n a 的通项公式.【题型专练】1.已知数列{}n a 的前n 项和是2320522nS n =-+,(1)求数列的通项公式n a ;(2)求数列{||}n a 的前n 项和.2.(2022·浙江·高二期末)已知数列{}n a 的前n 项和221n S n n =-+,则51a a -=______.【答案】7【分析】将1n =代入根据11a S =可得出答案;当2n ≥时由1n n n a S S -=-,求出5a ,从而可得出答案.【详解】当1n =时,21112110a S ==-⨯+=;当2n ≥时,()()22121121123n n n n n n n a S S n -⎡⎤-+----+=⎣⎦-=-=.所以52537a =⨯-=,所以51707a a -=-=.故答案为:73.(2022·辽宁实验中学高二期中)设数列{}n a 满足123211111222n n a a a a n -+++⋅⋅⋅+=+,则{}n a 的前n 项和()A .21n -B .21n +C .2nD .121n +-【答案】C 【解析】【分析】当1n =时,求1a ,当2n ≥时,由题意得123122111222n n a a a a n --+++⋅⋅⋅+=,可求得n a ,即可求解.【详解】解:当1n =时,12a =,当2n ≥时,由1231221111112222n n n n a a a a a n ---+++⋅⋅⋅++=+得123122111222n n a a a a n --+++⋅⋅⋅+=,两式相减得,1112n n a -=,即12n n a -=,综上,12,12,2n n n a n -=⎧=⎨≥⎩所以{}n a 的前n 项和为()11212224822212n n n ---+++++=+=- ,故选:C.题型二:叠加法(累加法)求通项【例1】在数列{}n a 中,()()()111,11N n n a n n a a n *+=+-=∈,则2022a =()A .40432022B .20212022C .40402021D .20202021【例2】已知数列{}n a 满足1=2a ,26a =,且2122n n n a a a ++-+=,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-),则222122020232021a a a ⎡⎤⎡⎤⎡⎤++⋅⋅⋅+=⎢⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()A .2019B .2020C .2021D .2022,【例3】南宋数学家在《详解九章算法》和《算法通变本末》中提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,高阶等差数中前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.现有高阶等差数列,其前7项分别为1,2,5,10,17,26,37,则该数列的第19项为()A.290B.325C.362D.399【例4】已知数列{}n a 满足11a =-,()*12N n n a a n n a a +-=∈,则9a =______.【例5】已知数列{}n a 中,11a =,39a =,1{}n n a a +-是公差为2的等差数列.(1)求{}n a 的通项公式;(2)设12log n n na b a +=,求数列{}n b 的前n 项和n T ,求使得2022n T 成立的最小整数n .【答案】(1)2n a n =;(2)使得2022≥n T 成立的最小整数n 为101121-.【分析】(1)根据等差数列的定义求出2a ,从而可求出{}1n n a a +-的通项,再利用累加法求出数列{}n a 的通项公式;(2)利用裂项相消法求数列{}n b 的前n 项和n T ,解不等式2022≥n T 求n 的范围,确定满足条件的最小整数.=【题型专练】1.若1=1a ,12nn n a a n +-=-,*n ∈N ,则=n a _________.1)2.数列{}n a 满足1122n n na a a -==-,,则=n a _____.3.若数列{}n a 满足11a =,12n n a a n +-=.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .【答案】(1)21n a n n =-+(2)证明见解析【分析】(1)运用累加法即可求出{}n a 的通项公式;(2)运用裂项相消法即可证明.【详解】(1)因为12n n a a n +-=,11a =,24.已知数列{}n a 满足:12a =,21a =,2145n n n a a a +++=(*n ∈N ).(1)证明:数列{}1n n a a +-是等比数列;(2)求数列{}n a 的通项公式.5.已知无穷数列{}n a 的前n 项和为n S ,11a =,24S =,对任意的*N n ∈,都有1232n n n n S S S a ++=++.(1)求数列{}n a 的通项公式;(2)若数列{}n c 满足*11(N )n n c c n a a +-=∈,11c =,求数列{}n c 的通项公式;题型三:叠乘法(累乘法)求通项【例1】已知数列{}n a 满足12n n a na n +=+,1=1a ,则数列{}n a 的通项公式是()A .2(1)n a n n =+B .1(1)n a n n =+C .1n a n=D .12n n a +=【例2】在数列{}n a 中,1=1a ,22a =,2n n a n+=,则12233420222023a a a a a a a a ++++= ()A .20202021⨯B .20212022⨯C .20222023⨯D .20232024⨯【例3】已知数列{}n a 满足()4(21)1N n n S n a n *=++∈,则n a =___________.【例4】记n S 为数列{}n a 的前n 项和,已知112a =,n n S a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列.(1)求{}n a 的通项公式;(2)设()1nn n b a =-,求{}n b 的前2n 项和2n T .【例5】设数列{}n a 的前n 项和为n S ,11a =,()()21N n n S n a n *=+∈.(1)求{}n a 的通项公式;(2)对于任意的正整数n ,21,2,n n n n a n a a c n +⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T .【例6】在数列{}n a 中,11a =,且2n ≥,1231231n n a a a a a n -++++=- .(1)求{}n a 的通项公式;(2)若1n b a a =,且数列{}n b 的前项n 和为n S ,证明:3n S <.【题型专练】1.数列{}n a 的前n 项和2n n S n a =⋅(2n ≥,n 为正整数),且11a =,则n a =______.a 2.数列{}n a 满足:11a =,()()*12312312,N n n a a a a n a n n -=++++-≥∈ ,则通项n a =________.3.设{}n a 是首项为1的正项数列且22*11(1)(21)0(N )n n n n na n a n a a n ++++-+=∈,且1+≠n n a a ,求数列{}n a 的通项公式_________4.已知数列{}n a 满足:12a =,12n n n a a n ++=,求数列{}n a 的通项公式.5.已知数列{}n a 中,11a =,()121n n a a n n -=≥-.(1)求数列{}n a 的通项公式;(2)求13523n a a a a +++++ .【答案】(1)n a n =,1n ≥;(2)244n n ++.【分析】(1)利用累乘法求出2n ≥时n a n =,通过验证11a =也满足n a n =,从而求出通项公式为n a n =,1n ≥;(2)根据第一问得到数列{}n a 为等差数列,进而利用等差数列求和公式进行求解.6.已知n S 为数列{}n a 的前n 项和,且11a =,2n n S n a =.(1)求2a ,3a ;(2)求{}n a 的通项公式.【例1】已知数列{}n a 中,114,46n n a a a +==-,则n a 等于()A .2122n ++B .2122n +-C .2122n -+D .2122n --【例2】若数列{}n a 和{}n b 满足12a =,10b =,1232n n n a a b +=++,1232n n n b a b +=+-,则20222021a b +=()A .2020231⋅+B .2020321⋅-C .2020321⋅+D .2021321⋅-【例3】(多选题)已知数列{}n a 满足132a =,16nn n a a +=+,则下列结论中错误的有()A .113n a ⎧⎫+⎨⎬⎩⎭为等比数列B .{}n a 的通项公式为11321n -⋅-C .{}n a 为递增数列D .1n a ⎧⎫⎨⎬⎩⎭的前n 项和为213nn --【例4】(多选题)已知数列{}n a 满足:12a =,当2n ≥时,)221n a +=,则关于数列{}n a 的说法正确的是()A .27a =B .{}n a 是递增数列C .221n a n n =+-D .数列{}n a 为周期数列【例5】在①121n n a a +=+;②122n n S n +=-+;③24n n S a n =-+三个条件中任选一个,补充到下面问题的横线处,并解答.已知数列{}n a 的前n 项和为n S ,且1=1a ,_____.(1)求n a ;(2)设n n b na =,求数列{}n b 的前n 项和n T .注:如果选捀多个条件解答,按第一个解答计分.【例6】已知数列{}n a 的前n 项和为n S ,且1222(N )n n n S a n +*=-+∈.(1)求{}n a 的通项公式;(2)设4nn na b =,若123n n T b b b b =+++⋯+,求n T .【题型专练】1.(多选题)数列{}n a 的首项为1,且121n n a a +=+,n S 是数列{}n a 的前n 项和,则下列结论正确的是()A .37a =B .数列{}1n a +是等比数列C .21n a n =-D .121n n S n +=--【答案】AB【分析】根据题意可得()1121n n a a ++=+,从而可得数列{}1n a +是等比数列,从而可求得数列{}n a 的通项,再根据分组求和法即可求出n S ,即可得出答案.2.已知数列{}n a 满足1111,2n n n n a a a a a ++=-=,则数列{}1n n a a +的前n 项和为______.3.已知数列{}n a 中,11a =,121n n a a +=+,则{}n a 通项n a =______;4.已知数列{}n a 满足24a =,113n n n n a a a a ++-=.求数列{}n a 的通项公式;5.已知数列{}n a 的前n 项和23n n S a n =+-,求{}n a 的通项公式.【答案】121n n a -=+,*n ∈N .【分析】根据12,n n n n a S S -≥=-,构造等比数列即可.【详解】23n n S a n =+-.①当1n =时,11213=+-a a ,可得12a =,当2n ≥时,()11213--=+--n n S a n ,②①-②得121n n a a -=-,则()1121n n a a --=-,而111a -=不为零,故{}1n a -是首项为1,公比为2的等比数列,则112n n a --=,∴数列{}n a 的通项公式为121n n a -=+,*n ∈N .6.设数列{}n a 满足12a =,()1212n n a a n -=-≥.(1)设1n n b a =-,求证:{}n b 是等比数列;(2)设{}n a 的前n 项和为n S ,求满足1036n S ≤的n 的最大值.7.已知正项数列{}n a 满足11a =,且11n n n n a a a a ++-=.(1)求数列{}n a 的通项公式;(2)记22nn a b n =+,记数列{}n b 的前n 项和为n S ,证明:12n S <.8.已知数列{}n a ,11a =,121n n a a +=+.(1)求数列{}1n a +的前5项;(2)求数列{}n a 的前n 项和n S .【答案】(1)前5项依次为2,4,8,16,32;(2)122n n S n +=--.【分析】(1)由题设112(1)n n a a ++=+,根据等比数列的定义写出{}1n a +的通项公式,即可得前5项;(2)应用分组求和,结合等比数列前n 项和公式求n S .(1)由题设112(1)n n a a ++=+,而112a +=,9.已知数列{}n a 和{}n b 满足12a =,10b =,1231n n a b n ++=+,1231n n a b n ++=+,则n n a b -=______,n n a b +=______.【答案】2n2n【分析】由题设有112()n n n n a b a b ++-=-,根据等比数列的定义判断{}n n a b -为等比数列,进而写出通项公式,令n n n c a b =+则12(2)2(1)n n c n c n +--=-+,结合已知{2}n c n -是常数列,即可得{}n n a b +的通项公式.【详解】由题设,11(2)(2)0n n n n a b a b +++-+=,则112()n n n n a b a b ++-=-,而112a b -=,所以{}n n a b -是首项、公比均为2的等比数列,故2nn n a b -=,11(2)(2)62n n n n a b a b n +++++=+,则112()()62n n n n a b a b n +++++=+,令n n n c a b =+,则1262n n c c n ++=+,故12(2)2(1)n n c n c n +--=-+,而111220c a b -=+-=,所以{2}n c n -是常数列,且20n c n -=,则2n n n c a b n =+=.故答案为:2n ,2n .题型五:已知通项公式n a 与前n 项的和n S 关系求通项问题【例1】已知数列{}n a 的前n 项和为n S ,23a =,且122n n a S +=+N n *∈(),则下列说法中错误..的是()A .112a =B .4792S =C .{}n a 是等比数列D .{}1n S +是等比数列【例2】(2022·上海市南洋模范中学高二开学考试)若数列{}n a 的前n 项和为()*N 33n n S a n =+∈,则数列{}n a 的通项公式是n a =___________.所以{}n a 是首项为1,公比为2-的等比数列,故1(2)n n a -=-.故答案为:1(2)n --【例3】已知数列{}n a 的前n 项和为n S ,0n a >,212n n a S +⎛⎫= ⎪⎝⎭.(1)求数列{}n a 的通项公式;(2)求数列{}2na n a ⋅的前n 项和.【例4】数列{}n a 中,n S 为{}n a 的前n 项和,24a =,()()*21N n n S n a n =+∈.(1)求证:数列{}n a 是等差数列,并求出其通项公式;(2)求数列12n S n ⎧⎫⎨⎬+⎩⎭的前n 项和n T .【例5】(2022·辽宁沈阳·高三阶段练习)从条件①()21,0n n n S n a a =+>;②22,0n n n n a a S a +=>;()2n a n ≥中任选一个,补充在下面问题中,并给出解答.已知数列{}n a 的前n 项和为n S ,1=1a ,_____________.(1)求{}n a 的通项公式;(2)[]x 表示不超过x 的最大整数,记[]lg n n b a =,求{}n b 的前100项和100T .则【题型专练】1.(2022·陕西·安康市教学研究室高三阶段练习(理))设数列{}n a 的前n 项和为n S ,已知21n n S a =-.(1)求数列{}n a 的通项公式;2.已知数列{}n a 的前n 项和为n S ,且满足12a =,()1202n n n a S S n -+=≥.求n a 和n S .3.已知正项数列{}n a 的前n 项和为n S ,且n a 和n S 满足:()11,2,3,n a n =+=⋅⋅⋅.求{}n a 的通项公式.4.已知等比数列{}n a 的前n 项和为n S ,且()1*21N n n a S n +=+∈.(1)求数列{}n a 的通项公式;(2)证明:11132a a a +++<L .5.已知数列{}n a 的前n 项和为n S ,313S =,121n n a S +=+.(1)证明:数列{}n a 是等比数列;(2)若12log n b a =,求数列{}1n n b b +的前n 项和n T .6.已知数列{}n a 中,11a =,其前n 项和为n S ,131n n S S +=+.(1)求数列{}n a 的通项公式;(2)设31log n n b a +=,若数列21n n b b +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:34n T <.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列常见题型分析与做法一、等差、等比数列的概念与性质1、已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比,求n a ;(I )依题意032),(32244342=+--+=a a a a a a a 即 03213131=+-∴q a q a q a21101322==⇒=+-∴q q q q 或211=∴≠q q 1)21(64-⨯=n n a 故二、求数列的通项 类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

例:已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 答案:nna n 1231121-=-+=∴类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。

例:已知数列{}n a 满足321=a ,nn a n n a 11+=+,求n a 答案:na n 32=∴类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。

解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中pq t -=1,再利用换元法转化为等比数列求解。

例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 提示:)3(231+=++n n a a 答案:321-=+n n a . 类型4 递推公式为n S 与n a 的关系式。

(或()n n S f a =)解法:这种类型一般利用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去n S)2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。

例:已知数列{}n a 前n 项和2214---=n n n a S . (1)求1+n a 与n a 的关系;(2)求通项公式n a .解:(1)由2214---=n n n a S 得:111214-++--=n n n a S 于是)2121()(1211--++-+-=-n n n n n n a a S S所以11121-+++-=n n n n a a a nn n a a 21211+=⇒+.(2)nn n a a 21211+=⇒+ 两边同乘以12+n 得:22211+=++n n n n a a由1214121111=⇒--==-a a S a .于是数列{}n na 2是以2为首项,2为公差的等差数列,所以n n a n n2)1(222=-+=12-=⇒n n n a三、数列求和公式法、分组求和、错位相减求和、裂项求和、倒序相加求和、累加累积1、设12122132(*),{}3log log n n n n n n n b b n N C T C C -++=⋅∈=⋅已知且为数列的前n 项和,求n T .解:,231-==n n n b C ,)1(12log 2log 1loglog11222212+=⋅=⋅∴+++n n C C n nn n而,111)1(1+-=+n nn n .111)111()4131()3121()211(+-=+-++-+-+-=∴n n nT n2、求和: . 答案:3、求数列n a =的前n 项和答案:14、已知集合A ={a|a =2n +9n -4,n ∈N 且a <2000},求A 中元素的个数,以及这些元素的和提示:210=1024,211=2048 答案:10 ; 25015、求证:nn n n nn n C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 倒序相加 6、求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S7、求数5,55,555,…,55…5 的前n 项和S n解: 因为55…5=)110(95-n所以 S n =5+55+555+…+55…5 =[])110()110()110(952-+⋅⋅⋅+-+-n=⎥⎦⎤⎢⎣⎡---n n110)110(1095 =815095108150--⨯n n一、选择题 1.在数列55,34,21,,8,5,3,2,1,1x 中,x 等于( )A .11B .12C .13D .142.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于( ) A .66B .99 C .144 D .297 3.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( )nnA .81B .120C .168D .192 4.12+与12-,两数的等比中项是( )A .1B .1-C .1±D .215.已知一等比数列的前三项依次为33,22,++x x x ,那么2113-是此数列的第( )项A .2B .4C .6D .86.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( )A .513 B .512 C .510 D .8225二、填空题1.等差数列{}n a 中, ,33,952==a a 则{}n a 的公差为______________。

2.数列{n a }是等差数列,47a =,则7s =_________ 3.两个等差数列{}{},,n n b a ,327......2121++=++++++n n b b b a a a nn 则55b a =___________.4.在等比数列{}n a 中, 若,75,393==a a 则10a =___________.5.在等比数列{}n a 中, 若101,a a 是方程06232=--x x 的两根,则47a a ⋅=___________. 6.计算3log n=___________. 三、解答题1.成等差数列的四个数的和为26,第二数与第三数之积为40,求这四个数。

2.在等差数列{}n a 中, ,1.3,3.0125==a a 求2221201918a a a a a ++++的值。

3.求和:)0(),(...)2()1(2≠-++-+-a n a a a n4.设等比数列{}n a 前n 项和为n S ,若9632S S S =+,求数列的公比q《数列》参考答案一、选择题 1.C 12n n n a a a +++=2.B 147369464639,27,339,327,13,9a a a a a a a a a a ++=++===== 91946999()()(139)99222S a a a a =+=+=+= 3.B43521423(13)27,3,3,12013a a q q a S a q-=======-4.C 2121)1,1x x ===±5.B 2(33)(22),4x x x x +=+⇒=- 133313,134(),422222n x q n x -+==-=-⨯=+ 6.C 332112131(1)18,()12,,2,22q a q a q q q q q q++=+====+或而89182(12),2,2,2251012q Z q a S -∈====-=-二、填空题 1.85233985252a a d --===-- 2. 49 71747()7492S a a a =+==3.12651955199"55199199()2792652929312()2a a a a a a Sb b b b S b b ++⨯+======+++ 4. 3375±610925,q q a a q ===⋅=± 5. 2- 471102a a a a ==- 6.112n-111111 (242422)333log log (333)log (3)nnn+++=⋅⋅⋅⋅=211[1()]111122 (11222212)nn n -=+++==--三、解答题1. 解:设四数为3,,,3a d a d a d a d --++,则22426,40a a d =-= 即1333,222a d ==-或,当32d =时,四数为2,5,8,11当32d =-时,四数为11,8,5,22. 解:1819202122201255,7 2.8,0.4a a a a a a a a d d ++++=-===20128 3.1 3.2 6.3a a d =+=+= ∴18192021222056.3531.5a a aaaa ++++==⨯= 3. 解:原式=2(...)(12...)na a a n +++-+++2(1)(1)(1)12(1)22n a a n n a a n n a ⎧-+-≠⎪⎪-=⎨⎪-=⎪⎩4. 解:显然1q ≠,若1q =则3619,S S a +=而91218,S a =与9632S S S =+矛盾由369111369(1)(1)2(1)2111a q a q a q S S S qqq---+=⇒+=---96332333120,2()10,,1,2q q q q q q q --=--==-=得或 而1q ≠,∴243-=q。

相关文档
最新文档