数列常见题型总结经典(超级经典)

合集下载

数列常见题型总结经典

数列常见题型总结经典

高中数学《数列》常见、常考题型总结题型一数列通项公式的求法1.前n 项和法(知n S 求n a )⎩⎨⎧-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122-=,求数列|}{|n a 的前n 项和n T 练习:1234.n S 52.(1(2例1.例2.例3.3.(11-n q .(2例1、在数列}{n a 中111,1-+==n n a n n a a )2(≥n ,求数列的通项公式。

答案:12+=n a n 练习:1、在数列}{n a 中1111,1-+-==n n a n n a a )2(≥n ,求n n S a 与。

答案:)1(2+=n n a n2、求数列)2(1232,111≥+-==-n a n n a a n n 的通项公式。

4.形如sra pa a n n n +=--11型(取倒数法)例1.已知数列{}n a 中,21=a ,)2(1211≥+=--n a a a n n n ,求通项公式n a练习:1、若数列}{n a 中,11=a ,131+=+n n n a a a ,求通项公式n a .答案:231-=n a n2、若数列}{n a 中,11=a ,112--=-n n n n a a a a ,求通项公式n a .答案:121-=n a n5.形如0(,1≠+=+c d ca a n n ,其中a a =1)型(构造新的等比数列)(1)若c=1时,数列{n a }为等差数列;(2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求. 方法如下:设,利用待定系数法求出A例126.(1)若例题.所以{=∴n b (2)若①若②若令n b 例1.在数列{}n a 中,521-=a ,且)(3211N n a a n n n ∈+-=--.求通项公式n a1、已知数列{}n a 中,211=a ,n n n a a 21(21+=-,求通项公式n a 。

数列求和5种常考题型总结(解析版)--2024高考数学常考题型精华版

数列求和5种常考题型总结(解析版)--2024高考数学常考题型精华版

数列求和5种常考题型总结【题型目录】题型一:分组求和法题型二:裂项相消法求和题型三:错位相减法求和题型四:先求和,再证不等式题型五:先放缩,再求和【典型例题】【例1】已知数列{}n a 的前n 项和1*44(N )33n n S n +=-∈.(1)求数列{}n a 的通项公式;(2)若2log n n n b a a =+,求数列{}n b 的前n 项和n T .【例2】已知各项均为正数的数列{}n a 中,11a =且满足221122n n n n a a a a ++-=+,数列{}n b 的前n 项和为n S ,满足213n n S b +=.(1)求数列{}n a ,{}n b 的通项公式;(2)若在k b 与1k b +之间依次插入数列{}n a 中的k 项构成新数列{}1122334564:,,,,,,,,,,n c b a b a a b a a a b ,求数列{}n c 中前40项的和40T .【例3】设n S 是各项为正的等比数列{}n a 的前n 项的和,且*2334N S a n ∈=,=,.(1)求数列{}n a 的通项公式;(2)在数列{}n a 的任意k a 与1k a +项之间,都插入()*N k k ∈个相同的数()1kk -,组成数列{}n b ,记数列{}n b 的前n 项的和为n T ,求100T 的值.【题型专练】1.已知数列{}n a 是等差数列,数列{}n b 是等比数列,若111a b ==,22331a b a b -=-=.(1)求数列{}n a 与数列{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .2.已知数列{}n a 的前n 项和为n S ,且11n n n S S a +=++,请在①4713a a +=;②137,,a a a 成等比数列;③1065S =,这三个条件中任选一个补充在上面题干中,并解答下面问题.(1)求数列{}n a 的通项公式;(2)若数列{}n n b a -是公比为2的等比数列,13b =,求数列{}n b 的前n 项和n T .3.(2022·广东广州·一模)已知公差不为0的等差数列{}n a 中,11a =,4a 是2a 和8a 的等比中项.(1)求数列{}n a 的通项公式:(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k += 之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.4.已知等差数列{}n a 满足121,21n n a a a ==+,设2n an b =.(1)求{}n b 的通项公式,并证明数列{}n b 为等比数列;(2)将1b 插入12,a a 中,23,b b 插入23,a a 中,456,,b b b 插入34,a a 中, ,依此规律得到新数列1122334564,,,,,,,,,,a b a b b a b b b a ,求该数列前20项的和.题型二:裂项相消法求和【例1】首项为4的等比数列{}n a 的前n 项和记为n S ,其中546S S S 、、成等差数列.(1)求数列{}n a 的通项公式;100【例2】已知数列{}n a 的首项为正数,其前n 项和n S 满足2343n n n nS a S a =--.(1)求实数λ的值,使得{}2n S λ+是等比数列;(2)设13n n n n b S S +=,求数列{}2n b 的前n 项和.【解析】(1)当1n =时,111823a a a =-,11S a =,解得22118S a ==;当2n ≥时,把1n n n a S S -=-代入题设条件得:22198n n S S -=+,即()221191nn S S -+=+,很显然}{21n S +是首项为8+1=9,公比为9的等比数列,∴1λ=;(2)由(1)知{}21n S +是首项为21190S +=≠,公比9q =的等比数列,所以291nnS =-,()()()()()()1211191919111188919919199111n nnnn n n n n n b ++++---⎛⎫==⨯=- ---⎝---⎭.故数列{}2n b 的前n 项和为:2221122334112111111111111891919191919191918891n n n n b b b ++⎛⎫⎛⎫++⋅⋅⋅+=-+-+-++-=- ⎪ ⎪---------⎝⎭⎝⎭.【例3】数列{}n a 的前n 项和n S ,342n n S a =-.(1)求n a ;(2)令2log 1n n b a =,求数列{}1n n b b +的前n 项和n T .)问的结论以及对数的运算性质,再利用裂项相消法进行求解【例4】(湖北省二十一所重点中学2023届高三上学期第三次联考数学试题)已知等差数列{}n a 的首项10a >,记数列{}n a 的前n 项和为()*N n S n ∈,且数列为等差数列.(1)证明:数列2n S n ⎧⎫⎨⎬⎩⎭为常数列;(2)设数列11n n n a S a a +⎧⎫⎨⎩⎭的前n 项和为()*N n T n ∈,求{}n T 的通项公式.【例5】已知数列{}n a 满足1n a +=11a =.(1)求数列{}n a 的通项公式;(2)1n c a a =+,n S 是数列{}n c 的前n 项和,求n S .【题型专练】1.记n S 为等比数列{}n a 的前n 项和.已知53227S S S -=-,且12,1,a a -成等差数列.(1)求{}n a 的通项公式;2.已知正项数列{}n a 的前n 项和为n S ,且满足22n n n S a a =+.(1)求数列{}n a 的通项公式;(2)设4n b a a =,数列{}n b 的前n 项和为n T ,证明:3n T <.3.已知数列{}n a 是公差不为零的等差数列,2414a a +=,且1a ,2a ,6a 成等比数列.(1)求{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n S .【解析】(1)等差数列{}n a 中,324214a a a =+=,解得37a =,因1a ,2a ,6a 成等比数列,即2216a a a =,设{}n a 的公差为d ,于是得()()()277273d d d -=-+,整理得230d d -=,而0d ≠,解得3d =,所以()3332n a a n d n =+-=-.(2)由(1)知,()()1111()323133231n b n n n n ==--+-+,所以111111[(1)()()]34473231n S n n =-+-+⋅⋅⋅+--+11(1)33131nn n =-=++.4.记n S 为数列{}n a 的前n 项和,已知11a =,且13n n S a +=-.(1)求数列{}n a 的通项公式;(2)已知数列{}n c 满足________,记n T 为数列{}n c 的前n 项和,证明:2n T <.从①211(1)(2)n n n n c a a a +++--=②221log n n n a c a ++=两个条件中任选一个,补充在第(2)问中的横线上并作答.【解析】(1)13n n S a +=- ①,当1n =时,123a a =-,24a ∴=;当2n ≥时,13n n S a -=-②①-②得,即12n n a a +=又2142a a =≠,∴数列{}n a 是从第2项起的等比数列,即当2n ≥时,2222n nn a a -=⋅=.1,1,2, 2.n n n a n =⎧∴=⎨≥⎩.(2)若选择①:()()()()()()2211111122211212212121222121n n n n n n n n n n n n a c a a ++++++++⋅⎛⎫====- ⎪--------⎝⎭,2231111111121212212121212121n n n n T ++⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪------⎝⎭⎝⎭.若选择②122n n n c ++=,则23134122222nn n n n T +++=++++ ③,34121341222222n n n n n T ++++=++++ ④,③-④得341212131112311212422224422n n n n n n n T ++-+++⎛⎫⎛⎫=++++-=+-- ⎪ ⎪⎝⎭⎝⎭ ,14222n n n T ++∴=-<.5.已知数列{}n a 前n 项和为n S ,且()21n S n n =+,记221(1)nn n n na b a a +=-+.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和为n T ,求2021T .【解析】(1)()112n S n n =+,当1n =时,111212S =⨯⨯=;当2n ≥,n *∈N 时,()1112n S n n -=-,()()1111122n n n a S S n n n n n -=-=+--=.当1n =时也符合,()n a n n N *∴=∈.(2)()()()()()()221212111111111nn n n n n n n n n a n b a a n n n n n n ++++⎛⎫=-=-=-=-+ ⎪++++⎝⎭202111111111 (122)33420212022T ⎛⎫⎛⎫⎛⎫⎛⎫∴=-++-++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111112023=1 (1223342021202220222022)--++--+--=--=-.题型三:错位相减法求和【例1】已知数列{}n a 满足12a =,且11220n n n n a a a a +++⋅-=,数列{}n b 是各项均为正数的等比数列,n S 为{}n b 的前n 项和,满足14b a =,378S =.(1)求数列{}n a 的通项公式;(2)设nnb C a =,记数列{}n C 的前n 项和为n T ,求n T 的取值范围.【例2】已知各项均不为零的数列{}n a 满足()1212320n n n n n a a a a a ++++-+=,且11a =,23a =,设1n n nb a a +=-.(1)证明:{}n b 为等比数列;(2)求1n n a ⎧⎫⎨⎬+⎩⎭的前n 项和n T .【例3】已知数列{}n a 的首项*112,322,N n n a a a n n -==+≥∈.(1)求n a ;(2)记()3log 1n n n b a a =⋅+,设数列{}n b 的前n 项和为n S ,求n S .【例4】已知各项为正数的数列{}n a 前n 项和为n S ,若()214n n S a =+.(1)求数列{}n a 的通项公式;(2)设3nn na b =,且数列{}n b 前n 项和为n T ,求证:1n T <.【例5】已知数列{}n a 的前n 项和n S 满足()*22N n n S a n =-∈.(1)求数列{}n a 的通项公式;(2)令4n n b a n =-,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【题型专练】1.若公比为c 的等比数列{}n a 的首项11a =且满足12(3,4,)2n n n a a a n --+==⋅⋅⋅.(1)求c 的值;(2)求数列{}n na 的前n 项和n S .2.已知数列{}n a 的前n 项和为n S ,11a =,121n n S a +=-.(1)求数列{}n a 的通项公式;(2)设(21)n n b n a =-,数列{}n b 的前n 项和为n T ,若存在*n ∈N 且2n ≥,使得2(1)(1)(1)n T n n n λ-≤-+成立,求实数λ的最小值.3.已知数列{}n a 前n 项和为12,n S a =,且满足()*1,N 2n n S a n n +=+∈.(1)求数列{}n a 的通项公式;(2)设()()211n n b n a =--,求数列{}n b 的前n 项和n T .4.已知数列{}n a 的前n 项和为n S ,且26a =,()121n n a S +=+.(1)证明:{}n a 为等比数列,并求{}n a 的通项公式;(2)求数列{}n na 的前n 项和n T .【答案】(1)证明见解析,123n n a -=⨯(*n ∈N )5.已知等差数列{}n a 的前n 项和为n S ,12a =,426S =.正项等比数列{}n b 中,12b =,2312b b +=.(1)求{}n a 与{}n b 的通项公式;(2)求数列{}n n a b 的前n 项和n T .【答案】(1)31n a n =-,2nn b =,(2)()13428n n T n +=-+【解析】【分析】(1)由等差数列的通项公式与求和公式,等比数列的通项公式求解即可;(2)由错位相减法求解即可(1)设等差数列的公差为d ,由已知得,4342262d ⨯⨯+=,解得3d =,所以()()1123131n a a n d n n =+-=+-=-,即{}n a 的通项公式为31n a n =-;设正项等比数列{}n b 的公比为(),0q q >,因为12b =,2312b b +=,所以()2212q q+=,所以260qq +-=,解得2q =或3q =-(负值舍去),所以2nn b =.(2)()312n n n a b n =-,所以()()1231225282342312n nn T n n -=⨯+⨯+⨯+⋅⋅⋅+-+-,所以()()23412225282342312n n n T n n +=⨯+⨯+⨯+⋅⋅⋅+-+-,相减得,()123412232323232312n n n T n +-=⨯+⨯+⨯+⨯+⋅⋅⋅+⋅--()()211132122231212n n n -+⨯⨯-=⨯+---,所以()13428n n T n +=-+.题型四:先求和,再证不等式【例1】设n S 为数列{n a }的前n 项和,已知123n n S a a +=,且10a ≠.(1)证明:{n a }是等比数列;(2)若12341,21,a a a -+成等差数列,记32log 1n n b a =-,证明12231111n n b b b b b b ++++ <12.【答案】(1)证明见解析(2)证明见解析【例2】已知数列{}n a 的前n 项和为n S ,___________,*n ∈N .在下面三个条件中任选一个,补充在上面问题中并作答.①22n n S a =-;②122222n n a a a n ++⋯⋯+=;③221232n n n a a a a +⋯⋯=注:如果选择多个条件分别解答,按第一个解答计分.(1)求数列{}n a 的通项公式;(2)记(1)(1)n n a b a a =--,n T 是数列{}n b 的前n 项和,若对任意的*n ∈N ,1n kT n>-,求实数k 的取值范围.项和,再将不等式恒成立问题转化求函数的最值问【例3】(2022江西丰城九中高二阶段练习)等差数列{}n a 中,前三项分别为,2,54x x x -,前n 项和为n S ,且2550k S =.(1)求x 和k 的值;(2)求n T =1231111nS S S S ++++ (3)证明:n T 1<【例4】(2022·浙江·高二期末)已知数列{}n a 满足114a =,134n n a a +=-.(1)证明数列{}2n a -为等比数列,并求{}n a 的通项公式;(2)设()()()113131nnn nn a b +-=++,数列{}n b 的前n 项和为n T ,若存在*n ∈N ,使n m T ≥,求m 的取值范围.【题型专练】1.已知数列{}n a 满足:()2222*12323N n a a a n a n n n ++++=+∈ .(1)求数列{}n a 的通项公式;(2)记n S 为数列{}1n n a a +的前n 项和()*N n ∈,求证:24n S ≤<.2.(2022陕西安康市教学研究室高一期末)已知数列{}n a 满足12a =,1(2)2(1)n n n a n a ++=+.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,证明:6n S <.3.已知数列{}n a 的首项13a =,()*1212,N n n a a n n -=+≥∈,()2log 1n n b a =+.(1)证明:{}1n a +为等比数列;(2)证明:1223111112n n b b b b b b +++⋅⋅⋅+<.【答案】(1)证明见解析4.已知数列{n a }的前n 项和为n S ,342n n S a =-,(1)求数列{n a }的通项公式;(2)设33log 4n n a b =,n T 为数列12n n b b +⎧⎫⎨⎬⎩⎭的前n 项和.证明:12n T ≤<【答案】(1)143n n a -=⨯;(2)证明见解析.【分析】(1)利用,n n a S 关系及等比数列的定义求通项公式;,结合数列单调性即可证结论5.已知数列{}n a 的前n 项和31n n S =-,其中*N n ∈.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11b =,()132n n n b b a n -=+≥,(i )证明:数列13nn b -⎧⎫⎨⎬⎩⎭为等差数列;(ii )设数列{}n b 的前n 项和为n T ,求380n n T n -⋅<-成立的n 的最小值.【答案】(1)()1*2·3n n a n -=∈N (2)(i )证明见解析;(ii )5【分析】(1)根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩即可求解;(2)11323n n n b b --=+⨯,两边除以13n -即可证明等差数列;利用错位相减法求n T ,解不等式即可求得n 的最小值.(1)31n n S =-,6.(2022·安徽·高三开学考试)已知数列{}n a 满足(12122n n a a a a n -+++-=- 且)*N n ∈,且24a =.(1)求数列{}n a 的通项公式;(2)设数列()()1211n n n a a +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和为n T ,求证:132<≤n T .【答案】(1)()*2n n a n =∈N (2)证明见解析【分析】(1)将已知条件与1212n n a a a a ++++-=- 两式相减,再结合等比数列的定义即可求解;(2)利用裂项相消求和法求出n T 即可证明.(1)题型五:先放缩,再求和【例1】已知数列{}n a 的前n 项和为12n S a =,,当2n ≥时,()21212n n n S nS n n --=+-.(1)求数列{}n a 的通项公式;(2)求证:2222111123a a a a +++< .【例2】(2022·浙江省义乌中学模拟预测)已知数列{}n a 单调递增且12a >,前n 项和n S 满足2441n n S a n =+-,数列{}n b 满足212n n nb b b ++=,且123a a b +=,233b a +=.(1)求数列{}n a 、{}n b 的通项公式;(2)若1n c a b =,求证:123415n c c c c ++++< .【例3】已知数列{}n a 的前n 项和为n S ,且满足12a =,()1202n n n a S S n -+=≥(1)求n a 和n S (2)求证:22221231124n S S S S n+++⋯+≤-.【例4】已知数列{}n a 的前n 项和为n S ,11a =,22a =,且214n n n S S a ++=+.(1)求n a ;(2)求证:121112111n a a a +++<+++ .【答案】(1)()12n n a n -*=∈N (2)证明见解析【分析】(1)分析可知数列{}21k a -是首项为11a =,公比为4的等比数列,数列{}2k a 是首项为22a =,公比【题型专练】1.已知数列{}n a 满足:12a =,132n n a a +=-,n *∈N .(1)设1n n b a =-,求数列{}n b 的通项公式;(2)设31323log log log n n T a a a =++⋅⋅⋅+,()n *∈N ,求证:()12n n n T ->.【答案】(1)13n n b -=(2)证明见解析2.(2022·全国·高三专题练习)已知数列{}n a 前n 项积为n T ,且*1()n n a T n +=∈N .(1)求证:数列11n a ⎧⎫⎨⎬-⎩⎭为等差数列;(2)设22212n n S T T T =++⋅⋅⋅+,求证:112n n S a +>-.为以3.已知数列{}n a 的前n 项和为n S ,()*322n n a S n n N =+∈.(1)证明:数列{}1n a +为等比数列,并求数列{}n a 的前n 项和为n S ;(2)设()31log 1n n b a +=+,证明:222121111nb b b ++⋅⋅⋅+<.【解析】(1)当1n =时,11322a S =+,即12a =由322n n a S n =+,则()1132212n n a S n n --=+-≥两式相减可得13223n n n a a a -=+-,即132n n a a -=+所以()1131n n a a -+=+,即1131n n a a -+=+数列{}1n a +为等比数列则()112133n n n a -+=+⨯=,所以31n n a =-则()()1231333333132nn n n n n S +--=+++-==--L (2)()1313log 1log 31n n n b a n ++=+==+()()2211111111n b n n n n n =<=+++所以2221211111111111122311n b b b n n n ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+<-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭L4.已知数列{}n a 满足11a =,且11n n a a n +-=+,n S 是1n a ⎧⎫⎨⎬⎩⎭的前n 项和.(1)求n S ;(2)若n T 为数列2n S n ⎧⎫⎪⎪⎛⎫⎨⎬ ⎪⎝⎭⎪⎪⎩⎭的前n 项和,求证:232n n T n >>+.。

高考数列题型总结(优秀范文五篇)

高考数列题型总结(优秀范文五篇)

高考数列题型总结(优秀范文五篇)第一篇:高考数列题型总结数列1.2.3.4.5.6.坐标系与参数方程 1.2.34..5.6.(1)(2)第二篇:数列综合题型总结数列求和1.(分组求和)(x-2)+(x2-2)+…+(xn-2)2.(裂相求和)++Λ+1⨯44⨯7(3n-2)(3n+1)3.(错位相减)135+2+3+222+2n-12n1⨯2+2⨯22+3⨯23+Λ+n⨯2n4.(倒写相加)1219984x)+f()+Λ+f()=x 求值设f(x),求f(1999199919994+25.(放缩法)求证:1+数列求通项6.(Sn与an的关系求通项)正数数列{an},2Sn=an+1,求数列{an}的通项公式。

7.(递推公式变形求通项)已知数列{an },满足,a1=1,8.累乘法an+1=5an求{an }的通项公式 5+an11++2232+1<2n2数列{an}中,a1=122,前n项的和Sn=nan,求an+1.2222a=S-S=na-(n-1)a⇒(n-1)a=(n-1)an-1 nnn-1nn-1n解:⇒∴∴an=ann-1=an-1n+1,anan-1a2n-1n-2111⋅Λ⋅a1=⋅Λ⨯=an-1an-2a1n+1n32n(n+1)an+1=1 (n+1)(n+2)9累加法第三篇:数列题型及解题方法归纳总结文德教育知识框架⎧列⎧数列的分类⎪数⎪⎪⎨数列的通项公式←函数⎪的概念角度理解⎪⎪⎩数列的递推关系⎪⎪⎧⎧等差数列的定义an-an-1=d(n≥2)⎪⎪⎪⎪⎪等差数列的通项公式an=a1+(n-1)d⎪⎪⎪等差数列⎪⎨n⎪⎪⎪等差数列的求和公式Sn=2(a1+an)=na1+n(n-1)d⎪⎪⎪⎪⎪2⎪⎩等差数列的性质an+am=ap+aq(m+n=⎪⎪p+q)⎪两个基⎪⎧等比数列的定义an=q(n≥⎪本数列⎨⎪⎪a2)n-1⎪⎪⎪⎪⎪⎪等比数列的通项公式an-1⎪n=a1q数列⎪⎪等比数列⎨⎨⎧a1-anq=aqn1(1-)⎪⎪⎪等比数列的求和公式S(q≠1)n=⎪⎨1-q1-q⎪⎪⎪⎪⎪⎪⎪⎩na1(q=1)⎪⎪⎪⎩等比数列的性质anam=apaq(m+n=p+q)⎪⎩⎪⎧公式法⎪⎪分组求和⎪⎪⎪⎪错位相减求和⎪数列⎪⎪求和⎨裂项求和⎪⎪倒序相加求和⎪⎪⎪⎪累加累积⎪⎪⎩归纳猜想证明⎪⎪⎪数列的应用⎧分期付款⎨⎩⎩其他掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

数列的19种经典题型

数列的19种经典题型

数列的19种经典题型一、公差不等于零的等差数列1. 前n项和:求出前n项的和Sn=a1+a2+…+an,Sn=n/2*(a1+an);2. 等比数列的前n项和:求出前n项的和Sn=a1+a2+…+an,若q为等比数列的公比,则Sn = a1(1-q^n)/(1-q);3. 概率的前n项和:求出前n项的和Sn=a1+a2+…+an,若q为概率的公比,则Sn = a1(1-q^n)/(1-q);4. 等差数列的前n项乘积:求出前n项的乘积Pn = a1*a2*…*an,若d为等差数列的公差,则Pn = (a1 + (n-1)*d) * (a1 + (n-2)*d) * … * a1;5. 等比数列的前n项乘积:求出前n项的乘积Pn = a1*a2*…*an,若q为等比数列的公比,则Pn = a1 *q^(n-1) * q^(n-2) * … * a1;6. 概率的前n项乘积:求出前n项的乘积Pn =a1*a2*…*an,若q为概率的公比,则Pn = a1 * q^(n-1) * q^(n-2) * … * a1;7. 等差数列的通项公式:若a1,a2,…,an为等差数列,若d为该数列的公差,则an = a1+(n-1)*d;列,若q为该数列的公比,则an = a1*q^(n-1);9. 概率的通项公式:若a1,a2,…,an为概率的序列,若q为该数列的公比,则an = a1*q^(n-1);10. 等差数列中某项的值:若a1,a2,…,an为等差数列,若d为该数列的公差,若知a1的值,则求出an的值,只需要把an的表达式代入即可。

11. 等比数列中某项的值:若a1,a2,…,an为等比数列,若q为该数列的公比,若知a1的值,则求出an的值,只需要把an的表达式代入即可。

12. 概率的某项的值:若a1,a2,…,an为概率的序列,若q为该数列的公比,若知a1的值,则求出an的值,只需要把an的表达式代入即可。

(完整)(经典)高中数学最全数列总结及题型精选,推荐文档

(完整)(经典)高中数学最全数列总结及题型精选,推荐文档


A.120
B.105
(四)、等差数列的性质:
C. 90
D. 75
1 在等差数列an中,从第 2 项起,每一项是它相邻二项的等差中项;
2 在等差数列an中,相隔等距离的项组成的数列是等差数列; 3 在等差数列a中,对任意 m , n N , a a (n m)d ,d an am (m n) ;
点。
(4) 数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系
分:递增数列、递减数列、常数列和摆动数列。
例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列?
(1)1,2,3,4,5,6,…
(2)10, 9, 8, 7, 6, 5, …
(3) 1, 0, 1, 0, 1, 0, …
(4)a, a, a, a, a,…
(5) 数列{ an}的前 n 项和 S 与n 通项 a 的n 关系: a n
SS1 S
(n (n
≥12) )
n
n1
二、等差数列
(一)、等差数列定义:一般地,如果一个数列从第2 项起,每一项与它的前一项的差等于同一个常数,那么这 个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示。用递推公式表示为 an an1 d (n 2) 或 an1 an d (n 1)
n
n
m
n m
(4) 在等差数列an中,若 m , n , p , q N 且 m n p q ,则 am an ap aq ;
(五)、等差数列的前 n 和的求和公式: S n(a1 an ) na n(n 1) d 1 n 2 (a d )n 。 (
n
2
1

(经典)高中数学最全数列总结与题型精选

(经典)高中数学最全数列总结与题型精选

高中数学:数列及最全总结和题型精选一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。

记作a n ,在数列第一个位置的项叫第 1项(或首项),在第二个位置的叫第2项,……,序号为 n 的项叫第n 项(也叫通项)记作 a n ; 数列的一般形式:a1, a 2, a 3,……,……,简记作 {a n }。

(2)通项公式的定义:如果数列 {a n }的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。

例如:①:1 , 2 , 3 , 4, 5.1111 1,—2 3 4 5说明:①{a n }表示数列,斗表示数列中的第n 项,a n = f (n 庚示数列的通项公式; n-1,n =2k-1a n =(-1)n =n1,n=2k③不是每个数列都有通项公式。

例如, 1, 1.4, (3)数列的函数特征与图象表示:从函数观点看,数列实质上是定义域为正整数集N + (或它的有限子集)的函数 f (n)当自变量n 从1开始依次取值时对应的一系列函数值 f(1),f(2), f(3),……,f(n),…….通常用an 来代替f (n ),其图象是一群孤 立点。

(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系 分:递增数列、递减数列、常数列和摆动数列。

例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列?(1) 1, 2, 3, 4, 5, 6,… (2)10, 9, 8, 7, 6, 5, … (3) 1,0, 1,0, 1,0,…(4)a, a, a, a, a,…(5)数列{a n }的前n 项和S n 与通项a n 的关系:二、等差数列(一)、等差数列定义:一般地,如果一个数列从第_2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母_d 表示。

(完整word版)数列常见题型总结经典(超级经典)

(完整word版)数列常见题型总结经典(超级经典)

高中数学《数列》常有、常考题型总结题型一数列通项公式的求法1.前 n 项和法(知 S n 求 a n ) a nS 1(n 1)S n S n 1(n 2)例 1、已知数列 { n } 的前 n 项和 S n 12nn 2 ,求数列{| a n|} 的前 n 项和T na1、若数列 {a n } 的前 n项和 S2n,求该数列的通项公式。

n2、若数列 { a n } 的前 n 项和 S n3 a n 3 ,求该数列的通项公式。

23、设数列 {} 的前,知足 T2Sn 2,a n n 项和为S n ,数列{ S n } 的前n 项和为T nnn求数列 { a n } 的通项公式。

2. 形如 a n 1 a nf (n) 型(累加法)( 1)若 f(n) 为常数 , 即: a n 1 a n d , 此时数列为等差数列,则 a n =a 1(n 1)d .( 2)若 f(n) 为 n 的函数时,用累加法 .例 1. 已知数列{ a n }知足 a 1 1, a n3n 11. 已知数列a n 的首项为 1,且 a n 1a n 2. 已知数列 { a n } 知足 a 1 3 , a na n 13. 形如an 1( )f n 型(累乘法)a na n 1 ( n 2) , 证明 a n 3n122n(n N * ) 写出数列a n 的通项公式 .1 ( n 2) ,求此数列的通项公式 .n(n 1)( 1)当 f(n) 为常数,即:a n 1q (此中 q 是不为 0 的常数),此数列为等比且 a n = a 1 q n 1 .a n( 2)当 f(n) 为 n 的函数时 , 用累乘法 .例 1、在数列 { a n } 中 a 11, a nn a n 1 (n 2) ,求数列的通项公式。

n 1 1、在数列 { a n } 中 a 11, a n n 1a n 1 (n 2) ,求 a n 与 S n 。

(word完整版)数列全部题型归纳(非常全面,经典),推荐文档

(word完整版)数列全部题型归纳(非常全面,经典),推荐文档

数列百通通项公式求法 (一)转化为等差与等比1、已知数列{}n a 满足11a =,211n n a a -=+(,n N *∈2≤n ≤8),则它的通项公式n a 什么2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么3.首项为2的数列,并且231n n a a -=,则它的通项公式n a 是什么4、已知数列{}n a 中,10a =,112n na a +=-,*N n ∈.求证:11n a ⎧⎫⎨⎬-⎩⎭是等差数列;并求数列{}n a 的通项公式;5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式(二)含有n S 的递推处理方法1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.2.)若数列{}n a 的前n 项和n S 满足,2(2)8n n a S +=则,数列n a3)若数列{}n a 的前n 项和n S 满足,111,0,4n n n n a S S a a -=-≠=则,数列na4)12323...(1)(2)n a a a na n n n +++=++求数列n a(三) 累加与累乘(1)如果数列{}n a 中111,2nn n a a a -=-=(2)n ≥求数列n a(2)已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式(3) 12+211,2,=32n n n a a a a a +==-,求此数列的通项公式.(4)若数列{}n a 的前n 项和n S 满足,211,2n n S n a a ==则,数列n a(四)一次函数的递推形式1. 若数列{}n a 满足1111,12n n a a a -==+(2)n ≥,数列n a2 .若数列{}n a 满足1111,22n n n a a a -==+ (2)n ≥,数列n a(五)分类讨论(1)2123(3),1,7n n a a n a a -=+≥==,求数列n a(2)1222,(3)1,3nn a n a a a -=≥==,求数列n a(六)求周期16 (1) 121,41nn na a a a ++==-,求数列2004a(2)如果已知数列11n n n a a a +-=-,122,6a a ==,求2010a拓展1:有关等和与等积(1)数列{n a }满足01=a ,12n n a a ++=,求数列{a n }的通项公式(2)数列{n a }满足01=a ,12n n a a n ++=,求数列{a n }的通项公式(3).已知数列满足}{n a )(,)21(,3*11N n a a a n n n ∈=⋅=+,求此数列{a n }的通项公式.拓展2 综合实例分析1已知数列{a n }的前n 项和为n S ,且对任意自然数n ,总有()1,0,1n n S p a p p =-≠≠(1)求此数列{a n }的通项公式(2)如果数列{}n b 中,11222,,n b n q a b a b =+=<,求实数p 的取值范围2已知整数列{a n }满足31223341 (3)n n n n a a a a a a a a --+++=,求所有可能的n a3已知{}n a 是首项为1的正项数列,并且2211(1)0(1,2,3,)n n n n n a na a a n +++-+==L ,则它的通项公式n a 是什么4已知{}n a 是首项为1的数列,并且134n n n a a a +=+,则它的通项公式n a 是什么5、数列{}n a 和{}n b 中,1,,+n n n a b a 成等差数列,n b ,1+n a ,1+n b 成等比数列,且11=a ,21=b ,设nn n b a c =,求数列{}n c 的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学《数列》常见、常考题型总结
题型一 数列通项公式的求法
1.前n 项和法(知n S 求n a )⎩⎨
⎧-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T
1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。

2、若数列}{n a 的前n 项和32
3-=
n n a S ,求该数列的通项公式。

3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。

2.形如)(1n f a a n n =-+型(累加法)
(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+.
(2)若f(n)为n 的函数时,用累加法.
例 1. 已知数列{a n }满足)2(3
,1111≥+==--n a a a n n n ,证明2
13-=n n a
1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.
2. 已知数列}{n a 满足31=a ,)2()
1(11≥-+
=-n n n a a n n ,求此数列的通项公式.
3.形如
)(1n f a a n
n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-⋅n q a . (2)当f(n)为n 的函数时,用累乘法.
例1、在数列}{n a 中111,1-+=
=n n a n n a a )2(≥n ,求数列的通项公式。

1、在数列}{n a 中1111,1-+-=
=n n a n n a a )2(≥n ,求n n S a 与。

2、求数列)2(1232,11
1≥+-==-n a n n a a n n 的通项公式。

4.形如s
ra pa a n n n +=
--11型(取倒数法) 例1. 已知数列{}n a 中,21=a ,)2(1211≥+=--n a a a n n n ,求通项公式n a
练习:1、若数列}{n a 中,11=a ,1
31+=+n n n a a a ,求通项公式n a .
2、若数列}{n a 中,11=a ,112--=-n n n n a a a a ,求通项公式n a .
5.形如0(,1≠+=+c d ca a n n ,其中a a =1)型(构造新的等比数列)
(1)若c=1时,数列{n a }为等差数列;(2)若d=0时,数列{n a }为等比数列;
(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求. 方法如下:设)(1A a c A a n n +=++,利用待定系数法求出A
例1.已知数列}{n a 中,,2121,211+=
=+n n a a a 求通项n a .
练习:1、若数列}{n a 中,21=a ,121-=+n n a a ,求通项公式n a 。

3、若数列}{n a 中,11=a ,13
21+=
+n n a a ,求通项公式n a 。

6.形如)(1n f pa a n n +=+型(构造新的等比数列)
(1)若b kn n f +=)(一次函数(k,b 是常数,且0≠k ),则后面待定系数法也用一次函数。

例题. 在数列{}n a 中,2
31=a ,3621-+=-n a a n n ,求通项n a .
练习:1、已知数列{}n a 中,31=a ,2431-+=+n a a n n ,求通项公式n a
(2)若n
q n f =)((其中q 是常数,且n ≠0,1)
①若p=1时,即:n n n q a a +=+1,累加即可
②若1≠p 时,即:n n n q a p a +⋅=+1,后面的待定系数法也用指数形式。

两边同除以1+n q
. 即: q q a q p q a n n n n 111
+⋅=++, 令n n n q a b =
,则可化为q b q p b n n 11+⋅=+.然后转化为类型5来解,
例1. 在数列{}n a 中,521-=a ,且)(3211N n a a n n n ∈+-=--.求通项公式n a
1、已知数列{}n a 中,211=
a ,n n n a a )2
1(21+=-,求通项公式n a 。

2、已知数列{}n a 中,11=a ,n n n a a 2331⋅+=+,求通项公式n a 。

题型二 根据数列的性质求解(整体思想)
1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;
2、设n S 、n T 分别是等差数列{}n a 、{}n b 的前n 项和,
327++=n n T S n n ,则=55b a .
3、设n S 是等差数列{}n a 的前n 项和,若
==5
935,95S S a a 则( )
5、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。

6、已知n S 为等比数列{}n a 前n 项和,54=n S ,602=n S ,则=n S 3 .
7、在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为( )
8、在等比数列中,已知910(0)a a a a +=≠,1920a a b +=,则99100a a += .
题型三:证明数列是等差或等比数列
A)证明数列等差
例1、已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=
21.求证:{n S 1}是等差数列;
B )证明数列等比
例1、已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈
⑴证明:数列{}1n n a a +-是等比数列; ⑵求数列{}n a 的通项公式;
题型四:求数列的前n 项和
基本方法:A )公式法,
B )分组求和法
1、求数列n
{223}n +-的前n 项和n S .
C )裂项相消法,数列的常见拆项有:1111()()n n k k n n k =-++;n n n n -+=++11
1; 例1、求和:S =1+
n ++++++++++ 32113211211
例2、求和:
n
n +++++++++11341231121 .
D )倒序相加法, 例、设22
1)(x
x x f +=,求:).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++
E )错位相减法,
1、若数列{}n a 的通项n n n a 3)12(⋅-=,求此数列的前n 项和n S .
3. 21123(0)n n S x x nx x -=++++≠ (将分为1=x 和1≠x 两种情况考虑)。

相关文档
最新文档