高中数学复习系列---数列常见题型总结

合集下载

高考数学专题—数列求前n项和的5种常用方法总结

高考数学专题—数列求前n项和的5种常用方法总结

高考数学专题——数列(求S n )求s n 的四种方法总结常考题型:共5种大题型(包含倒序相加法、错位相减法、裂项相消法、分组转化法、并项求和法。

1、倒序相加法:实质为等差数列求和。

例1、【2019·全国2·文T18】已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n .求数列{b n }的前n 项和.【解析】(1)设{a n }的公比为q,由题设得2q 2=4q+16,即q 2-2q-8=0,解得q=-2(舍去)或q=4. 因此{a n }的通项公式为a n =2×4n-1=22n-1.(2)由(1)得b n =(2n-1)log 22=2n-1,因此数列{b n }的前n 项和为1+3+…+2n-1=n 2. 2、错位相减法:实质为等差×等比求和。

错位相减法的万能公式及推导过程:公式:数列c n =(an +b )q n−1,(an +b )为等差数列,q n−1为等比数列。

前n 项和S n =(An +B )q n +C A =a q −1,B =b −Aq −1,C =−B S n =(a +b )+(2a +b )q +(3a +b )q 2+⋯[(n −1)a +b ]q n−2+(an +b )q n−1 ① qS n =(a +b )q +(2a +b )q 2+(3a +b )q 3+⋯[(n −1)a +b ]q n−1+(an +b )q n ② ②-①得:(q −1)s n =−(a +b )−a (q +q 2+⋯q n−1)+(an +b )q n=−(a +b )−a ⋅q(1−q n−1)1−q+(an +b )q n=(an +b −aq−1)q n −(b −aq−1)S n =(aq −1⋅n +b −a q −1q −1)⋅q n −b −aq −1q −1例2、【2020年高考全国Ⅰ卷理数】设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【解析】(1)设{}n a 的公比为q ,由题设得1232,a a a =+ 即21112a a q a q =+.所以220,q q +-= 解得1q =(舍去),2q =-. 故{}n a 的公比为2-.(2)设n S 为{}n na 的前n 项和.由(1)及题设可得,1(2)n n a -=-.所以112(2)(2)n n S n -=+⨯-++⨯-,21222(2)(1)(2)(2)n n n S n n --=-+⨯-++-⨯-+⨯-.可得2131(2)(2)(2)(2)n n n S n -=+-+-++--⨯-1(2)=(2).3n n n ---⨯-所以1(31)(2)99nn n S +-=-. 例3、【2020年高考全国III 卷理数】设数列{a n }满足a 1=3,134n n a a n +=-. (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .【解析】(1)235,7,a a == 猜想21,n a n =+ 由已知可得 1(23)3[(21)]n n a n a n +-+=-+, 1(21)3[(21)]n n a n a n --+=--,……2153(3)a a -=-.因为13a =,所以2 1.n a n =+(2)由(1)得2(21)2n n n a n =+,所以23325272(21)2n n S n =⨯+⨯+⨯+++⨯. ①从而23412325272(21)2n n S n +=⨯+⨯+⨯+++⨯.②-①② 得23132222222(21)2n n n S n +-=⨯+⨯+⨯++⨯-+⨯,所以1(21)2 2.n n S n +=-+例4、【2020届辽宁省大连市高三双基测试数学】已知数列{}n a 满足:n a n ⎧⎫⎨⎬⎩⎭是公比为2的等比数列,2n n a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列.(I )求12,a a 的值;(Ⅱ)试求数列{}n a 的前n 项和n S .【解析】(Ⅰ)方法一:n a n ⎧⎫⎨⎬⎩⎭构成公比为2的等比数列 21221a a ∴=⨯ 214a a ∴=又2n n a ⎧⎫⎨⎬⎩⎭构成公差为1的等差数列 2121122a a ∴-=,解得1228a a =⎧⎨=⎩方法二:n a n ⎧⎫⎨⎬⎩⎭构成公比为2的等比数列,1112,n n a n a n+∴=1(1)2n n n a a n ++∴=.①又2n n a ⎧⎫⎨⎬⎩⎭构成公差为1的等差数列, 11122n nn na a ++∴-=② 由①②解得:2nn a n =⋅1228a a =⎧⎨=⎩ (Ⅱ)1122,1n n n a a n -=⋅= 2n n a n ∴=⋅123n n S a a a a =+++⋅⋅⋅+1231222322n n =⋅+⋅+⋅+⋅⋅⋅+⋅ 234121222322n n S n +∴=⋅+⋅+⋅+⋅⋅⋅+⋅两式作差可得:23122222n n n S n +-=+++⋅⋅⋅+-⋅()1212212n n n n S +-=-⋅--1(1)22n n n S +=⋅---, 1(1)22n n S n +∴=-⋅+.例5、【2020届江西省吉安市高三上学期期末数学】数列{}n a 的前n 项和为n S ,且满足11a =,121n n a S +-=.(I )求{}n a 的通项公式;(Ⅱ)若3log n n b a =,数列2221n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,求证:12nT <.【解析】(I )当1n =时,由11a =,2121a a -=得23a =;当2n ≥时,121n n a S --=,两式相减得()1120n n n n a a S S +----=, 即13n n a a +=(2)n ≥,又2133a a ==, 故13n n a a +=恒成立,则数列{}n a 是公比为3的等比数列,可得13-=n n a . (Ⅱ)由(I )得313log log 31n n n b a n -===-,则22211111(21)(21)22121n n b b n n n n +⎛⎫==- ⎪⋅-⋅+-+⎝⎭,则111111123352121n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111221n ⎛⎫=- ⎪+⎝⎭. 1021n >+ 11112212n ⎛⎫∴-< ⎪+⎝⎭ 故12n T <例6、【2017·天津·理T18】已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n-1}的前n 项和(n ∈N *).【解析】(1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12,而b 1=2,所以q 2+q-6=0.又因为q>0,解得q=2. 所以,b n =2n.由b 3=a 4-2a 1,可得3d-a 1=8.①由S 11=11b 4,可得a 1+5d=16,②联立①②,解得a 1=1,d=3,由此可得a n =3n-2.所以,数列{a n }的通项公式为a n =3n-2,数列{b n }的通项公式为b n =2n.(2)设数列{a 2n b 2n-1}的前n 项和为T n ,由a 2n =6n-2,b 2n-1=2×4n-1,有a 2n b 2n-1=(3n-1)×4n, 故T n =2×4+5×42+8×43+…+(3n-1)×4n,4T n =2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=12×(1-4n )1-4-4-(3n-1)×4n+1=-(3n-2)×4n+1-8.得T n =3n -23×4n+1+83. 所以,数列{a 2n b 2n-1}的前n 项和为3n -23×4n+1+83. 例7、【2020·石家庄模拟】设数列{a n }的前n 项和为S n ,且2S n =3a n -1. (1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n . 解:(1)由2S n =3a n -1,① 得2S n -1=3a n -1-1(n ≥2),② ①-②,得2a n =3a n -3a n -1, 所以a n a n -1=3(n ≥2),又2S 1=3a 1-1,2S 2=3a 2-1, 所以a 1=1,a 2=3,a 2a 1=3, 所以{a n }是首项为1,公比为3的等比数列, 所以a n =3n -1.(2)由(1)得,b n =n3n -1,所以T n =130+231+332+…+n3n -1,③13T n =131+232+…+n -13n -1+n 3n ,④ ③-④得,23T n =130+131+132+…+13n -1-n 3n =1-13n1-13-n 3n =32-2n +32×3n ,所以T n =94-6n +94×3n . 3、裂项相消法:实质为a n =b n (n+a )形式的求和。

高中数列题型大全

高中数列题型大全

高中数列题型大全高中数列题型大全1.算数数列算数数列是一个常见的数列类型,其中每个数与前一个数之间的差值是相等的。

算数数列的通项公式为an = a1 + (n-1)d,其中a1为第一个数,d为公差,n为要求的项数。

2.等差数列等差数列是指每个数与前一个数之间的差值是相等的,与算数数列类似。

等差数列的通项公式为an = a1 + (n-1)d,其中a1为第一个数,d为公差,n为要求的项数。

3.几何数列几何数列是一种数列,其中每个数与前一个数之间的比值是相等的。

几何数列的通项公式为an = a1 * r^(n-1),其中a1为第一个数,r为公比,n为要求的项数。

4.等比数列等比数列是指每个数与前一个数之间的比是相等的,与几何数列类似。

等比数列的通项公式为an = a1 * r^(n-1),其中a1为第一个数,r为公比,n为要求的项数。

5.递推数列递推数列是一种数列,其中每个数都是前面一个或前几个数的函数。

递推数列的通项公式通常比较复杂,需要使用递推公式来求解。

6.级数级数是指将一个数列中的所有数相加而得到的结果。

级数有许多有趣的性质和应用,如调和级数、几何级数、收敛和发散等。

7.斐波那契数列斐波那契数列是一种数列,其中每个数都是前面两个数之和。

斐波那契数列有许多应用,如黄金比例、兔子繁殖等。

8.其它数列除了上述常见的数列类型之外,还有一些特殊的数列类型,如质数数列、猜测终止数列等。

这些数列类型可能比较少见,但它们也有着自己的特点和应用。

总结高中数学中,数列是一个非常重要的概念和应用。

数列不仅有着丰富的性质和变换规律,还有着广泛的应用,如金融领域、物理领域、计算机科学等。

掌握数列的基本概念和性质,对于学生未来的学习和职业发展都有着积极的影响。

高考数列题型总结(优秀范文五篇)

高考数列题型总结(优秀范文五篇)

高考数列题型总结(优秀范文五篇)第一篇:高考数列题型总结数列1.2.3.4.5.6.坐标系与参数方程 1.2.34..5.6.(1)(2)第二篇:数列综合题型总结数列求和1.(分组求和)(x-2)+(x2-2)+…+(xn-2)2.(裂相求和)++Λ+1⨯44⨯7(3n-2)(3n+1)3.(错位相减)135+2+3+222+2n-12n1⨯2+2⨯22+3⨯23+Λ+n⨯2n4.(倒写相加)1219984x)+f()+Λ+f()=x 求值设f(x),求f(1999199919994+25.(放缩法)求证:1+数列求通项6.(Sn与an的关系求通项)正数数列{an},2Sn=an+1,求数列{an}的通项公式。

7.(递推公式变形求通项)已知数列{an },满足,a1=1,8.累乘法an+1=5an求{an }的通项公式 5+an11++2232+1<2n2数列{an}中,a1=122,前n项的和Sn=nan,求an+1.2222a=S-S=na-(n-1)a⇒(n-1)a=(n-1)an-1 nnn-1nn-1n解:⇒∴∴an=ann-1=an-1n+1,anan-1a2n-1n-2111⋅Λ⋅a1=⋅Λ⨯=an-1an-2a1n+1n32n(n+1)an+1=1 (n+1)(n+2)9累加法第三篇:数列题型及解题方法归纳总结文德教育知识框架⎧列⎧数列的分类⎪数⎪⎪⎨数列的通项公式←函数⎪的概念角度理解⎪⎪⎩数列的递推关系⎪⎪⎧⎧等差数列的定义an-an-1=d(n≥2)⎪⎪⎪⎪⎪等差数列的通项公式an=a1+(n-1)d⎪⎪⎪等差数列⎪⎨n⎪⎪⎪等差数列的求和公式Sn=2(a1+an)=na1+n(n-1)d⎪⎪⎪⎪⎪2⎪⎩等差数列的性质an+am=ap+aq(m+n=⎪⎪p+q)⎪两个基⎪⎧等比数列的定义an=q(n≥⎪本数列⎨⎪⎪a2)n-1⎪⎪⎪⎪⎪⎪等比数列的通项公式an-1⎪n=a1q数列⎪⎪等比数列⎨⎨⎧a1-anq=aqn1(1-)⎪⎪⎪等比数列的求和公式S(q≠1)n=⎪⎨1-q1-q⎪⎪⎪⎪⎪⎪⎪⎩na1(q=1)⎪⎪⎪⎩等比数列的性质anam=apaq(m+n=p+q)⎪⎩⎪⎧公式法⎪⎪分组求和⎪⎪⎪⎪错位相减求和⎪数列⎪⎪求和⎨裂项求和⎪⎪倒序相加求和⎪⎪⎪⎪累加累积⎪⎪⎩归纳猜想证明⎪⎪⎪数列的应用⎧分期付款⎨⎩⎩其他掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

高中数学最全数列总结及题型精选

高中数学最全数列总结及题型精选

高中数学最全数列总结及题型精选-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII高中数学:数列及最全总结和题型精选一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。

记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。

(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。

例如:①:1 ,2 ,3 ,4, 5 ,…②:514131211,,,,… 说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。

例如,n a = (1)n-=1,21()1,2n k k Z n k-=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。

例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示:从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。

(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:递增数列、递减数列、常数列和摆动数列。

例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,…(5)数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n n n S n a S S n -=⎧=⎨-⎩≥二、等差数列(一)、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

数列精华题型归纳(含详解)

数列精华题型归纳(含详解)

数列精华题型归纳一、 等差数列的定义与性质() 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ⇔=+2 ()()前项和n S a a n nan n d n n =+=+-11212{}性质:是等差数列a n()若,则;1m n p q a a a a m n p q +=++=+ {}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232-- ()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则;42121a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn a b n n n ⇔=+ 0的二次函数){}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2项,即:当,,解不等式组可得达到最大值时的值。

a d a a S n n n n 110000><≥≤⎧⎨⎩+当,,由可得达到最小值时的值。

a d a a S n n n n 110000<>≤≥⎧⎨⎩+{}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123(由,∴a a a a a n n n n n ++=⇒==----12113331()又·,∴S a a aa 31322233113=+===()()∴·S a a n a a n nn n n =+=+=+⎛⎝ ⎫⎭⎪=-12122131218 ∴=n 27) 二、等比数列的定义与性质 定义:(为常数,),a a q q q a a q n nn n +-=≠=1110 等比中项:、、成等比数列,或x G y G xy G xy ⇒==±2()前项和:(要注意)n S na q a q qq n n ==--≠⎧⎨⎪⎩⎪111111()()!{}性质:是等比数列a n()若,则··1m n p q a a a a m n p q +=+= (),,……仍为等比数列2232S S S S S n n n n n -- 三、求数列通项公式的常用方法 1、公式法2、n n a S 求由;(时,,时,)n a S n a S S n n n ==≥=--121113、求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a ,∴a n n =+21,∴a n n n n ==≥⎧⎨⎩+141221()()练习、{}数列满足,,求a S S a a a n n n n n +==++111534(注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n 144== n a S S n n n n ≥=-==--23411时,……· 4、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133==5、等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()()练习、{}()数列,,,求a a a a n a n n n n n 111132==+≥--()()a n n=-1231 6、等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1()⇒=+--a ca c x n n 11令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a d c c n +-⎧⎨⎩⎫⎬⎭+-111 ∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c d c n n =+-⎛⎝ ⎫⎭⎪---1111练习、{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-843117、倒数法例如:,,求a a a a a n n n n 11122==++ ,由已知得:1221211a a a a n n n n+=+=+ ∴11121a a n n +-= , ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为 ()()∴=+-=+11112121a n n n · ,∴a n n =+21三、 求数列前n 项和的常用方法1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

高中数列知识点归纳总结及例题

高中数列知识点归纳总结及例题

高中数列知识点归纳总结及例题数列是高中数学中的一个重要概念,它在许多数学问题中都起着至关重要的作用。

通过学习数列的定义、性质和求解方法,可以帮助我们更好地理解和应用数学知识。

本文将对高中数列知识点进行归纳总结,并附上相关例题供读者练习。

1. 数列的定义与性质数列是按照一定顺序排列的一组数。

其中,每一个数称为数列的项,位置称为项数,用字母a表示数列的通项。

数列的性质包括等差数列和等比数列两种常见情况:1.1 等差数列等差数列是指数列中相邻两项之差都相等的数列。

设数列为{an},公差为d,则有如下性质:(1)通项公式:an = a1 + (n-1)d(2)前n项和公式:Sn = (a1 + an) * n / 2(3)项数公式:n = (an - a1) / d + 1例题1:已知等差数列{an}的首项是3,公差是4,求第10项的值。

解析:根据等差数列的通项公式,代入a1 = 3,d = 4,n = 10,求得a10 = 3 + (10-1) * 4 = 39。

1.2 等比数列等比数列是指数列中相邻两项之比都相等的数列。

设数列为{an},公比为q,则有如下性质:(1)通项公式:an = a1 * q^(n-1)(2)前n项和公式:Sn = a1 * (q^n - 1) / (q - 1)(3)项数公式:n = logq(an / a1) + 1例题2:已知等比数列{an}的首项是2,公比是3,求第5项的值。

解析:根据等比数列的通项公式,代入a1 = 2,q = 3,n = 5,求得a5 = 2 * 3^(5-1) = 162。

2. 数列的求和数列的求和是数学中常见的问题之一,通过找到数列的规律和应用对应的公式,可以快速求解数列的和。

下面分别介绍等差数列和等比数列的求和公式。

2.1 等差数列的求和对于等差数列{an},前n项和的计算公式为Sn = (a1 + an) * n / 2。

其中,a1为首项,an为末项,n为项数。

人教版高考数学一轮专项复习:数列题型11种(含解析)

数列题型11种(方法+例题+答案)1.作差法求通项公式2.累乘法求通项公式3.累加法求通项公式4.构造法求通项公式(一)5.构造法求通项公式(二)6.取倒法求通项公式7.分组求和法求前n项和8.错位相减法求前n项和9.裂项相消法求前n项和10.数列归纳法与数列不等式问题11.放缩法与数列不等式问题1、作差法求数列通项公式已知n S (12()n a a a f n +++= )求n a ,{11,(1),(2)n n n S n a S S n -==-≥注意:分两步,当2≥n 时和1=n 时一、例题讲解1、(2015∙湛江)已知数列{}n a 的前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,n *∈N ),且12a =,23a =. ()1求数列{}n a 的通项公式2、(2015∙茂名)已知数列}{n a 的前n 项和为n S ,11=a ,且)1()1(221+=+-+n n S n nS n n ,)(*∈N n ,数列}{n b 满足,0212=+-++n n n b b b )(*∈N n ,53=b ,其前9项和为63(1)求数列}{n a 和}{n b 的通项公式3、(2015∙中山)设等差数列}{n a 的前n 项和为n S ,且,40,842==S a 数列}{n b 的前n 项和为n T ,且,032=+-n n b T *∈N n 。

(1)求数列}{n a ,}{n b 的通项公式4、(2015∙揭阳)已知n S 为数列}{n a 的前n 项和,)1(3--=n n na S n n ,(*∈N n ),且,112=a (1)求1a 的值;(2)求数列}{n a 的通项公式5、(2014∙汕头)数列{}n a 中,11=a ,n S 是{}n a 前n 项和,且)2(11≥+=-n S S n n(1)求数列{}n a 的通项公式6、(2014∙肇庆)已知数列}{n a 的前n 项和为n S ,且满足,21=a )1(1++=+n n S na n n (1)求数列}{n a 的通项公式7、(2014∙江门)已知数列}{n a 的前n 项和122-=n S n ,求数列}{n a 的通项公式。

高中数列题型总结

高中数列题型总结高中数学中,数列是一个重要的概念。

数列题型主要包括等差数列、等比数列、递推数列等。

下面将对这些常见的数列题型进行总结。

一、等差数列1. 等差数列的概念:等差数列是指一个数列,其中相邻两项之间的差值是一个常数d。

数列的通项公式为an=a1+(n-1)d。

2. 等差数列的性质:- 若数列首项为a1,公差为d,则数列的第n项为an=a1+(n-1)d。

- 数列的前n项和Sn可以表示为Sn=(a1+an)n/2。

- 等差数列的性质还包括数列的前n项和与项数n的关系、等差数列的倒数第n项与第n项之和等。

3. 等差数列的题型:- 求等差数列的通项公式;- 求等差数列的前n项和;- 求等差数列中满足某些条件的项数;- 求等差数列中满足某些条件的项的和等。

二、等比数列1. 等比数列的概念:等比数列是指一个数列,其中相邻两项之间的比值是一个常数q。

数列的通项公式为an=a1*q^(n-1)。

2. 等比数列的性质:- 若数列首项为a1,公比为q,则数列的第n项为an=a1*q^(n-1)。

- 数列的前n项和Sn可以表示为Sn=a1*(1-q^n)/(1-q)。

- 等比数列的性质还包括数列的前n项和与项数n的关系、等比数列的倒数第n项与第n项之积等。

3. 等比数列的题型:- 求等比数列的通项公式;- 求等比数列的前n项和;- 求等比数列中满足某些条件的项数;- 求等比数列中满足某些条件的项的和等。

三、递推数列1. 递推数列的概念:递推数列是指一个数列,其中每一项都通过前一项来递推得到。

数列的通项公式一般无法表示。

2. 递推数列的性质:- 若数列的第n项为an,第n-1项为an-1,则数列的通项公式无法表示为an=f(an-1),其中f为一个函数。

- 递推数列的性质通常通过给定的递推规则来描述,如斐波那契数列等。

3. 递推数列的题型:- 求递推数列的前n项;- 求递推数列满足某些条件的项数;- 求递推数列满足某些条件的项等。

高中数学:数列的22个必考题型,看看你都会做吗?方法真的不难

高中数学:数列的22个必考题型,看看你都会做吗?方法真
的不难
数列在高考中常以选择题、填空题、解答题的形式考到,在整个高中数学体系中算是相对简单的题型,所以对于想拿提高成绩的同学来说,是一定不能丢分的部分。

导数、函数已经不会了,数列再丢分,想及格都难,更别提拿高分!
总结多年高考真题,我们可以发现,数列的必考题型共计22个,只要我们研究透这22种题型,数列题再怎么考都不怕!今天小哥给大家分享一份由清北学霸整理的【高中数学·数列22个必考题型】,每一种题型都有对应的例题。

最厉害的解析中会教给大家每种题型的多种解题方法。

学会这些,数列问题通通都能搞定!
以上仅为部分展示,完整版不仅包含22个题型,还有全部的解析!高中数学难度值爆表,导数、函数、解析几何都搞不太懂,一做题就蒙!这些都搞不懂可以慢慢来。

但是如果数列你也不会,那问题可就大了!高中数学考试满分150分,数列一项就占了17分,而且数列题真的不难,只要多花一点时间,都能学会!。

高中数学数列常考点题型归纳总结最新版

数列重难点归纳总结必考点1: 数列的概念与通项公式1.数列的定义按照一定顺序排列的一列数,称为数列.数列中的每一项叫做数列的项.数列的项在这列数中是第几项,则在数列中是第几项.一般记为数列{}n a . 对数列概念的理解(1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么就是不同数列 (2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别. 2.数列的分类3.数列是一种特殊的函数数列是一种特殊的函数,其定义域是正整数集N *和正整数集N *的有限子集.所以数列的函数的图像不是连续的曲线,而是一串孤立的点. 4.数列的通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.即()n a f n =,不是每一个数列都有通项公式,也不是每一个数列都有一个个通项公式.5.数列{}n a 的前n 项和n S 和通项n a 的关系:11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩例题1: 已知数列{}n a 的前n 项和为n S ,121n S n n+=+,则17a a +=( ) A .30 B .29C .28D .27【解析】121n S n n+=+,∴ 221n S n n =+-, ∴ 21121112a S ==⨯+-=,22776(2771)(2661)27a S S =-=⨯+--⨯+-=,∴ 1729a a +=,选B例题2: 已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =________ 【解析】由2n a n =,若对于任意{},n n N b +∈的第n a 项等于{}n a 的第n b 项,则2()n n a b n b a b ==,则22221429311641()(),(),,()b b b b b b b b =====,所以2149161234()b b b b b b b b =,所以21491612341234123412341234lg()lg()2lg(2lg()lg()()lg )b b b b b b b b b b b b b b b b b b b b b b b b ===. 【小结】1.根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用()1n-或()11n +-来调整.2.根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.由不完全归纳法得出的结果是不可靠,要注意代值验证.3.对于数列的通项公式要掌握:①已知数列的通项公式,就可以求出数列的各项;②根据数列的前几项,写出数列的一个通项公式,这是一个难点,在学习中要注意观察数列中各项与其序号的变化情况,分解所给数列的前几项,看看这几项的分解中.哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号的联系,从而归纳出构成数列的规律,写出通项公式.必考点2: 数列的性质数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.所以数列的函数的图像不是连续的曲线,而是一串孤立的点,因此,在研究数列问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性. 数列的性质主要指:1.数列的单调性----递增数列、递减数列或是常数列;2.数列的周期性.例题3: 0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m ,使得(1,2,)i m i a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( )A .11010B .11011C .10001D .11001【解析】由i mi a a +=知,序列i a 的周期为m ,由已知,5m =,511(),1,2,3,45i i k i C k a a k +===∑对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=≤∑ 52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;例题4: 已知数列{}n a 中,2n a n n λ=-,若{}n a 为递增数列,则λ的取值范围是( )A .(),3-∞B .(],3-∞C .(),2-∞D .(],2-∞【解析】由已知得221(1)(1)21n n a a n n n n n λλλ+-=+-+-+=+-,因为{}n a 为递增数列,所以有10n n a a +->,即210n λ+->恒成立,所以21n λ<+,所以只需()min 21n λ<+,即2113λ<⨯+=,所以3λ<,选A. 【小结】1.解决数列的单调性问题可用以下三种方法(1)用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列或是常数列. (2)用作商比较法,根据1n na a + (a n >0或a n <0)与1的大小关系进行判断. (3)结合相应函数的图象直观判断. 2.解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. 3.求数列最大项或最小项的方法(1)利用不等式组⎩⎪⎨⎪⎧ a n -1≤a n ,a n ≥a n +1(n ≥2)找到数列的最大项; (2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到数列的最小项. 3.前n 项和最值的求法(1)先求出数列的前n 项和n S ,根据n S 的表达式求解最值;(2)根据数列的通项公式,若0m a ≥,且10m a +<,则m S 最大;若0m a ≤,且10m a +>,则m S 最小,这样便可直接利用各项的符号确定最值.必考点3: 由递推公式推导通项公式例题5: 在数列{}n a 中,11a =,()*11nn na a n N a +=∈+,则这个数列的通项n a ,可以是( ) A .1nB .121n - C .12n n+ D .2n 【解析】∵11n n n a a a +=+,等式两边同时取倒数得:1111n n a a +=+,则()*1111n nn a a N +∈-=, ∴132211-121111111111+n n n n n a a a a a a a a a a --⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111+1nn a ⇒=++++=1n a n⇒=,当1n = 时,1111a == 亦成立,综上所述()*1n a n N n=∈,选A. 例题6: 已知数列{}n a 满足:11a =,2123n n a a a a n a ++++=.(1)求{}n a 的通项公式;(2)求{}n a 的前n 项和n S . 【解析】(1)令123n n S a a a a =++++,则2n n S n a =,当2n ≥时,211(1)n n S n a --=-,所以2211(1)n n n n S S n a n a ---=--,即221(1)(1)n n n a n a --=-,所以221(1)111n n a n n a n n ---==-+,所以32412311231,,,,3451n n a a a a n a a a a n --===⋅⋅⋅=+, 所以3241231123213451n n a a a a n n a a a a n n ---⋅⋅⋅⋅⋅=⨯⨯⨯⋅⋅⋅⨯⨯+, 因为 11a =,所以2(1)n a n n =+,1a 满足此式,所以2(1)n a n n =+;(2)因为2112(1)1n a n n n n ⎛⎫==- ⎪++⎝⎭,所以12311111212231n n S a a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝=⎭++⎣++⎦122111n n n ⎛⎫=-= ⎪++⎝⎭ 【小结】递推公式推导通项公式方法: (1)累加法:1()n n a a f n +-=(2)累乘法:1()n na f n a += (3)待定系数法:1n n a pa q +=+(其中,p q 均为常数,)0)1((≠-p pq ) 解法:把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解. (4)待定系数法:n n n q pa a +=+1(其中,p q 均为常数,)0)1)(1((≠--q p pq ). (或1nn n a pa rq +=+其中,,p q r 均为常数).解法:在原递推公式两边同除以1+n q ,得:111n n n n a a p q q q q++=⋅+,令n n n q a b =,得:q b q p b nn 11+=+,再按第(3)种情况求解.(5)待定系数法:b an pa a n n ++=+1(100)p a ≠≠,,解法:一般利用待定系数法构造等比数列,即令)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较,解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列.(6)待定系数法:21(0,1,0)n n a pa an bn c p a +=+++≠≠解法:一般利用待定系数法构造等比数列,即令221(1)(1)()n n a x n y n z p a xn yn z ++++++=+++,与已知递推式比较,解出y x ,,从而转化为{}2n a xn yn z +++是公比为p 的等比数列.(7)待定系数法:n n n qa pa a +=++12(其中,p q 均为常数). 解法:把原递推公式转化为)(112n n n n sa a t sa a -=-+++其中,s t 满足s t pst q +=⎧⎨=-⎩,再按第(4)种情况求解.(8)取倒数法:1()()()nn n g n a a f n a t n +=+解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1,按第(3)种情况求解.(11()()()0n n n n g n a t n a f n a a +++-=,解法:等式两边同时除以1n n a a +⋅后换元转化为q pa a n n +=+1,按第(3)种情况求解.).(9)取对数rn n pa a =+1)0,0(>>n a p解法:这种类型一般是等式两边取以p 为底的对数,后转化为q pa a n n +=+1,按第(3)种情况求解.必考点4: 由前n 项和公式推导通项公式,即n a 与n S 的关系求通项n a例题7: 已知数列{a n }的前n 项和21n S n n =-+,则这个数列的通项公式为( )A .21n a n =-B .12n naC .22n a n =-D .1,122,2n n a n n =⎧=⎨-≥⎩【解析】当1n =时,111111a S ==-+=当2n ≥时,()()221111122n n n a S S n n n n n -=-=-+--+--=-1a 不满足22n a n =- 1,122,2n n a n n =⎧∴=⎨-≥⎩,选D【小结】已知S n 求a n 的三个步骤 (1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式. (3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n=1与n≥2两段来写..必考点5: 等差数列的有关概念1.定义:等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥.2.等差数列的通项公式:1(1)n a a n d =+-;说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列.3.等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,其中2a bA +=. a ,A ,b 成等差数列⇔2a bA +=. 4.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列. 5.注意区分等差数列定义中同一个常数与常数的区别.例题8: 已知等差数列{}n a 中,()12n n n a a -≥>,若324314a a a ==,,则1a =( ) A .1-B .0C .14D .12【解析】设公差为d ,则2224333()().a a a d a d a d =-+=-因为324314a a a ==,,所以23=14d -,则214d =.由()12n n n a a -≥>,可得0d >,所以12d =.所以13121202a a d =-=-⨯=.选B.例题9: 设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为__________.【解析】设等差数列{}n a 的公差为d ,13334366a d d d =∴+++=∴=,,,36(1)6 3.n a n n ∴=+-=-【小结】1.等差数列的四种判断方法(1) 定义法:对于数列{}n a ,若d a a n n =-+1()n N ∈*(常数),则数列{}n a 是等差数列; (2) 等差中项:对于数列{}n a ,若212+++=n n n a a a ()n N ∈*,则数列{}n a 是等差数列;(3)通项公式:n a pn q =+(,p q 为常数,n N ∈*)⇔{}n a 是等差数列;(4)前n 项和公式:2n S An Bn =+(,A B 为常数, n N ∈*)⇔ {}n a 是等差数列;(5){}n a 是等差数列⇔n S n ⎧⎫⎨⎬⎩⎭是等差数列. 提醒:判断时易忽视定义中从第2项起,以后每项与前一项的差是同一常数,即易忽视验证a 2-a 1=d 这一关键条件.2.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量1a 、d ,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.必考点6: 等差数列的前n 项和等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+. 例题10: 记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S =__________.【解析】{}n a 是等差数列,且12a =-,262a a +=设{}n a 等差数列的公差d ,根据等差数列通项公式:()11n a a n d +-=可得1152a d a d +++=,即:()2252d d -++-+=,整理可得:66d =,解得:1d = 根据等差数列前n 项和公式:*1(1),2n n n S na d n N -=+∈ 可得:()1010(101)1022045252S ⨯-=-+=-+=,∴1025S =.例题11:将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.【解析】因为数列{}21n -是以1为首项,以2为公差的等差数列, 数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以1为首项,以6为公差的等差数列, 所以{}n a 的前n 项和为2(1)16322n n n n n -⋅+⋅=- 【小结】1.利用等差数列的单调性或性质,求出其正负转折项,便可求得和的最值.当10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;若已知n a ,则n S 最值时n 的值(n N +∈)则当10a >,0d <,满足100n n a a +≥⎧⎨≤⎩的项数n 使得n S 取最大值,(2)当10a <,0d >时,满足10n n a a +≤⎧⎨≥⎩的项数n 使得n S 取最小值.2.利用等差数列的前n 项和:2n S An Bn =+(,A B 为常数, n N ∈*)为二次函数,通过配方或借助图像,二次函数的性质,转化为二次函数的最值的方法求解;有时利用数列的单调性(0d >,递增;0d <,递减);3. 利用数列中最大项和最小项的求法:求最大项的方法:设n a 为最大项,则有11n n n n a a a a -+≥⎧⎨≥⎩;求最小项的方法:设n a 为最小项,则有11n n nn a a a a -+≤⎧⎨≤⎩.只需将等差数列的前n 项和1,2,3,n =依次看成数列{}n S ,利用数列中最大项和最小项的求法即可.4.在解含绝对值的数列最值问题时,注意转化思想的应用.5.等差数列的通项公式1(1)n a a n d =+-及前n 项和公式11()(1)22n n n a a n n S na d +-==+,共涉及五个量1,,,,n n a d n a S ,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题.6.特殊设法:三个数成等差数列,一般设为,,a d a a d -+;四个数成等差数列,一般设为3,,,3a d a d a d a d --++.这对已知和,求数列各项,运算很方便.必考点7: 等差数列的相关性质1.等差数列的性质:(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列{}n a 中,相隔等距离的项组成的数列是等差数列, 如:1a ,3a ,5a ,7a ,……;3a ,8a ,13a ,18a ,……;(3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n ma a d n m-=-()m n ≠;(4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+,特殊地,2m p q =+时,则2m p q a a a =+,m a 是p q a a 、的等差中项.(5)等差数列被均匀分段求和后,得到的数列仍是等差数列,即232,,n n n n n S S S S S --成等差数列.(6)两个等差数列{}n a 与{}n b 的和差的数列{}n n a b ±仍为等差数列. (7)若数列{}n a 是等差数列,则{}n ka 仍为等差数列.2.设数列{}n a 是等差数列,且公差为d ,(Ⅰ)若项数为偶数,设共有2n 项,则①-S S nd =奇偶; ②1n n S a S a +=奇偶;(Ⅱ)若项数为奇数,设共有21n -项,则①S S -偶奇n a a ==中(中间项);②1S nS n =-奇偶. 3.(),p q a q a p p q ==≠,则0p q a +=,m n m n S S S mnd +=++.4.如果两个等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是两个原等差数列公差的最小公倍数.5.若{}n a 与{}n b 为等差数列,且前n 项和分别为n S 与'n S ,则2121'm m m m a S b S --=. 6.等差数列的增减性:0d >时为递增数列,且当10a <时前n 项和n S 有最小值.0d <时为递减数列,且当10a >时前n 项和n S 有最大值. 例题12: 在等差数列{}n a 中,若34567750a a a a a ++++=,则28a a +=( )A .360B .300C .240D .200【解析】因为34567750a a a a a ++++=,37465282a a a a a a a ++==+=,所以28300a a +=,选B例题13: 等差数列{a n }的前n 项和为S n ,且S 10=20,S 20=15,则S 30=( )A .10B .30-C .15-D .25【解析】由题意知:10S ,1200S S -,3020S S -成等差数列()()20101030202S S S S S ∴-=+-,即30102015S -=+-,解得:3015S =-,选C例题14: 若等差数列{}n a 满足7897100,0a a a a a ++>+<,则当n =__________时,{}n a 的前n 项和最大.【解析】由等差数列的性质,,,又因为,所以所以,所以,,故数列的前8项最大.必考点8: 等差数列综合问题例题15:已知等差数列{}n a 的前n 项和为n S ,12a =,318S =.(1)求{}n a 的通项公式; (2)设1302n n b a =-,数列{}n b 的前n 项和为n T ,求n T 的最小值. 【解析】(1)方法一:由()1333182a a S +==,又因为12a =,所以310a =. 所以数列{}n a 的公差31102422a a d --===,所以()()1121442n a a n d n n =+-=+-⨯=-. 方法二:设数列的公差为d .则3113322S a d =+⨯⨯32318d =⨯+=.得4d =.所以()()1121442n a a n d n n =+-=+-⨯=-. (2)方法一:由题意知()1130423023122n n b a n n =-=--=-.令10,0.n n b b +≤⎧⎨>⎩得()2310,21310.n n -≤⎧⎨+->⎩解得293122n <≤.因为*n N ∈,所以15n =. 所以n T 的最小值为()()()151215...2927...1225T b b b =+++=-+-++-=-. 方法二:由题意知()1130423023122n n b a n n =-=--=-. 因为()[]121312312n n b b n n +-=+---=⎡⎤⎣⎦, 所以数列{}n b 是首项为129b =-,公差为2的等差数列. 所以()()22129230152252n n n T n n n n -=-+⨯=-=--. 所以当15n =时,数列{}n b 的前n 项和n T 取得最小值,最小值为15225T =-. 例题16:已知数列{}n a 中148,2a a ==,且满足212n n n a a a +++=.(1) 求数列{}n a 的通项公式; (2) 设n S 是数列{}na 的前n 项和,求nS.【解析】(1)由题意得数列{n a }是等差数列,4141a a d -==--2,*210()n a n n N ∴=-+∈;(2)令0,5n a n ≥≤得,即当5n ≤时,0n a ≥,6n ≥时,0n a <, ∴当5n ≤时,n 12S a a =++…+n a =12+n a a a ++=-29n n + 当6n ≥时, 12n n S a a a =+++=125+a a a ++-(67+n a a a ++)12=(+)n a a a -++125+2(+)a a a ++()229220940n n n n =--++⨯=-+229(5)940(6)n n n n S n n n ⎧-+≤∴=⎨-+≥⎩ .例题17:记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.【解析】(1)设等差数列{}n a 的首项为1a ,公差为d ,根据题意有111989(4)224a d a d a d ⨯⎧+=-+⎪⎨⎪+=⎩,解答182a d =⎧⎨=-⎩,所以8(1)(2)210n a n n =+-⨯-=-+, 所以等差数列{}n a 的通项公式为210n a n =-+; (2)由条件95S a =-,得559a a =-,即50a =,因为10a >,所以0d <,并且有5140a a d =+=,所以有14a d =-, 由n n S a ≥得11(1)(1)2n n na d a n d -+≥+-,整理得2(9)(210)n n d n d -≥-, 因为0d <,所以有29210n n n -≤-,即211100n n -+≤,解得110n ≤≤, 所以n 的取值范围是:110()n n N *≤≤∈【小结】求等差数列前n 项和的最值,常用的方法:1.利用等差数列的单调性或性质,求出其正负转折项,便可求得和的最值.当10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;若已知n a ,则n S 最值时n 的值(n N +∈)则当10a >,0d <,满足100n n a a +≥⎧⎨≤⎩的项数n 使得n S 取最大值,(2)当10a <,0d >时,满足100n n a a +≤⎧⎨≥⎩的项数n 使得n S 取最小值.2.利用等差数列的前n 项和:2n S An Bn =+(,A B 为常数, n N ∈*)为二次函数,通过配方或借助图像,二次函数的性质,转化为二次函数的最值的方法求解;有时利用数列的单调性(0d >,递增;0d <,递减);3. 利用数列中最大项和最小项的求法:求最大项的方法:设n a 为最大项,则有11n n nn a a a a -+≥⎧⎨≥⎩;求最小项的方法:设n a 为最小项,则有11n n nn a a a a -+≤⎧⎨≤⎩.只需将等差数列的前n 项和1,2,3,n =依次看成数列{}n S ,利用数列中最大项和最小项的求法即可.4.在解含绝对值的数列最值问题时,注意转化思想的应用.必考点9: 等差数列与数学文化例题18:我国古代《九章算术》一书中记载关于“竹九”问题:“今有竹九节,下三节容量四升,上四节容量三升,问五、六两节欲均容各多少?意思是下三节容量和为4升,上四节容量和为3升,且每一节容量变化均匀,问第五、六两节容量分别是多少?在这个问题中,最下面一节容量是______,九节总容量是______. 【解析】设由下到上九节容量分别记为129,,...,a a a ,则129,,...,a a a 成等差数列,设公差为d ,且1234a a a ++=,67893a a a a +++=,即1231334a a a a d ++=+=,678914263a a a a a d +++=+=,所以19566a =,766d =-,故91982019222S a d ⨯=+=例题19:《张丘建算经》卷上有一题:今有女善织,日益功疾,初日织五尺,金一月日织九匹三丈意思就是说:有一位善于纺织的女子,从第二天起,每天比前一天多织相同量的布,第一天织了5尺布,现在一个月共织了390尺布(按30天计),记该女子第n 天织布的量为n a ,则1318a a +=_________,每天比前一天多织布________尺.【解析】由题数列{}n a 是公差为d 等差数列,则1303030()3902a a S +==,得13026a a +=,故1318a a +=13026a a +=,又15a =,得3021a =129a d =+,得21529d =+,得1629d =. 【小结】数学文化中的等差数列,主要涉及通项公式、求和公式基本量的计算,认真阅读题干,注意转化是关键.1.(2020·全国高三课时练习(理))已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138 B .135C .95D .23【解析】∵24354{10a a a a +=+=,∴1122{35a d a d +=+=,∴14{3a d =-=,∴1011091040135952S a d ⨯=+⨯=-+=. 2.(北京高考真题(理))已知数列{}n a 对任意的*p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( ) A .165-B .33-C .30-D .21-【解析】∵对任意的p ,q ∈N *,满足a p +q =a p +a q ,∴p =q =n 时,有a 2n =2a n . 又a 2=-6,∴a 8=2a 4=4a 2=-24,故a 10=a 2+a 8=-30.3.(2020·全国高三二模(文))已知等差数列{}n a 中,n S 为其前n 项和,248a a ⋅=,515S =,则10a =( ) A .10B .4-C .10或4-D .10-或4【解析】设等差数列{}n a 的首项为1a ,公差为d ,则()()()()1111383385101532a d a d d d a d a d⎧⎧++=-+=⇔⎨⎨+==-⎩⎩211d d ⇒=⇒=或1d =-.当1d =时,11a =,所以n a n =;当1d =-时,15a =,所以6n a n =-,所以1010a =或4-.选C 4.(2020·全国高三三模(文))记等差数列{}n a 的前n 项和为n S .若311a =,675S =,则12a =( ) A .28B .31C .38D .41【解析】由题知:3161211656752a a d S a d =+=⎧⎪⎨⨯=+=⎪⎩,解得153a d =⎧⎨=⎩.所以12511338=+⨯=a .选C 5.(2020·全国高三其他(理))已知n S 为等差数列{}n a 的前n 项和,若77217S a =-,则10S =( ) A .12B .15C .18D .21【解析】解:由17747772172a a S a a +=⨯==-,得473a a +=, 所以4710310101522a a S +=⨯=⨯=.选B . 7. (2019·河北高三月考(文))已知等差数列{}n a 的前n 项和为n S ,若20200a >,且201920200a a +<, 则满足0n S >的最小正整数n 的值为( ) A .2019 B .2020C .4039D .4040【解析】20200a >,且201920200a a +<,20190a ∴<.14039403920204039()403902a a S a +∴==>,140384038201920204038()2019()02a a S a a +==+<, 则满足0n S >的最小正整数n 的值为4039.选C.8.(2019·甘肃兰州一中高二期中)已知等差数列{}n a ,,,n m a m a n ==则m n a +=( ) A .mB .nC .0D .m n +【解析】设等差数列的公差为d ,由题得111(1),1,1(1)a n d md a m n a m d n +-=⎧∴=-=+-⎨+-=⎩. 所以1(1)(1)0m n a m n m n +=+-++-⨯-=.选C 9.(2019·全国高考真题(理))记为等差数列的前n 项和.已知,则( ) A .B .C .D .【解析】分析:等差数列通项公式与前n 项和公式.本题还可用排除,对B ,,,排除B ,对C ,,排除C .对D ,,排除D ,故选A .详解:由题知,,解得,∴,故选A .10.(2009·宁夏高考真题(文))等差数列{}n a 的前n 项和为n S ,已知2110m m m a a a -++-=,2138m S -=,则m =( ) A .38B .20C .10D .9【解析】因为{}n a 是等差数列,所以112m m m a a a -++=,则由2110m m m a a a -++-=可得220m m a a -=,解得0m a =或2m a =. 因为12121(21)(21)382m m m a a S m m a --+=⨯-=-=,所以0m a ≠,故2m a =.代入可得,2(21)38m -=,解得10m =11.(2020·江苏盐城 高二期末)【多选题】设d ,n S 分别为等差数列{}n a 的公差与前n 项和,若1020S S =,则下列论断中正确的有( ) A .当15n =时,n S 取最大值 B .当30n =时,0n S = C .当0d >时,10220a a +> D .当0d <时,1022a a >【解析】因为1020S S =,所以111092019102022a d a d ⨯⨯+=+,解得1292a d =-. 对选项A ,因为无法确定1a 和d 的正负性,所以无法确定n S 是否有最大值,故A 错误. 对选项B ,13030292930301529022a d S d d ⨯⎛⎫=+=⨯-+⨯= ⎪⎝⎭,故B 正确. 对选项C ,()10221612921521502a a a a d d d d ⎛⎫+=2=+=-+=> ⎪⎝⎭,故C 正确. 对选项D ,1012918119222a a d d d d =+=-+=-,22129421321222a a d d d d =+=-+=, 因为0d <,所以10112a d =-,22132a d =-,1022a a <,故D 错误.选BC12.(2020·诸城市教育科学研究院高二期中)【多选题】已知n S 是等差数列{}n a (n *∈N )的前n 项和,且564S S S >>,以下有四个命题,其中正确的有( )A .数列{}n S 中的最大项为10SB .数列{}n a 的公差0d <C .100S >D .110S <【解析】564S S S >>,故60a <,50a >且560a a +>,故数列{}n S 中的最大项为5S ,A 错误; 数列{}n a 的公差0d <,B 正确;()()110105610502a a S a a +⨯==+>,C 正确;()111116111102a a S a+⨯==<,D 正确;选BCD .13.(2020·河北新华 石家庄二中高一期中)【多选题】设等差数列{}n a 的前n 项和为n S ,公差为d ,且满足10a >,1118S S =,则对n S 描述正确的有( )A .14S 是唯一最小值B .15S 是最小值C .290S =D .15S 是最大值【解析】1118S S =,∴0d <,设2n S An Bn =+,则点(,)n n S 在抛物线2y Ax Bx =+上,抛物线的开口向下,对称轴为14.5x =,∴1514S S =且为n S 的最大值,1118S S =12131815070a a a a ⇒+++=⇒=,∴129291529()2902a a S a +===,选CD.14.(2020·山东烟台三中高二期中)【多选题】已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ). A .100a =B .10S 最小C .712S S =D .190S =【解析】13611112323661590a a S a a d a d a d +=∴++=+∴+=即100a =,A 正确; 当0d <时,n S 没有最小值,B 错误;127891011121012750S S a a a a a a S S -=++++==∴=,C 正确;1191910()191902a a S a +⨯===,D 正确.选ACD15.(2019·全国高考真题(文))记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.【解析】317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 16.(2019·北京高考真题(理))设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为__________.【解析】等差数列{}n a 中,53510S a ==-,得322,3a a =-=-,公差321d a a =-=,5320a a d =+=, 由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-.17.(2018·全国高考真题(理))记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =–15.由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9. (2)由(1)得S n =n 2–8n =(n –4)2–16.所以当n =4时,S n 取得最小值,最小值为–16. 18.(2017·全国高考真题(文))设数列{}n a 满足123(21)2n a a n a n ++⋯+-=. (1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前项和.【解析】(1)数列{a n }满足a 1+3a 2+…+(2n ﹣1)a n =2n .n ≥2时,a 1+3a 2+…+(2n ﹣3)a n ﹣1=2(n ﹣1).∴(2n ﹣1)a n =2.∴a n 221n =-. 当n =1时,a 1=2,上式也成立.∴a n 221n =-. (2)21121(21)(21)2121n a n n n n n ==-+-+-+. ∴数列{21n a n +}的前n 项和1111113352121n n ⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭1122121n n n -=++. 必考点10: 等比数列的有关概念1. 等比数列定义一般地,如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q 表示(0)q ≠,即:)0(1≠=+q q a a nn ,(注意:“从第二项起”、“常数”q 、等比数列的公比和项都不为零)2.等比数列通项公式为:)0(111≠⋅⋅=-q a q a a n n .说明:(1)由等比数列的通项公式可以知道:当公比1d =时该数列既是等比数列也是等差数列;(2)等比数列的通项公式知:若{}n a 为等比数列,则m n mna q a -=. 3.等比中项如果在b a 与中间插入一个数G ,使b G a ,,成等比数列,那么G 叫做b a 与的等比中项(两个符号相同的非零实数,都有两个等比中项) 4. 等差数列与等比数列的区分与联系 (1)如果数列{}n a 成等差数列,那么数列{}na A(na A总有意义)必成等比数列.(2)如果数列{}n a 成等比数列,且0n a >,那么数列{log }a n a (0a >,且1a ≠)必成等差数列.(3)如果数列{}n a 既成等差数列又成等比数列,那么数列{}n a 是非零常数数列.数列{}n a 是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.(4)如果由一个等差数列与一个等比数列的公共项顺次组成新数列,那么常选用“由特殊到一般”的方法进行讨论,且以等比数列的项为主,探求等比数列中哪些项是它们的公共项,构成什么样的新数列. 例题20: 设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( )A .12B .24C .30D .32【解析】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==.选D.例题21:已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,;(2)判断数列{}n b 是否为等比数列,并说明理由;(3)求{}n a 的通项公式.【解析】(1)由条件可得()121n n n a a n++=.将1n =代入得,214a a =,而11a =,所以,24a =.将2n =代入得,323a a =,所以,312a =.从而11b =,22b =,34b =; (2){}n b 是首项为1,公比为2的等比数列.由条件可得121n na a n n+=+,即12n n b b +=,又11b =, 所以{}n b 是首项为1,公比为2的等比数列; (3)由(2)可得11122n n nn a b n--==⨯=,所以12n n a n -=⋅. 【小结】1.等比数列的基本运算:等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解. 2.等比数列的判定方法 (1)定义法:对于数列{}n a ,若)0(1≠=+q q a a nn ,则数列{}n a 是等比数列; (2)等比中项:对于数列{}n a ,若212++=n n n a a a ,则数列{}n a 是等比数列;(3)通项公式法n n a cq = (,c q 均是不为0的常数,n N ∈*)⇔{}n a 是等比数列.必考点11: 等比数列的前n 项和一般地,设等比数列123,,,,,n a a a a 的前n 项和是=n S 123n a a a a ++++,当1≠q 时,qq a S n n --=1)1(1或11n n a a qS q -=-;当1q =时,1na S n =(错位相减法). 说明:(1)n S n q a ,,,1和n n S q a a ,,,1各已知三个可求第四个;(2)注意求和公式中是nq ,通项公式中是1-n q 不要混淆;(3)应用求和公式时1≠q ,必要时应讨论1=q 的情况.例题22: 记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =( ) A .2n –1B .2–21–nC .2–2n –1D .21–n –1【解析】设等比数列的公比为q ,由536412,24a a a a -=-=可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩, 所以1111(1)122,21112n n n n nn n a q a a qS q ----=====---,因此1121222n n n n n S a ---==-.选B.例题23:等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故()12n n a -=-或12n n a -=.(2)若()12n n a -=-,则()123nnS --=.由63m S =得()2188m-=-,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.综上,6m =.必考点12: 等比数列的相关性质1.等比数列的性质:(1)在等比数列{}n a 中,从第2项起,每一项是它相邻二项的等比中项;(2)在等比数列{}n a 中,相隔等距离的项组成的数列是等比数列, 如:1a ,3a ,5a ,7a ,……;3a ,8a ,13a ,18a ,……;(3)在等比数列{}n a 中,对任意m ,n N +∈,m n m n q a a -=;(4)在等比数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a =,特殊地,2m p q =+时,则2m p q a a a =,m a 是p q a a 、的等比中项. 也就是: =⋅=⋅=⋅--23121n n n a a a a a a ,如图所示:n n a a n a a n n a a a a a a ⋅⋅---112,,,,,,12321.(5)若数列{}n a 是等比数列,且公比不为-1,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数列. 如下图所示:k kk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++. (6)两个等比数列{}n a 与{}n b 的积、商、倒数的数列{}n n a b ⋅、⎭⎬⎫⎩⎨⎧n n b a 、⎭⎬⎫⎩⎨⎧n b 1仍为等比数列. (7)若数列{}n a 是等比数列,则{}n ka ,2{}n a 仍为等比数列.2. 公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即21a a -,32a a -,43a a -,…成等比数列,且公比为()21322121a a qa a q a a a a --==--.3.等比数列的单调性 当101a q >⎧⎨>⎩或1001a q <⎧⎨<<⎩时,{}n a 为递增数列,当1001a q >⎧⎨<<⎩或101a q <⎧⎨>⎩时,{}n a 为递减数列.4. 等差数列和等比数列比较判定方法(1)定义法; (2)中项公式法:212+++=n n n a a a ()n N ∈*⇔{}n a 等差数列(3)通项公式法:n a pn q =+(,p q 为常数,n N ∈*)⇔ {}n a 为等差数列;(4)前n 项和公式法:2n S An Bn =+(,A B 为常数, n N ∈*)⇔ {}n a 为等差数列; (5) {}n a 为等比数列,且0n a >,那么数列{log }a n a (0a >,且1a ≠)为等差数列(1)定义法(2)中项公式法:212++=n n n a a a()n N ∈* (0n a ≠)⇔ {}n a 为等比数列(3)通项公式法:nn a cq = (,c q 均是不为0的常数,n N ∈*)⇔{}n a 为等比数列(4) {}n a 为等差数列⇔{}n aA (n aA 总有意义)为等比数列性质(1)若m ,n ,p ,q N +∈,且m n p q +=+,则m n p q a a a a +=+(2)()n m a a n m d =+- (3) 232,,n n n n n S S S S S --,…仍成等差数列(1)若m ,n ,p ,q N +∈,且m n p q +=+,则m n p q a a a a =(2) m n m n q a a -=(3)等比数列依次每n 项和(0n S ≠),即232,,n n n n n S S S S S --,…仍成等比数列前n 项和11()(1)22n n n a a n n S na d +-==+ 1q =时,1na S n =;当1≠q 时,qq a S n n --=1)1(1或11n n a a qS q -=-. 例题24: 等比数列中,已知1234567820,10a a a a a a a a +++=+++=,则数列的前16项和为( )A .20B .752C .1252D .752-【解析】由题意得,48420,10S S S =-=,则84412S S S -=,根据等比数列的性质可知4841281612,,,S S S S S S S ---构成公比为12等比数列,4841281612520,10,5,2S S S S S S S =-=-=-=,且812167530,35,2S S S ===,故选B . 例题25:数列{}n a 的各项都是正数,且数列{}3log n a 是等差数列,若564718a a a a +=,则3132310log log log a a a +++=( )A .12B .10C .8D .2+log 35【解析】因为数列{}3log n a 是等差数列,所以13133log log log n n n n a a a d a ++-==,所以*13,d n nan N a +=∈, 所以数列{}n a 是等比数列,所以5647a a a a =,又564718a a a a +=,所以56479a a a a ==, 所以1102947569a a a a a a a a =====,所以53132310312103log log log log ()log 910a a a a a a +++===,选B【小结】应用等比数列性质解题时的两个关注点(1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.(2)等比数列的项经过适当的组合后组成的新数列也具有某种性质,例如在等比数列中,S k ,S 2k -S k ,S 3k -S 2k ,…也成等比数列,公比为q k (q ≠-1).必考点13: 等比数列基本运算例题26: 已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( )A .16B .8C .4D .2【解析】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .例题27:设等比数列{a n }满足124a a +=,318a a -=.(1)求{a n }的通项公式;(2)记n S 为数列{log 3a n }的前n 项和.若13m m m S S S +++=,求m . 【解析】(1)设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩,所以13-=n n a ;(2)令313log log 31n n n b a n -===-,所以(01)(1)22n n n n n S +--==,根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=, 整理得2560m m --=,因为0m >,所以6m =.必考点14: 等比数列的前n 项和公式的综合应用例题28:设{}n a 是等差数列,且123ln 2,5ln 2a a a =+=.(Ⅰ)求{}n a 的通项公式;(Ⅱ)求12n a a a e e e +++.【解析】(I )设等差数列{}n a 的公差为d ,∵235ln2a a +=,∴1235ln2a d +=, 又1ln2a =,∴ln2d =.∴()11ln2n a a n d n =+-=. (II )由(I )知ln2n a n =, ∵2ln 2=2nn a nln n e e e ==,∴{}n a e是以2为首项,2为公比的等比数列.∴212ln2ln2ln2nna a a e e e ee e+++=+++2=222n +++1=22n +-.∴12n a a a e e e +++ 1=22n +-例题29: 已知等比数列{}n a 的公比(0,1)q ∈,前n 项和为n S .若331S a +=,且2116a +是1a 与3a 的等差中项. (I )求n a ;(II )设数列{}n b 满足10b =,1()n n n b b a n *+-=∈N ,数列{}n n a b 的前n 项和为n T .求证:1()3n T n *<∈N . 【解析】(I )由33=1S a +,得12321a a a ++=①. 再由2116a +是1a ,3a 的等差中项,得1321216a a a ⎛⎫+=+ ⎪⎝⎭,即132128a a a +-=②. 由①②,得()123132282a a a a a a ++=+-,即32161770a a a -+=,亦即261770q q -+=,解得12q =或73,又()0,1q ∈,故12q =. 代入①,得1211122a q q ==++,所以111111222n nn n a a q --⎛⎫⎛⎫=⋅=⋅= ⎪ ⎪⎝⎭⎝⎭,即()*12n n a n N =∈;(II )证明:对任意*n N ∈,()111111*********nn n nna q S a q⎛⎫-⎪-⎝⎭===-=---,()()()11213211201n n n n n n b b b b b b b b a a a S a ++=+-+-++-=++++==-,即11n n b a +=-. 又10b =,若规定00112a ==,则()*11n n b a n N -=-∈. 于是()*1n n n n n a b a a a n N-=-∈,从而()()1201121111111241123214n n n n n n nT a a a a a a a a a -⎛⎫⎛⎫- ⎪ ⎪⎛⎫⎝⎭ ⎪=+++-+++=--=-+ ⎪ ⎪⎝⎭- ⎪⎝⎭12121113211323323n n n ---⋅-=-<⋅⋅,即()*13n T n N <∈.【小结】1.等比数列前n 项和S n 相关的结论(1)项的个数的“奇偶”性质:等比数列{a n }中,公比为q . ①若共有2n 项,则S 偶∶S 奇=q ;②若共有2n +1项,则S 奇-S 偶=a 1+a 2n +1q 1+q (q ≠1且q ≠-1).(2)分段求和:S n +m =S n +q n S m ⇔q n =S n +m -S nS m (q 为公比).2.等比数列最值有关问题的解题思路求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.必考点15: 等差数列、等比数列的综合问题例题30:设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列
题型一:求值类的计算题(多关于等差等比数列) A)根据基本量求解(方程的思想)
1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ;
2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S . 3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和.
4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数. B )根据数列的性质求解
1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;
2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S n n ,则=5
5b a
. 3、设n S 是等差数列{}n a 的前n 项和,若
==5
935,95S S
a a 则( ) 4、等差数列{}n a ,{}n
b 的前n 项和分别为n S ,n T ,若
231n n S n
T n =+,则n n
a b =( ) 5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S . 6、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。

7、已知数列{}n a 是等差数列,若 471017a a a ++=,45612131477a a a a a a +++
+++=且
13k a =,则k =_________。

8、已知n S 为等比数列{}n a 前n 项和,54=n S ,602=n S ,则=n S 3 . 9、在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为( ) 10、在等比数列中,已知910(0)a a a a +=≠,1920a a b +=,则99100a a += . 11、已知{}n a 为等差数列,20,86015==a a ,则=75a . 12.在等差数列中,若 84816
1
,.3S S S S =求= . 题型二:求数列通项公式: A) 给出前几项,求通项公式
1,0,1,0,……
,,21,15,10,6,3,1
3,-33,333,-3333,33333……
B)给出前n 项和求通项公式
1、⑴n n S n 322
+=; ⑵13+=n n S .
2、设数列{}n a 满足2
*12333()3
n n
a a a a n N +++=
∈n-1
…+3,求数列{}n a 的通项公式 C)给出递推公式求通项公式
a 、⑴已知关系式)(1n f a a n n +=+,可利用迭加法或迭代法;
已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式; b 、已知关系式)(1n f a a n n ⋅=+,可利用迭乘法.
已知数列{}n a 满足:111
(2),21
n n a n n a a n --=≥=+,求求数列{}n a 的通项公式; c 、构造新数列
1°递推关系形如“q pa a n n +=+1”,利用待定系数法求解
已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式. 2°形如“,两边同除1
n p
+或待定系数法求解
n n n a a a 32,111+==+,求数列{}n a 的通项公式.
3°递推已知数列{}n a 中,关系形如“n n n a q a p a ⋅+⋅=++12”,利用待定系数法求解 已知数列{}n a 中,n n n a a a a a 23,2,11221-===++,求数列{}n a 的通项公式.
4°形如"11n n n n a pa qa a ---=≠(p,q 0),两边同除以1n n a a -
1、已知数列{}n a 中,1122n n n n a a a a ---=≥=1(n 2),a ,求数列{}n a 的通项公式.
2、数列{}n a 中,)(42,211++∈+==N n a a a a n
n
n ,求数列{}n a 的通项公式.
d 、给出关于n S 和m a 的关系
1,已知数列{}n a ,)(3,11++∈+==N n S a a a n n n ,设n
n n S b 3-=,求数列{}n b 的通项公式.
2、已知数列{}n a ,11=a ,)2(212
≥⎪⎭


⎛-
=n S a S n n n . ⑴求{}n a 的通项; ⑵设1
2+=n S b n
n ,求数列{}n b 的前n 项和n T . 题型三:证明数列是等差或等比数列 A )证明数列等差
1、已知n S 为等差数列{}n a 的前n 项和,)(+∈=
N n n
S b n
n .求证:数列{}n b 是等差数列. 2、已知数列{a n}的前n 项和为S n ,且满足a n+2S n ·S n -1=0(n ≥2),a1=21
.求证:{n
S 1}是等差数列;
B)证明数列等比
1、设{a n }是等差数列,b n=n
a ⎪⎭

⎝⎛21,求证:数列{bn }是等比数列;
2、设n S 为数列{}n a 的前n 项和,已知()21n
n n ba b S -=-
⑴证明:当2b =时,{}
12n n a n --⋅是等比数列;⑵求{}n a 的通项公式
3、已知数列{}n a 中,*
12211,3,32().n n n a a a a a n N ++===-∈
⑴证明:数列{}1n n a a +-是等比数列;⑵求数列{}n a 的通项公式; ⑶若数列{}n b 满足12111
*44
...4(1)(),n n b b b b n a n N ---=+∈证明{}n b 是等差数列.
题型四:求数列的前n项和 基本方法: A)公式法, B )拆解求和法.
求数列n
{223}n +-的前n 项和n S . 求数列 ,,,,,)21(81341221
1n
n +
的前n 项和n S . 求和:2×5+3×6+4×7+…+n(n +3) C)裂项相消法,数列的常见拆项有:
1111()()n n k k n n k =-++;n n n n -+=++11
1

求和:S =1+
n
+++++
+++++ 3211
3211211 求和:
n
n +++++++++11341231121 . D)倒序相加法,
设2
2
1)(x
x x f +=,求: (1)
)
4()3()2()()()(21
3141f f f f f f +++++
⑵).2010()2009()2()()()()(21
312009120101f f f f f f f ++++++++
E)错位相减法,
若数列{}n a 的通项n
n n a 3)12(⋅-=,求此数列的前n 项和n S .
F )对于数列等差和等比混合数列分组求和
已知数列{an}的前n 项和S n =12n-n 2
,求数列{|a n|}的前n 项和T n . 题型五:数列单调性最值问题
1、数列{}n a 中,492-=n a n ,当数列{}n a 的前n 项和n S 取得最小值时,=n .
2、已知n S 为等差数列{}n a 的前n 项和,.16,2541==a a 当n 为何值时,n S 取得最大值;
3、数列{}n a 中,12832
+-=n n a n ,求n a 取最小值时n 的值.
4、数列{}n a 中,22+-=n n a n ,求数列{}n a 的最大项和最小项.
5、设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*
n ∈N .
(Ⅰ)设3n n n b S =-,求数列通项公式;(Ⅱ)若1n n a a +≥,*
n ∈N ,求a 的取值范围.
6、已知n S 为数列{}n a 的前n 项和,31=a ,)2(21≥=-n a S S n n n . ⑴求数列{}n a 的通项公式;
⑵数列{}n a 中是否存在正整数k ,使得不等式1+>k k a a 对任意不小于k 的正整数都成立?若存在,求最小的正整数k ,若不存在,说明理由.。

相关文档
最新文档