高中数学解析几何练习题
高中数学解析几何压轴题专项拔高训练(二)

高中数学解析几何压轴题专项拔高训练一.选择题(共15小题)1.已知倾斜角α≠0的直线l过椭圆(a>b>0)的右焦点交椭圆于A、B两点,P为右准线上任意一点,则∠APB为()A.钝角B.直角C.锐角D.都有可能考点:直线与圆锥曲线的综合问题.专题:压轴题.分析:根据题设条件推导出以AB为直径的圆与右准线相离.由此可知∠APB为锐角.解答:解:如图,设M为AB的中点,过点M作MM1垂直于准线于点M1,分别过A、B作AA1、BB1垂直于准线于A1、B1两点.则∴以AB为直径的圆与右准线相离.∴∠APB为锐角.点评:本题考查圆锥曲线的性质和应用,解题时作出图形,数形结合,往往能收到事半功倍之效果.2.已知双曲线(a>0,b>0)的右焦点为F,右准线为l,一直线交双曲线于P.Q两点,交l于R点.则()A.∠PFR>∠QFR B.∠PFR=∠QFRC.∠PFR<∠QFR D.∠PFR与∠AFR的大小不确定考点:直线与圆锥曲线的综合问题.专题:计算题;压轴题.分析:设Q、P到l 的距离分别为d1,d2,垂足分别为M,N,则PN∥MQ,=,又由双曲线第二定义可知,由此能够推导出RF是∠PFQ的角平分线,所以∠PFR=∠QFR.解答:解:设Q、P到l 的距离分别为d1,d2,垂足分别为M,N,则PN∥MQ,∴=,又由双曲线第二定义可知,∴,,∴,∴RF是∠PFQ的角平分线,∴∠PFR=∠QFR故选B.点评:本题考查双曲线的性质和应用,解题时利用双曲线第二定义综合平面几何知识求解.3.设椭圆的一个焦点为F,点P在y轴上,直线PF交椭圆于M、N,,则实数λ1+λ2=()A.B.C.D.考点:直线与圆锥曲线的综合问题.专题:综合题;压轴题.分析:设直线l的斜率为k,则直线l的方程是y=k(x﹣c).将直线l的方程代入到椭圆C的方程中,消去y并整理得(b2+a2k2)x2﹣2a2ck2x+a2c2k2﹣a2b2=0.然后利用向量关系及根与系数的关系,可求得λ1+λ2的值.解答:解:设M,N,P点的坐标分别为M(x1,y1),N(x2,y2),P(0,y0),又不妨设F点的坐标为(c,0).显然直线l存在斜率,设直线l的斜率为k,则直线l的方程是y=k(x﹣c).将直线l的方程代入到椭圆C的方程中,消去y并整理得(b2+a2k2)x2﹣2a2ck2x+a2c2k2﹣a2b2=0.∴,.又∵,将各点坐标代入得,=.故选C.点评:本题以向量为载体,考查直线与椭圆的位置关系,是椭圆性质的综合应用题,解题时要注意公式的合理选取和灵活运用.4.中心在原点,焦点在x轴上的双曲线C1的离心率为e,直线l与双曲线C1交于A,B两点,线段AB中点M在一象限且在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,则l的斜率为()A.B.e2﹣1 C.D.e2+1考点:圆锥曲线的综合.专题:综合题;压轴题;圆锥曲线的定义、性质与方程.分析:利用抛物线的定义,确定M的坐标,利用点差法将线段AB中点M的坐标代入,即可求得结论.解答:解:∵M在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,∴M的横坐标为,∴M(,p)设双曲线方程为(a>0,b>0),A(x1,y1),B(x2,y2),则,两式相减,并将线段AB中点M的坐标代入,可得∴∴故选A.点评:本题考查双曲线与抛物线的综合,考查点差法的运用,考查学生的计算能力,属于中档题.5.已知P为椭圆上的一点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最小值为()A.5B.7C.13 D.15考点:圆与圆锥曲线的综合;椭圆的简单性质.专题:计算题;压轴题.分析:由题意可得:椭圆的焦点分别是两圆(x+3)2+y2=1和(x﹣3)2+y2=4的圆心,再结合椭圆的定义与圆的有关性质可得答案.解答:解:依题意可得,椭圆的焦点分别是两圆(x+3)2+y2=1和(x﹣3)2+y2=4的圆心,所以根据椭圆的定义可得:(|PM|+|PN|)min=2×5﹣1﹣2=7,故选B.点评:本题考查圆的性质及其应用,以及椭圆的定义,解题时要认真审题,仔细解答,注意公式的合理运用.6.过双曲线﹣=0(b>0,a>0)的左焦点F(﹣c,0)(c>0),作圆x2+y2=的切线,切点为E,延长FE 交双曲线右支于点P,若=(+),则双曲线的离心率为()A.B.C.D.考点:圆与圆锥曲线的综合.专题:综合题;压轴题.分析:由=(+),知E为PF的中点,令右焦点为F′,则O为FF′的中点,则PF′=2OE=a,能推导出在Rt△PFF′中,PF2+PF′2=FF′2,由此能求出离心率.解答:解:∵若=(+),∴E为PF的中点,令右焦点为F′,则O为FF′的中点,则PF′=2OE=a,∵E为切点,∴OE⊥PF∴PF′⊥PF∵PF﹣PF′=2a∴PF=PF′+2a=3a在Rt△PFF′中,PF2+PF′2=FF′2即9a2+a2=4c2∴离心率e==.故选:A.点评:本题考查圆与圆锥曲线的综合运用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件.7.设椭圆的左焦点为F,在x轴上F的右侧有一点A,以FA为直径的圆与椭圆在x轴上方部分交于M、N两点,则的值为()A.B.C.D.考点:圆与圆锥曲线的综合.专题:计算题;压轴题.分析:若以FA为直径的圆与椭圆大x轴上方的部分交于短轴端点,则M、N重合(设为M),此时A为椭圆的右焦点,由此可知=,从而能够得到结果.解答:解:若以FA为直径的圆与椭圆大x轴上方的部分交于短轴端点,则M、N重合(设为M),此时A为椭圆的右焦点,则==.故选A.点评:本题考查圆锥曲线的性质和应用,解题时要注意合理地选取特殊点.8.已知定点A(1,0)和定直线l:x=﹣1,在l上有两动点E,F且满足,另有动点P,满足(O为坐标原点),且动点P的轨迹方程为()A.y2=4x B.y2=4x(x≠0)C.y2=﹣4x D.y2=﹣4x(x≠0)考点:圆锥曲线的轨迹问题.专题:计算题;压轴题.分析:设P(x,y),欲动点P的轨迹方程,即寻找x,y之间的关系式,利用向量间的关系求出向量、的坐标后垂直条件即得动点P的轨迹方程.解答:解:设P(x,y),E(﹣1,y1),F(﹣1,y2)(y1,y2均不为零)由∥⇒y1=y,即E(﹣1,y).由∥⇒.由y2=4x(x≠0).故选B.点评:本题主要考查了轨迹方程的问题.本题解题的关键是利用了向量平行和垂直的坐标运算求得轨迹方程.9.已知抛物线过点A(﹣1,0),B(1,0),且以圆x2+y2=4的切线为准线,则抛物线的焦点的轨迹方程()A.+=1(y≠0)B.+=1(y≠0)C.﹣=1(y≠0)D.﹣=1(y≠0)考点:圆锥曲线的轨迹问题.专题:综合题;压轴题.分析:设出切线方程,表示出圆心到切线的距离求得a和b的关系,再设出焦点坐标,根据抛物线的定义求得点A,B到准线的距离等于其到焦点的距离,然后两式平方后分别相加和相减,联立后,即可求得x和y的关系式.解答:解:设切线ax+by﹣1=0,则圆心到切线距离等于半径∴=2∴,∴a2+b2=设抛物线焦点为(x,y),根据抛物线定义可得平方相加得:x2+1+y2=4(a2+1)①平方相减得:x=4a,∴②把②代入①可得:x2+1+y2=4(+1)即:∵焦点不能与A,B共线∴y≠0∴∴抛物线的焦点轨迹方程为故选B.点评:本题以圆为载体,考查抛物线的定义,考查轨迹方程,解题时利用圆的切线性质,抛物线的定义是关键.10.如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件,则|AM|+|AN|的值为()A.22 B.20 C.18 D.16考点:圆与圆锥曲线的综合;抛物线的定义.专题:计算题;压轴题.分析:先以AT的中点O为坐标原点,AT的中垂线为y轴,可得半圆方程为(x﹣12)2+y2=100,根据条件得出M,N在以A为焦点,PT为准线的抛物线上,联立半圆方程和抛物线方程结合根与系数的关系,利用抛物线的定义即可求得答案.解答:解:以AT的中点O为坐标原点,AT的中垂线为y轴,可得半圆方程为(x﹣12)2+y2=100又,设M(x1,y1),N(x2,y2),M,N在以A为焦点,PT为准线的抛物线上;以AT的垂直平分线为y轴,TA方向为x轴建立坐标系,则有抛物线方程为y2=8x(y≥0),联立半圆方程和抛物线方程,消去y得:x2﹣16x+44=0∴x1+x2=16,|AM|+|AN|=|MP|+|NQ|=x1+x2+4=20.故选B.点评:本小题主要考查抛物线的定义、圆的方程、圆与圆锥曲线的综合等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.11.椭圆与双曲线有公共的焦点F1,F2,P是两曲线的一个交点,则cos∠F1PF2=()A.B.C.D.考点:圆锥曲线的共同特征.专题:综合题;压轴题;圆锥曲线的定义、性质与方程.分析:利用双曲线、椭圆的定义,建立方程,求出|PF1|=,|PF2|=,再利用余弦定理,即可求得结论.解答:解:不妨令P在双曲线的右支上,由双曲线的定义|PF1|﹣|PF2|=2①由椭圆的定义|PF1|+|PF2|=2②由①②可得|PF1|=,|PF2|=∵|F1F2|=4∴cos∠F1PF2==故选A.点评:本题考查圆锥曲线的共同特征,利用双曲线、椭圆的定义,建立方程是关键.12.曲线(|x|≤2)与直线y=k(x﹣2)+4有两个交点时,实数k的取值范围是()C.D.A.B.(,+∞)考点:直线与圆锥曲线的关系.专题:计算题;压轴题.分析:如图,求出BC的斜率,根据圆心到切线的距离等于半径,求得切线BE的斜率k′,由题意可知,k′<k≤K BC,从而得到实数k的取值范围.解答:解:曲线即x2+(y﹣1)2=4,(y≥1),表示以A(0,1)为圆心,以2为半径的圆位于直线y=1 上方的部分(包含圆与直线y=1 的交点C和D),是一个半圆,如图:直线y=k(x﹣2)+4过定点B(2,4),设半圆的切线BE的切点为E,则BC的斜率为K BC==.设切线BE的斜率为k′,k′>0,则切线BE的方程为y﹣4=k′(x﹣2),根据圆心A到线BE距离等于半径得2=,k′=,由题意可得k′<k≤K BC,∴<k≤,故选A.点评:本题考查直线和圆的位置关系,点到直线的距离公式,倾斜角和斜率的关系,体现了数形结合的数学思想,判断k′<k≤K BC,是解题的关键.13.设抛物线y2=12x的焦点为F,经过点P(1,0)的直线l与抛物线交于A,B两点,且,则|AF|+|BF|=()A.B.C.8D.考点:直线与圆锥曲线的关系.专题:计算题;压轴题.分析:根据向量关系,用坐标进行表示,求出点A,B的坐标,再利用抛物线的定义,可求|AF|+|BF|.解答:解:设A(x1,y1),B(x2,y2),则∵P(1,0)∴=(1﹣x2,﹣y2),=(x1﹣1,y1)∵,∴2(1﹣x2,﹣y2)=(x1﹣1,y1)∴将A(x1,y1),B(x2,y2)代入抛物线y2=12x,可得,又∵﹣2y2=y1∴4x2=x1又∵x1+2x2=3解得∵|AF|+|BF|=故选D.点评:本题重点考查抛物线的定义,考查向量知识的运用,解题的关键是确定点A,B的横坐标.14.已知双曲线上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且,则m的值为()A.B.C.D.考点:直线与圆锥曲线的关系.专题:综合题;压轴题.分析:y1=2x12,y2=2x22,A点坐标是(x1,2x12),B点坐标是(x2,2x22)A,B的中点坐标是(,)因为A,B关于直线y=x+m对称,所以A,B的中点在直线上,且AB与直线垂直=+m,由此能求得m.解答:解:y1=2x12,y2=2x22,A点坐标是(x1,2x12),B点坐标是(x2,2x22),A,B的中点坐标是(,),因为A,B关于直线y=x+m对称,所以A,B的中点在直线上,且AB与直线垂直=+m,,x12+x22═+m,x2+x1=﹣,因为,所以xx12+x22=(x1+x2)2﹣2x1x2=,代入得,求得m=.故选B.点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.15.已知双曲线上存在两点M,N关于直线y=x+m对称,且MN的中点在抛物线y2=9x上,则实数m的值为()A.4B.﹣4 C.0或4 D.0或﹣4考点:直线与圆锥曲线的关系.专题:综合题;压轴题.分析:根据双曲线上存在两点M,N关于直线y=x+m对称,求出MN中点P(﹣,m),利用MN的中点在抛物线y2=9x上,即可求得实数m的值.解答:解:∵MN关于y=x+m对称∴MN垂直直线y=x+m,MN的斜率﹣1,MN中点P(x0,x0+m)在y=x+m上,且在MN上设直线MN:y=﹣x+b,∵P在MN上,∴x0+m=﹣x0+b,∴b=2x0+m由消元可得:2x2+2bx﹣b2﹣3=0∴M x+N x=﹣b,∴x0=﹣,∴b=∴MN中点P(﹣,m)∵MN的中点在抛物线y2=9x上,∴∴m=0或4故选D.点评:本题考查直线与双曲线的位置关系,考查对称性,考查抛物线的标准方程,解题的关键是确定MN中点P 的坐标.二.解答题(共15小题)16.已知椭圆C:,F1,F2是其左右焦点,离心率为,且经过点(3,1)(1)求椭圆C的标准方程;(2)若A1,A2分别是椭圆长轴的左右端点,Q为椭圆上动点,设直线A1Q斜率为k,且,求直线A2Q斜率的取值范围;(3)若Q为椭圆上动点,求cos∠F1QF2的最小值.考点:椭圆的简单性质;椭圆的应用.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的离心率为,且经过点(3,1),求椭圆C的标准方程;(2)设A2Q的斜率为k',Q(x0,y0),则可得kk'==,利用,即可求直线A2Q斜率的取值范围;(3)利用椭圆的定义、余弦定理,及基本不等式,即可求cos∠F1QF2的最小值.解答:解:(1)∵椭圆的离心率为,且经过点(3,1),建立方程,求出几何量,即可∴,∴椭圆C的标准方程为…(3分)(2)设A2Q的斜率为k',Q(x0,y0),则,…(5分)∴kk'=及…(6分)则kk'==又…(7分)∴,故A2Q斜率的取值范围为()…(8分)(3)设椭圆的半长轴长、半短轴长、半焦距分别为a,b,c,则有,由椭圆定义,有…(9分)∴cos∠F1QF2=…(10分)=…(11分)≥…(12分)==…(13分)∴cos∠F1QF2的最小值为.(当且仅当|QF1|=|QF2|时,即Q取椭圆上下顶点时,cos∠F1QF2取得最小值)…(14分)点评:本题考查椭圆的标准方程与几何性质,考查椭圆的定义,考查余弦定理,考查基本不等式的运用,综合性强.17.已知椭圆x2+=1的左、右两个顶点分别为A,B.双曲线C的方程为x2﹣=1.设点P在第一象限且在双曲线C上,直线AP与椭圆相交于另一点T.(Ⅰ)设P,T两点的横坐标分别为x1,x2,证明x1•x2=1;(Ⅱ)设△TAB与△POB(其中O为坐标原点)的面积分别为S1与S2,且•≤15,求S﹣S的取值范围.考点:直线与圆锥曲线的关系;平面向量数量积的运算.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设直线AP的方程与椭圆方程联立,确定P、T的横坐标,即可证得结论;(Ⅱ)利用•≤15,结合点P是双曲线在第一象限内的一点,可得1<x1≤2,利用三角形的面积公式求面积,从而可得S﹣S的不等式,利用换元法,再利用导数法,即可求S﹣S的取值范围.解答:(Ⅰ)证明:设点P(x1,y1)、T(x2,y2)(x i>0,y i>0,i=1,2),直线AP的斜率为k(k>0),则直线AP的方程为y=k(x+1),代入椭圆方程,消去y,整理,得(4+k2)x2+2k2x+k2﹣4=0,解得x=﹣1或x=,故x2=.同理可得x1=.所以x1•x2=1.(Ⅱ)设点P(x1,y1)、T(x2,y2)(x i>0,y i>0,i=1,2),则=(﹣1﹣x1,y1),=(1﹣x1,y1).因为•≤15,所以(﹣1﹣x1)(1﹣x1)+y12≤15,即x12+y12≤16.因为点P在双曲线上,所以,所以x12+4x12﹣4≤16,即x12≤4.因为点P是双曲线在第一象限内的一点,所以1<x1≤2.因为S1=|y2|,S2=,所以S﹣S==由(Ⅰ)知,x1•x2=1,即.设t=,则1<t≤4,S﹣S=5﹣t﹣.设f(t)=5﹣t﹣,则f′(t)=﹣1+=,当1<t<2时,f'(t)>0,当2<t≤4时,f'(t)<0,所以函数f(t)在(1,2)上单调递增,在(2,4]上单调递减.因为f(2)=1,f(1)=f(4)=0,所以当t=4,即x1=2时,S﹣S的最小值为f(4)=0,当t=2,即x1=时,S﹣S的最大值为f(2)=1.所以S﹣S的取值范围为[0,1].点评:本小题主要考查椭圆与双曲线的方程、直线与圆锥曲线的位置关系、函数最值等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力.18.设椭圆D:=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为A,在x轴负半轴上有一点B,满足,且AB⊥AF2.(Ⅰ)若过A、B、F2三点的圆C恰好与直线l:x﹣y﹣3=0相切,求圆C方程及椭圆D的方程;(Ⅱ)若过点T(3,0)的直线与椭圆D相交于两点M、N,设P为椭圆上一点,且满足(O为坐标原点),求实数t取值范围.考点:直线与圆锥曲线的综合问题;椭圆的应用.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)利用,可得F1为BF2的中点,根据AB⊥AF2,可得a,c的关系,利用过A、B、F2三点的圆C恰好与直线l:相切,求出a,即可求出椭圆的方程与圆的方程;(Ⅱ)设直线MN方程代入椭圆方程,利用韦达定理及向量知识,即可求实数t取值范围.解答:解:(Ⅰ)由题意知F1(﹣c,0),F2(c,0),A(0,b).因为AB⊥AF2,所以在Rt△ABF2中,,又因为,所以F1为BF2的中点,所以又a2=b2+c2,所以a=2c.所以F2(,0),B(﹣,0),Rt△ABF2的外接圆圆心为F1(﹣,0),半径r=a,因为过A、B、F2三点的圆C恰好与直线l:相切,所以=a,解得a=2,所以c=1,b=.所以椭圆的标准方程为:,圆的方程为(x+1)2+y2=1;(Ⅱ)设直线MN方程为y=k(x﹣3),M(x1,y1),N(x2,y2),P(x,y),则直线方程代入椭圆方程,消去y可得(4k2+3)x2﹣24k2x+36k2﹣12=0,∴△=(24k2)﹣4(4k2+3)(36k2﹣12)>0,∴k2<,x1+x2=,x1x2=,∵,∴x1+x2=tx,y1+y2=ty,∴tx=,ty=,∴x=,y=,代入椭圆方程可得3×[]2+4×[]2=12,整理得=∵k2<,∴0<t2<4,∴实数t取值范围是(﹣2,0)∪(0,2).点评:本题考查椭圆方程与圆的方程,考查直线与圆的位置关系,考查直线与椭圆的位置关系,难度大19.已知F1、F2为椭圆C:的左,右焦点,M为椭圆上的动点,且•的最大值为1,最小值为﹣2.(1)求椭圆C的方程;(2)过点作不与y轴垂直的直线l交该椭圆于M,N两点,A为椭圆的左顶点.试判断∠MAN是否为直角,并说明理由.考点:直线与圆锥曲线的综合问题.专题:计算题;压轴题;圆锥曲线的定义、性质与方程.分析:(1)设M(x',y'),化简•=x'2+2b2﹣a2(﹣a≤x≤a),从而求最值,进而求椭圆方程;(2)设直线MN的方程为x=ky﹣6并与椭圆联立,利用韦达定理求•的值,从而说明是直角.解答:解:(1)设M(x',y'),则y'2=b2﹣x'2,•=x'2+2b2﹣a2(﹣a≤x≤a),则当x'=0时,•取得最小值2b2﹣a2=﹣2,当x'=±a时,•取得最大值b2=1,∴a2=4,故椭圆的方程为.(2)设直线MN的方程为x=ky﹣,联立方程组可得,化简得:(k2+4)y2﹣2.4ky﹣=0,设M(x1,y1),N(x2,y2),则y1+y2=,y1y2=﹣,又A(﹣2,0),•=(x1+2,y1)•(x2+2,y2)=(k2+1)y1y2+k(y1+y2)+==﹣(k2+1)+k+=0,所以∠MAN为直角.点评:本题考查了圆锥曲线方程的求法及直线与圆锥曲线的位置关系应用,同时考查了向量的应用,属于难题.20.如图,P是抛物线y2=2x上的动点,点B,C在y轴上,圆(x﹣1)2+y2=1内切于△PBC,求△PBC面积的最小值.考点:圆与圆锥曲线的综合.专题:综合题;压轴题;圆锥曲线的定义、性质与方程.分析:设P(x0,y0),B(0,b),C(0,c),设b>c.直线PB:y﹣b=,化简,得(y0﹣b)x﹣x0y+x0b=0,由圆心(1,0)到直线PB的距离是1,知,由此导出(x0﹣2)b2+2y0b﹣x0=0,同理,(x0﹣2)c2+2y0c﹣x0=0,所以(b﹣c)2=,从而得到S△PBC=,由此能求出△PBC面积的最小值.解答:解:设P(x0,y0),B(0,b),C(0,c),设b>c.直线PB的方程:y﹣b=,化简,得(y0﹣b)x﹣x0y+x0b=0,∵圆心(1,0)到直线PB的距离是1,∴,∴(y0﹣b)2+x02=(y0﹣b)2+2x0b(y0﹣b)+x02b2,∵x0>2,上式化简后,得(x0﹣2)b2+2y0b﹣x0=0,同理,(x0﹣2)c2+2y0c﹣x0=0,∴b+c=,bc=,∴(b﹣c)2=,∵P(x0,y0)是抛物线上的一点,∴,∴(b﹣c)2=,b﹣c=,∴S△PBC===(x0﹣2)++4≥2+4=8.当且仅当时,取等号.此时x0=4,y0=.∴△PBC面积的最小值为8.点评:本昰考查三角形面积的最小值的求法,具体涉及到抛物线的性质、抛物线和直线的位置关系、圆的简单性质、均值定理等基本知识,综合性强,难度大,对数学思想的要求较高,解题时要注意等价转化思想的合理运用.21.已知直L1:2x﹣y=0,L2:x﹣2y=0.动圆(圆心为M)被L1L2截得的弦长分别为8,16.(Ⅰ)求圆心M的轨迹方程M;(Ⅱ)设直线y=kx+10与方程M的曲线相交于A,B两点.如果抛物y2=﹣2x上存在点N使得|NA|=|NB|成立,求k的取值范围.考点:圆与圆锥曲线的综合;直线与圆相交的性质.专题:综合题;压轴题.分析:(Ⅰ)设M(x,y),M到L1,L2的距离分别为d1,d2,则d12+42=d22+82.所以,由此能求出圆心M的轨迹方程.(Ⅱ)设A(x1,y1),B(x2,y2),由,得(1﹣k2)x2﹣20kx﹣180=0.AB的中点为,AB的中垂线为,由,得.由此能求出k的取值范围.解答:解:(Ⅰ)设M(x,y),M到L1,L2的距离分别为d1,d2,则d12+42=d22+82.…(2分)∴,∴x2﹣y2=80,即圆心M的轨迹方程M:x2﹣y2=80.…(4分)(Ⅱ)设A(x1,y1),B(x2,y2),由,得(1﹣k2)x2﹣20kx﹣180=0.①∴AB的中点为,…(6分)∴AB的中垂线为,即,…(7分)由,得②…(8分)∵存在N使得|NA|=|NB|成立的条件是:①有相异二解,并且②有解.…(9分)∵①有相异二解的条件为,∴⇒且k≠±1.③…(10分)②有解的条件是,∴,④…(11分)根据导数知识易得时,k3﹣k+40>0,因此,由③④可得N点存在的条件是:﹣1或1<k<.…(12分)点评:本题主要考查双曲线标准方程,简单几何性质,直线与椭圆的位置关系,圆的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.22.已知直线l1:ax﹣by+k=0;l2:kx﹣y﹣1=0,其中a是常数,a≠0.(1)求直线l1和l2交点的轨迹,说明轨迹是什么曲线,若是二次曲线,试求出焦点坐标和离心率.(2)当a>0,y≥1时,轨迹上的点P(x,y)到点A(0,b)距离的最小值是否存在?若存在,求出这个最小值.考点:圆锥曲线的轨迹问题.专题:综合题;压轴题;分类讨论;转化思想.分析:(1)联立直线l1和l2的方程,消去参数即可得到交点的轨迹方程,根据a的取值a>0,﹣1<a<0,a=﹣1,a<﹣1说明轨迹曲线,利用二次曲线判断形状,直接求出焦点坐标和离心率.(2)通过a>0,y≥1时,说明轨迹的图形,求出轨迹上的点P(x,y)到点A(0,b)距离的表达式,通过配方讨论b与的大小,求出|PA|的最小值.解答:解:(1)由消去k,得y2﹣ax2=1①当a>0时,轨迹是双曲线,焦点为,离心率;②当﹣1<a<0时,轨迹是椭圆,焦点为,离心率;③当a=﹣1时,轨迹是圆,圆心为(0,0),半径为1;④当a<﹣1时,轨迹是椭圆,焦点为,离心率(2)当a>0时,y≥1时,轨迹是双曲线y2﹣ax2=1的上半支.∵|PA|2=x2+(y﹣b)2==①当b>时,|PA|的最小值为;②当b≤时,|PA|的最小值为|1﹣b|点评:本题考查知识点比较多,涉及参数方程,双曲线方程椭圆方程,圆的方程,两点的距离公式等等,涉及分类讨论思想二次函数的最值,是难度比较大,容易出错的题目,考试常靠题型,多以压轴题为主.23.如图,ABCD是边长为2的正方形纸片,沿某动直线l为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B都落在边AD上,记为B';折痕与AB交于点E,以EB和EB’为邻边作平行四边形EB’MB.若以B为原点,BC所在直线为x轴建立直角坐标系(如下图):(Ⅰ).求点M的轨迹方程;(Ⅱ).若曲线S是由点M的轨迹及其关于边AB对称的曲线组成的,等腰梯形A1B1C1D1的三边A1B1,B1C1,C1D1分别与曲线S切于点P,Q,R.求梯形A1B1C1D1面积的最小值.考点:圆锥曲线的轨迹问题;向量在几何中的应用.专题:计算题;压轴题.分析:(1)设出M的坐标,根据两点关于直线对称时两点连线与对称轴垂直,且两点的中点在对称轴上,再根据平行四边形的对角线对应的向量等于两邻边对应向量的和得到点M的轨迹方程;(2)利用函数在切点处的导数值为曲线的切线斜率,求出腰A1B1的方程,分别令y=0和y=1求出与两底的交点横坐标,利用梯形的面积公式表示出梯形A1B1C1D1面积,利用基本不等式求出其最小值.解答:解:(1)如图,设M(x,y),B′(x0,2),又E(0,b)显然直线l的斜率存在,故不妨设直线l的方程为y=kx+b,则而BB′的中点在直线l上,故,①由于⇒代入①即得,又0≤x0≤2点M的轨迹方程(0≤x≤2)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)易知曲线S的方程为(﹣2≤x≤2)设梯形A1B1C1D1的面积为s,点P的坐标为.由题意得,点Q的坐标为(0,1),直线B1C1的方程为y=1.对于有∴∴直线A1B1的方程为,即:令y=0得,,∴.令y=1得,,∴所以当且仅当,即时,取“=”且,时,s有最小值为.梯形A1B1C1D1的面积的最小值为﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(15分)点评:本题考查两点关于一条直线对称的充要条件;向量运算的几何意义;曲线在切点处的导数值为曲线的切线斜率;利用基本不等式求函数的最值.属于一道难题.24.(1)已知一个圆锥母线长为4,母线与高成45°角,求圆锥的底面周长.(2)已知直线l与平面α成φ,平面α外的点A在直线l上,点B在平面α上,且AB与直线l成θ,①若φ=60°,θ=45°,求点B的轨迹;②若任意给定φ和θ,研究点B的轨迹,写出你的结论,并说明理由.考点:圆锥曲线的轨迹问题;旋转体(圆柱、圆锥、圆台).专题:综合题;压轴题.分析:(1)由圆锥的母线长为4,母线与高成45°角,知高和底面半径与母线构成一个等腰直角三角形,由勾股定理可知底面半径为2,由圆周公式2πR可算出底面周长.(2)①设l∩α=C,点A在平面α上的射影为点O.建立空间直角坐标系,设|AC|=a,有A(0,0,asin60°),C(0,﹣acos60°).设B(x,y,0),则=(0,﹣acos60°,﹣asin60°).=(x,y,﹣asin60°).所以.又由|•cos45°,知﹣acos60°•y+a2sin60°=a,平方整理得,由此知点B的轨迹.②设l∩α=C,点A在平面α上的射影为点O.如图建立空间直角坐标系,设|AC|=a,有A(0,0,asinφ),C(0,﹣acosφ),(0<φ<).设B(x,y,0),则(6分)=(0,﹣acosφ,﹣asinφ).=(x,y,﹣asinφ).所以φ.由|•cosθ=a••cosθ.知cos2θ•x2+(cos2θ﹣cos2φ)y2+a2ysinφsin2φ+a2sin2φ(cos2θ﹣sin2φ)=0.故当φ=时,点B的轨迹为圆;当θ<φ<时,点B的轨迹为椭圆;当θ=φ<时,点B的轨迹为抛物线;当θ>φ时,点B的轨迹为双曲线.解答:解:(1)∵圆锥的母线长为4,母线与高成45°角,高和底面半径与母线构成一个等腰直角三角形,即高和底面半径长度一样,则由勾股定理可知底面半径为2,则由圆周公式2πR可算出底面周长4π;(2分)(2)①设l∩α=C,点A在平面α上的射影为点O.如图建立空间直角坐标系,设|AC|=a,有A(0,0,asin60°),C(0,﹣acos60°).设B(x,y,0),则=(0,﹣acos60°,﹣asin60°).=(x,y,﹣asin60°).∴.又∵|•cos45°=a•.∴﹣acos60°•y+a2sin60°=a.(11分)平方整理得cos245°•x2+(cos245°﹣cos260°)y2+a2ysin60°sin120°+a2sin260°(cos245°﹣sin260°)=0.即,∴点B的轨迹椭圆;(4分)②设l∩α=C,点A在平面α上的射影为点O.如图建立空间直角坐标系,设|AC|=a,有A(0,0,asinφ),C(0,﹣acosφ),(0<φ<).设B(x,y,0),则(6分)=(0,﹣acosφ,﹣asinφ).=(x,y,﹣asinφ).∴φ.又∵|•cosθ=a••cosθ.∴﹣acosφ•y+a2sinφ=a.(11分)平方整理得cos2θ•x2+(cos2θ﹣cos2φ)y2+a2ysinφsin2φ+a2sin2φ(cos2θ﹣sin2φ)=0.i.当cos2θ﹣cos2φ=0,即θ=φ时,上式为抛物线方程;ii.当cos2θ﹣cos2φ>0,即θ<φ时,上式为椭圆方程;iii.当cos2θ﹣cos2φ<0,即θ>φ时,上式为双曲线方程.(14分)故当φ=时,点B的轨迹为圆;当θ<φ<时,点B的轨迹为椭圆;当θ=φ<时,点B的轨迹为抛物线;当θ>φ时,点B的轨迹为双曲线.(16分)点评:第(1)题考查圆锥的性质和应用,是基础题,解题时要认真审题,仔细解答.第(2)题考查圆锥曲线的轨迹的求法和判断,对数学思维的要求比较高,要求学生理解“存在”、“恒成立”,以及运用一般与特殊的关系进行否定,本题有一定的探索性.综合性强,难度大,易出错.25.已知椭圆C的中心在原点,一个焦点,且长轴长与短轴长的比是.(1)求椭圆C的方程;(2)若椭圆C在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C 于另外两点A,B,求证:直线AB的斜率为定值;(3)求△PAB面积的最大值.考点:椭圆的标准方程;直线的斜率;直线与圆锥曲线的综合问题.专题:压轴题.分析:(1)待定系数法求椭圆的方程.(2)设出A、B坐标,利用一元二次方程根与系数的关系,求出A、B横坐标之差,纵坐标之差,从而求出AB斜率.(3)设出AB直线方程,与椭圆方程联立,运用根与系数的关系求AB长度,计算P到AB的距离,计算△PAB面积,使用基本不等式求最大值.解答:解:(Ⅰ)设椭圆C的方程为.由题意,解得a2=4,b2=2.所以,椭圆C的方程为.故点P(1,)(Ⅱ)由题意知,两直线PA,PB的斜率必存在,设PB的斜率为k,则PB的直线方程为.由得,.设A(x A,y A),B(x B,y B),则,同理可得.则,.所以直线AB的斜率为定值.(Ⅲ)设AB的直线方程为,由得.由,得m2<8.此时,.由椭圆的方程可得点P(1,),根据点到直线的距离公式可得P到AB的距离为,由两点间的距离公式可得=,故===≤×=.因为m2=4使判别式大于零,所以当且仅当m=±2时取等号,所以△PAB面积的最大值为.点评:直线与圆锥曲线的综合问题,注意应用一元二次方程根与系数的关系,式子的化简变形,是解题的难点和关键.26.已知点B(0,1),A,C为椭圆上的两点,△ABC是以B为直角顶点的直角三角形.(I)当a=4时,求线段BC的中垂线l在x轴上截距的取值范围.(II)△ABC能否为等腰三角形?若能,这样的三角形有几个?考点:直线与圆锥曲线的综合问题;椭圆的简单性质.专题:综合题;压轴题;圆锥曲线中的最值与范围问题.分析:(I)依题意,可知椭圆的方程为:+y2=1,设C(4cosθ,sinθ),可求得直线l的方程为y=﹣x++,令y=0得x==cosθ(cosθ≠0),利用余弦cosθ的有界性即可求得线段BC的中垂线l在x轴上截距的取值范围;(II)当等腰直角三角形ABC的两条腰AB与BC不关于y轴对称时,设出AB的方程为y=kx+1(k>0),BC的方程为y=﹣x+1,利用直线与方程与椭圆方程联立,利用等腰直角三角形ABC中的两腰|AB|=|BC|,借助基本不等式即可求得a的取值范围;同理可求两条腰AB与BC关于y轴对称时a的取值范围.解答:解:(I)∵a=4,∴椭圆的方程为:+y2=1,故B(0,1),设C(4cosθ,sinθ),则BC的中点M(2cosθ,),∵BC的斜率k BC=,∴线段BC的中垂线l的斜率k=﹣=﹣,∴直线l的方程为:y﹣=﹣(x﹣2cosθ),∴y=﹣x++,令y=0得:x==cosθ(cosθ≠0)∵﹣1≤cosθ≤1且cosθ≠0,∴﹣≤x=cosθ≤且x≠0,∴线段BC的中垂线l在x轴上截距的取值范围为[﹣,0)∪(0,].(II)当等腰直角三角形ABC的两条腰AB与BC不关于y轴对称时,作图如右,设此时过B(0,1)的AB的方程为y=kx+1(k>0),则BC的方程为y=﹣x+1,由得:(a2k2+1)x2+2a2kx=0,设该方程两根为x1,x2,则x1+x2=﹣,x1x2=0,则|AB|==|x1﹣x2|•=•。
专题16 平面解析几何(解析版)

高中数学多项选择题分类强化试题汇编专题16平面解析几何1.某颗人造地球卫星的运行轨道是以地球的中心为一个焦点的椭圆,如图所示,已知它的近地点(离地面最近的点)距地面千米,远地点(离地面最远的点)距地面千米,并且三点在同一直线上,地球半径约为千米,设该椭圈的长轴长、短轴长、焦距分别为,则()A.B.C.D.【答案】ABD【解析】因为地球的中心是椭圆的一个焦点,并且根据图象可得,(*),故A正确;,故B正确;(*)两式相加,可得,故C不正确;由(*)可得,两式相乘可得,,故D正确.故选:ABD2.下列说法正确的是()A.截距相等的直线都可以用方程表示B.方程能表示平行轴的直线C.经过点,倾斜角为的直线方程为D.经过两点,的直线方程【答案】BD【解析】对于A,若直线过原点,横纵截距都为零,则不能用方程表示,所以A不正确;对于B,当时,平行于轴的直线方程形式为,所以B正确;对于C,若直线的倾斜角为,则该直线的斜率不存在,不能用表示,所以C不正确;对于D,设点是经过两点,的直线上的任意一点,根据可得,所以D正确.故选:BD.3.若方程所表示的曲线为,则下面四个命题中错误的是()A.若为椭圆,则B.若为双曲线,则或C.曲线可能是圆D.若为椭圆,且长轴在轴上,则【答案】AD【解析】若,则方程可变形为,它表示焦点在轴上的双曲线;若,则方程可变形为,它表示焦点在轴上的双曲线;若,则,故方程表示焦点在轴上的椭圆;若,则,故方程表示焦点在轴上的椭圆;若,方程即为,它表示圆,综上,选AD.4.已知双曲线的离心率为,右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,则有()A.渐近线方程为B.渐近线方程为C.D.【答案】BC【解析】双曲线离心率为故渐近线方程为,取MN的中点P,连接AP,利用点到直线的距离公式可得,则,所以则故选:BC5.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系中,点.设点的轨迹为,下列结论正确的是()A.的方程为B.在轴上存在异于的两定点,使得C.当三点不共线时,射线是的平分线D.在上存在点,使得【答案】BC【解析】设点,则,化简整理得,即,故A错误;当时,,故B正确;对于C选项,,,要证PO为角平分线,只需证明,即证,化简整理即证,设,则,,则证,故C正确;对于D选项,设,由可得,整理得,而点M在圆上,故满足,联立解得,无实数解,于是D错误.故答案为BC.6.下列说法正确的是()A.直线与两坐标轴围成的三角形的面积是2B.点关于直线的对称点为C.过,两点的直线方程为D.经过点且在轴和轴上截距都相等的直线方程为【答案】AB【解析】A中直线在坐标轴上的截距分别为2,,所以围成三角形的面积是2正确,B中在直线上,且连线的斜率为,所以B正确,C选项需要条件,故错误,D选项错误,还有一条截距都为0的直线.7.已知函数y=f(x)是定义在[0,2]上的增函数,且图像是连续不断的曲线,若f(0)=M,f(2)=N (M>0,N>0),那么下列四个命题中是真命题的有()A.必存在x∈[0,2],使得f(x)B.必存在x∈[0,2],使得f(x)C.必存在x∈[0,2],使得f(x)D.必存在x∈[0,2],使得f(x)【答案】ABD【解析】因函数y=f(x)是定义在[0,2]上的增函数,且图像是连续不断的曲线,,所以;对A,若成立,则,即,显然成立;对B,若成立,则,即,显然成立;对C,若成立,则,先证,假设成立,则,即,如时,不成立,则C不成立;对D,若成立,则化简后为:,即,左侧化简后成立,右侧化简后成立,故D成立故选:ABD8.已知双曲线,右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则有()A.渐近线方程为B.C.D.渐近线方程为【答案】AC【解析】双曲线C:1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°,可得:,即,故e.且,故渐近线方程为渐近线方程为故选:AC.9.已知圆,圆交于不同的,两点,下列结论正确的有()A.B.C.D.【答案】ABC【解析】由题意,由圆的方程可化为两圆的方程相减可得直线的方程为:,即,分别把,两点代入可得:两式相减可得,即,所以选项A、B是正确的;由圆的性质可得,线段与线段互相平分,所以,所以选项C是正确的,选项D是不正确的.故选:ABC.10.已知椭圆的左、右焦点分别为,离心率为,椭圆的上顶点为,且,双曲线和椭圆有相同焦点,且双曲线的离心率为,为曲线与的一个公共点,若,则正确的是()A.B.C.D.【答案】BD【解析】因为且,故三角形为等腰直角三角形,设椭圆的半焦距为,则,所以.在焦点三角形中,设,,双曲线的实半轴长为,则,故,从而,所以即,故,故选BD.11.已知双曲线过点且渐近线为,则下列结论正确的是()A.的方程为B.的离心率为C.曲线经过的一个焦点D.直线与有两个公共点【答案】AC【解析】对于选项A:由已知,可得,从而设所求双曲线方程为,又由双曲线过点,从而,即,从而选项A正确;对于选项B:由双曲线方程可知,,,从而离心率为,所以B选项错误;对于选项C:双曲线的右焦点坐标为,满足,从而选项C正确;对于选项D:联立,整理,得,由,知直线与双曲线只有一个交点,选项D错误.故选:AC12.已知三个数成等比数列,则圆锥曲线的离心率为()A.B.C.D.【答案】BC【解析】由三个数成等比数列,得,即;当,圆锥曲线为,曲线为椭圆,则;当时,曲线为,曲线为双曲线,,则离心率为:或故选:BC13.已知为等腰直角三角形,其顶点为,若圆锥曲线以焦点,并经过顶点,该圆锥曲线的离心率可以是()A.B.C.D.【答案】ABD【解析】因为为等腰直角三角形,其顶点为,圆锥曲线以焦点,并经过顶点,所以(ⅰ)若该圆锥曲线是椭圆,当时,离心率,当时,离心率(ⅱ)若该圆锥曲线是双曲线,根据双曲线的特征可得,则只有,此时,离心率.故答案为ABD14.已知点是抛物线的焦点,是经过点的弦且,的斜率为,且,两点在轴上方.则下列结论中一定成立的是()A.B.若,则C .D.四边形面积最小值为【答案】AC【解析】因为的斜率为,,所以,设,,的方程为,由可得,,,所以,同理可得则有,所以A正确;与无关,同理,故,C正确;若,由得,解得,故B错;因为,所以四边形面积当且仅当,即时,等号成立;故D错;故选AC15.在平面直角坐标系中,圆的方程为.若直线上存在一点,使过所作的圆的两条切线相互垂直,则实数的取可以是()A.B.C.D.【答案】AB【解析】所作的圆的两条切线相互垂直,所以,圆点,两切点构成正方形即在直线上,圆心距计算得到故答案选AB16.下面说法中错误..的是()A.经过定点的直线都可以用方程表示B.经过定点的直线都可以用方程表示C.经过定点的直线都可以用方程表示D.不经过原点的直线都可以用方程表示E. 经过任意两个不同的点,的直线都可以用方程表示【答案】ABCD【解析】对于A项,该方程不能表示过点P且垂直于轴的直线,即点斜式只能表示斜率存在的直线,所以A项不正确;对于B项,该方程不能表示过点P且平行于轴的直线,即该直线不能表示斜率为零的直线,所以B项不正确;对于C项,斜截式不能表示斜率不存在的直线,所以C项不正确;对于D项,截距式的使用条件是能表示在两坐标轴上都有非零截距的直线,所以D不正确;对于E项,经过任意两个不同的点,的直线都可以用方程表示,是正确的,该方程没有任何限制条件,所以E正确;故选ABCD.17.设有一组圆.下列四个命题正确的是()A.存在,使圆与轴相切B.存在一条直线与所有的圆均相交C.存在一条直线与所有的圆均不相交D.所有的圆均不经过原点【答案】ABD【解析】根据题意得圆的圆心为(1,k),半径为,选项A,当k=,即k=1时,圆的方程为,圆与x轴相切,故正确;选项B,直线x=1过圆的圆心(1,k),x=1与所有圆都相交,故正确;选项C,圆k:圆心(1,k),半径为k2,圆k+1:圆心(1,k+1),半径为(k+1)2,两圆的圆心距d=1,两圆的半径之差R﹣r=2k+1,(R﹣r>d),∁k含于C k+1之中,若k取无穷大,则可以认为所有直线都与圆相交,故错误;选项D,将(0,0)带入圆的方程,则有1+k2=k4,不存在k∈N*使上式成立,即所有圆不过原点,正确.故选:ABD18.我们将横、纵坐标均为整数的点称为整点,则直线()。
高中数学解析几何100题经典大题汇编

a-c=
2c 2 ,a
2 =2,
2 ∴a=1,b=c= 2
故 C 的方程为:y2+x2=1 1 2
…………………3 分 …………4 分
(2)当直线斜率不存在时: m = ± 1 2
…………5 分
当直线斜率存在时:设 l 与椭圆 C 交点为 A(x 1,y1),B(x2,y2)
=y kx + m
∴
2x2
(Ⅰ)推导双曲线 C 的离心率 e 与 λ 的关系式; (Ⅱ)当 λ = 1 时, 经过点 (1,0) 且斜率为 − a 的
直线交双曲线于 A, B 两点, 交 y 轴于点 D , 且
y
M
P
DA = ( 3 − 2)DB ,求双曲线的方程. 【答案】22: 解:(Ⅰ)Q MP = OF, ∴OFPM 为平行四边形.
【山东省苍山县 2014 届高三上学期期末检测理】22.(本题满分 14 分)
如图,斜率为 1 的直线 l 过抛物线 Ω : y=2 2 px( p > 0) 的焦点 F,与抛物线交于两点 A,
B。
(1)若|AB|=8,求抛物线 Ω 的方程; (2)设 P 是抛物线 Ω 上异于 A,B 的任意一点,直线 PA,PB 分别交抛物线的准线于 M,
m2 + 2m − 1 − 6m +14 ……10 分 3 3(3k 2 +1)
要使上式与 K 无关,则有 6m +14 = 0, ,解得 m = − 7 ,存在点 M (− 7 ,0) 满足题意。12 分
3
3
【山东省济宁市金乡二中 2014 届高三 11 月月考理】23、(本小题满分12 分)[来源:学科网] 已知曲线 C 上的动点 P 到点 F (2,0) 的距离比它到直线 x = −1的距离大1.
解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)

专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。
解析几何 高中数学试题解析版

一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1.若椭圆x2+y2a =1(a>0)的离心率为√ 22,则a的值为( )A. 2B. 12C. 2或√ 22D. 2或12【答案】D【解析】【分析】本题考查椭圆的性质的应用及分类讨论的思想,属于基础题.考虑a>1和0<a<1两种情况,根据离心率的公式计算得到答案.【解答】解:当a>1时,离心率为√ a−1√ a =√ 22,解得a=2;当0<a<1时,离心率为√ 1−a=√ 22,解得a=12.综上所述:a=2或a=12.故选:D2.把一个圆心角为120°的扇形卷成一个圆锥的侧面,则此圆锥底面圆的半径与这个圆锥的高之比是( )A. 1∶4B. √ 2∶2C. √ 2∶√ 3D. √ 2∶4【答案】D【解析】【分析】本题考查圆锥的计算,理解圆锥的展开图中扇形的弧长等于圆锥的底面周长是关键.设母线为l,半径为r,利用圆锥的展开图中扇形的弧长等于圆锥的底面周长得到半径与母线的关系,再根据勾股地理得到高,从而可以得出结果.【解答】解:设圆锥的母线为l,底面半径为r,高为ℎ则扇形的弧长为120180π×l=23πl,由圆锥的展开图中扇形的弧长等于圆锥的底面周长,得2πr=23πl,则r=13l,再由勾股定理得ℎ=√ l2−r2=2√ 23l,故r ℎ=13l 2√ 23l =√ 24,故选D .3.已知原点到直线l 的距离为1,圆(x −2)2+(y −√ 5)2=4与直线l 相切,则满足条件的直线l 有 ( ) A. 1条 B. 2条C. 3条D. 4条【答案】C 【解析】【分析】本题主要考查点到直线的距离,圆与圆位置关系,先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定公切线的直线条数. 【解答】解:∵(x −2)2+(y −√ 5 )2=4, ∴圆心坐标(2,√ 5),半径为2, ∵以坐标原点为圆心,以1为半径, ∴圆方程x 2+y 2=1, ∴两圆圆心距√ 5+22=3, ∴两圆相外切,∴两圆有三条公切线,(两条外公切线,一条内公切线). 故选C .4.已知PA ⃗⃗⃗⃗⃗ =(2,1,−3),PB ⃗⃗⃗⃗⃗ =(−1,2,3),PC ⃗⃗⃗⃗⃗ =(7,6,λ),若P ,A ,B ,C 四点共面,则λ=( ) A. 9 B. −9C. −3D. 3【答案】B 【解析】【分析】由共面向量定理得PC ⃗⃗⃗⃗⃗ =x PA ⃗⃗⃗⃗⃗ +y PB ⃗⃗⃗⃗⃗ ,从而(7,6,λ)=x(2,1,−3)+y(−1,2,3),由此能求出λ的值. 本题考查实数值的求法,考查共面向量定理等基础知识,考查运算求解能力,是基础题. 【解答】解:∵PA ⃗⃗⃗⃗⃗ =(2,1,−3),PB ⃗⃗⃗⃗⃗ =(−1,2,3),PC ⃗⃗⃗⃗⃗ =(7,6,λ), P ,A ,B ,C 四点共面,∴存在一对实数x ,y ,PC⃗⃗⃗⃗⃗ =x PA ⃗⃗⃗⃗⃗ +y PB ⃗⃗⃗⃗⃗ , ∴(7,6,λ)=x(2,1,−3)+y(−1,2,3),∴{7=2x−y6=x+2yλ=−3x+3y,解得λ=−9.故选:B.5.已知点A为圆(x+3)2+(y−2)2=1上的动点,点B的坐标为(1,1),P为x轴上一动点,则|AP|+|BP|的最小值是( )A. 3B. 4C. 5D.6【答案】B【解析】【分析】本题考查到圆上点的距离的最值及点关于线的对称点的求法,属于拔高题.根据三角形三边关系以及两点间距离公式求解即可.【解答】解:设圆心M(−3,2),半径为1,B关于x轴的对称点B1(1,−1),连接MB1交x轴于N点,则N即是P,因为这时|NB|=|NB1|,|NB|+|MN|=|MB1|,当P在x轴的其它位置F时,|FB|=|FB1|,借助图形可得|FB|+|FM|>|MB1|(三角形的两边和大于第三边),所以|AP|+|BP|的最小值是为|MB1|−1=√ 42+32−1=5−1=4,此时A为线段MB1与圆的交点.故选B.6.已知椭圆E:x2a2+y2b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点,若AB的中点坐标为(1,−1),则E的方程为( )A. x245+y236=1 B. x236+y227=1 C. x227+y218=1 D. x218+y29=1【答案】D【解析】【分析】本题考查求椭圆的方程,考查直线与椭圆的位置关系,点差法的运用,考查学生的计算能力,属于中档题,设A(x1,y1),B(x2,y2),代入椭圆的方程,两式相减,根据线段AB的中点坐标为(1,−1),进而可得a,b的关系,根据右焦点为F(3,0),求出a,b的值,即可得出椭圆的方程.【解答】解:设A(x 1,y 1),B(x 2,y 2),代入椭圆方程得{x 12a 2+y 12b 2=1x 22a 2+y 22b2=1, 相减得x 12−x 22a 2+y 12−y 22b2=0, ∴x 1+x 2a 2+y 1−y 2x 1−x 2⋅y 1+y 2b2=0,∵x 1+x 2=2,y 1+y 2=−2,k AB =y 1−y2x 1−x 2=−1−01−3=12,∴2a 2+12×−2b2=0,化为a 2=2b 2,又c =3=√ a 2−b 2,解得a 2=18,b 2=9. ∴椭圆E 的方程为x 218+y 29=1.故选D .7.已知圆C:x 2+y 2=1,直线l:x +y +2=0,P 为直线l 上的动点,过点P 作圆C 的两条切线,切点分别为A ,B ,则直线AB 过定点 ( ) A. (−12,−12)B. (−1,−1)C. (−12,12)D. (12,−12)【答案】A 【解析】【分析】本题考查直线与圆的位置关系,涉及圆方程的综合应用,属于中档题.根据题意,设P 的坐标为(t,−2−t),由圆的切线性质可得PA ⊥AC ,PB ⊥BC ,则有点A 、B 在以PC 为直径的圆上,求出该圆的方程,与圆C 的方程联立可得直线AB 的方程,将其变形分析可得答案. 【解答】解:根据题意,P 为直线l :x +y +2=0上的动点,设P 的坐标为(t,−2−t), 过点P 作圆C 的两条切线,切点分别为A ,B ,则PA ⊥AC ,PB ⊥BC , 则点A 、B 在以PC 为直径的圆上,又由C(0,0),P(t,−2−t),则以PC 为直径的圆的方程为x(x −t)+y(y +2+t)=0, 变形可得:x 2+y 2−tx +(t +2)y =0,则有{x 2+y 2=1x 2+y 2−tx +(t +2)y =0,联立可得:1−tx +(t +2)y =0,变形可得:1+2y −t(x −y)=0, 即直线AB 的方程为1+2y −t(x −y)=0,则有{1+2y =0x −y =0,解可得{x =−12y =−12,故直线AB 过定点(−12,−12), 故选:A .8.已知F 1,F 2是椭圆与x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过左焦点F 1的直线与椭圆交于A ,B 两点,且满足|AF 1|=2|BF 1|,|AB|=|BF 2|,则该椭圆的离心率是( ) A. 12B. √ 33C. √ 32D. √ 53【答案】B 【解析】【分析】本题考查椭圆的简单性质的应用,考查数形结合以及转化思想的应用,属于中档题. 利用已知条件,画出图形,通过三角形的边长关系,结合余弦定理,求解椭圆的离心率即可. 【解答】解:作出图形,如下:由题意可得:|F 1B|+|BF 2|=2a ,|AB|=|BF 2|,可得|AF 1|=a ,|AF 2|=a ,|AB|=|BF 2|=32a ,|F 1F 2|=2c , 在△ABF 2中,由余弦定理得cos∠BAF 2=94a 2+a 2−94a 22×32a×a=13,在△AF 1F 2中,由余弦定理得cos∠BAF 2=a 2+a 2−4c 22×a×a =1−2(c a)2,所以13=1−2(ca )2,即e =c a =√ 33. 故选:B .二、多选题(本大题共4小题,共20.0分。
2023年高考数学重点专题三轮冲刺演练专题15解析几何小题压轴练(解析版)

解析几何小题压轴练-新高考数学复习分层训练(新高考通用)一、单选题1.(2023·辽宁盘锦·盘锦市高级中学校考一模)已知双曲线x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,点P 在双曲线上,且∠F 1PF 2=60°,PF 2的延长线交双曲线于点Q ,若双曲线的离心率为e =72,则PQ F 1Q=()A.23B.813C.815D.12【答案】B【分析】利用双曲线的定义得到PF 2 ,F 2Q ,PF 1 ,F 1Q 关于k ,m ,n 的表达式,在△PF 1F 2与△PF 1Q 中利用余弦定理求得m =2k 与n =65k ,从而求得PQ ,F 1Q 关于k 的表达式,由此得解.【详解】因为双曲线的离心率为e =72,即c a =72,令a =2k k >0 ,则c =7k ,所以F 1F 2 =2c =27k ,2a =4k ,不妨设点P 在双曲线的右支上时,如图,记PF 2 =m ,F 2Q =n ,则由双曲线的定义得PF 1 -PF 2 =2a ,F 1Q -F 2Q =2a ,所以PF 1 =4k +m ,F 1Q =4k +n ,在△PF 1F 2中,∠F 1PF 2=60°,则F 1F 2 2=PF 1 2+PF 2 2-2PF 1 PF 2 cos60°,即28k 2=4k +m 2+m 2-24k +m m ×12,整理得12k 2-4km -m 2=0,解得m =2k 或m =-6k (舍去),故PF 1 =4k +m =6k ,PQ =m +n =2k +n ,在△PF 1Q 中,∠F 1PF 2=60°,则F 1Q 2=PF 1 2+PQ 2-2PF 1 PQ cos60°,即4k +n 2=36k 2+2k +n 2-2×6k 2k +n ×12,整理得12k 2-10kn =0,解得n =65k ,则PQ =2k +n =2k +65k =165k ,F 1Q =4k +n =265k ,所以PQ F 1Q=165k 265k =813;故选:B .2.(2023·山东潍坊·统考模拟预测)已知双曲线C 1:x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,点F 2与抛物线C 2:y 2=2px p >0 的焦点重合,点P 为C 1与C 2的一个交点,若△PF 1F 2的内切圆圆心的横坐标为4,C 2的准线与C 1交于A ,B 两点,且AB =92,则C 1的离心率为()A.94B.54C.95D.74【答案】B【分析】令F 1(-c ,0),F 2(c ,0),由题设知c=p 2>0且AB =2b 2a 求得4b 2=9a ,再由内切圆中切线长性质及双曲线定义、性质确定与F 1F 2的切点C 的位置,进而求离心率.【详解】由题设F 1(-c ,0),F 2(c ,0),又点F 2与抛物线的焦点重合,即c =p2>0,由-c2a 2-y 2b 2=1a 2+b 2=c2,则y =±b 2a ,故AB =2b 2a =92,即4b 2=9a ,如下图示,内切圆与△PF 1F 2各边的切点为D ,E ,K ,所以PD =PE ,DF 1= KF 1, EF 2= KF 2 ,又|PF 1|-|PF 2|=2a ,则PD +DF 1)-PE + EF 2)= DF 1- EF 2= KF 1- KF 2 =2a , 所以K 为双曲线右顶点,又△PF 1F 2的内切圆圆心的横坐标为4,即a =4,故b 2=9,则c =5,所以离心率为e =c a =54.故选:B3.(2023·江苏南通·海安高级中学校考一模)双曲线C :x 2-y 2=4的左,右焦点分别为F 1,F 2,过F 2作垂直于x 轴的直线交双曲线于A ,B 两点,△AF 1F 2,△BF 1F 2,△F 1AB 的内切圆圆心分别为O 1,O 2,O 3,则△O 1O 2O 3的面积是()A.62-8B.62-4C.8-42D.6-42【答案】A【分析】由题意画出图,由已知求出c 的值,找出A ,B 的坐标,由△AF 1F 2,△BF 1F 2,△F 1AB 的内切圆圆心分别为O 1,O 2,O 3,进行分析,由等面积法求出内切圆的半径,从而求出△O 1O 2O 3的底和高,利用三角形的面积公式计算即可.【详解】由题意如图所示:由双曲线C:x2-y2=4,知a2=b2=4,所以c2=a2+b2=8,所以F2(22,0),F1F2=2c=42所以过F2作垂直于x轴的直线为x=22,代入C中,解出A22,2,B22,-2,由题知△AF1F2,△BF1F2的内切圆的半径相等,且AF1=BF1,△AF1F2,△BF1F2的内切圆圆心O1,O2的连线垂直于x轴于点P,设为r,在△AF1F2中,由等面积法得:1 2AF1+AF2+F1F2⋅r=12F1F2⋅AF2由双曲线的定义可知:AF1-AF2=2a=4由AF2=2,所以AF1=6,所以126+2+42⋅r=12×42×2,解得:r=222+2=22×2-22=22-2,因为F1F2为△F1AB的∠AF1B的角平分线,所以O3一定在F1F2上,即x轴上,令圆O3半径为R,在△AF1B中,由等面积法得:1 2AF1+BF1+AB⋅R=12F1F2⋅AB,又AF1=BF1=F1F22+AF12=422+22=6所以12×6+6+4⋅R=12×42×4,所以R=2,所以PF 2 =r =22-2,O 3P =O 3F 2 -PF 2 =R -r =2-22-2 =2-2,所以S △O 1O 2O 3=12O 1O 2 O 3P =12×2r ×O 3P =r ×O 3P =22-2 ×2-2 =62-8,故选:A .4.(2023·湖南永州·统考二模)如图,F 1,F 2为双曲线的左右焦点,过F 2的直线交双曲线于B ,D 两点,且F 2D =3F 2B ,E 为线段DF 1的中点,若对于线段DF 1上的任意点P ,都有PF 1 ⋅PB ≥EF 1 ⋅EB 成立,则双曲线的离心率是()A.2B.3C.2D.5【答案】D【分析】取F 1B 中点Q ,根据向量数量积的运算律和向量线性运算可将已知数量积不等式化为PQ 2≥EQ 2,由此可确定EQ ⊥DF 1,由三角形中位线性质知DF 1⊥BD ;设BF 2 =m ,结合双曲线定义可表示出DF 1 ,BF 1 ,在Rt △BDF 1和Rt △DF 1F 2中,利用勾股定理可求得离心率.【详解】取F 1B 中点Q ,连接PQ ,EQ ,DQ ,∵PF 1 ⋅PB =14PF 1 +PB 2-PF 1 -PB 2 =144PQ2-BF 1 2 =PQ 2-14BF 1 2,EF 1 ⋅EB =14EF 1 +EB 2-EF 1 -EB 2 =144EQ2-BF 1 2 =EQ 2-14BF 1 2,∴PQ 2-14BF 1 2≥EQ 2-14BF 1 2,则PQ 2≥EQ 2,∴PQ ≥EQ 恒成立,∴EQ ⊥DF 1,又EQ ⎳BD ,∴BD ⊥DF 1,设BF 2 =m ,由F 2D =3F 2B得:BD =2m ,根据双曲线定义可知:DF 1 =DF 2 -2a =3m -2a ,BF 1 =BF 2 +2a =m +2a ,∵BD 2+DF 1 2=BF 1 2,即4m 2+3m -2a 2=m +2a 2,∴m =43a ,∴DF 1 =2a ,DF 2 =4a ,又DF 2 2+DF 1 2=F 1F 2 2,∴20a 2=4c 2,∴e 2=c 2a2=5,则离心率e =5.故选:D .5.(2023·河北·河北衡水中学校考模拟预测)已知椭圆x 2a 2+y 2b2=1a >b >0 的两焦点为F 1,F 2,x 轴上方两点A ,B 在椭圆上,AF 1与BF 2平行,AF 2交BF 1于P .过P 且倾斜角为αα≠0 的直线从上到下依次交椭圆于S ,T .若PS =βPT ,则“α为定值”是“β为定值”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不必要也不充分条件【答案】D【分析】先求出P 的轨迹,其轨迹方程为x 2a 2+c 22a2+y 2a 2-c 22a2=1,取α=π4,结合特殊情形可得“当α取定值,β是定值”是错误的;再由β是定值可得α=π2,从而可判断当β取定值,α是定值”是错误的,从而可得正确的选项.【详解】设M x ,y 为椭圆x 2a 2+y 2b 2=1a >b >0 上的动点,c 为椭圆的半焦距,故F 1-c ,0 ,故MF 1 =x +c2+y 2=x +c 2+b 21-x2a2=x +c 2+b 21-x2a2=c 2x 2a 2+2cx +a 2=a +c a x ,设直线l :x =-a 2c ,则M 到该直线的距离为d =x +a 2c,故MF 1 d=ca =e ,如图,设直线MF 1的倾斜角为γ,过M 作l 的垂线,垂足为S ,则MF 1MF 1 cos γ+a 2c-c=e ,故MF 1 =e ×b 2c1-e cos γ,设p =b 2c ,故MF1=ep1-e cosγ,同理MF2=ep1+e cosγ.设AF1的倾斜角为θ,则MF1=ep1-e cosθ,MF2=ep1+e cosθ,因为AF1⎳BF2,故BF2AF1=F2PAP,所以BF2AF1+BF2=F2PAP+F2P=F2PAF2=F2P2a-AF1,所以F2P=BF22a-AF1AF1+BF2,同理F1P=AF12a-BF2AF1+BF2,故F2P+F1P=2a-2BF2×AF1AF1+BF2=2a-ep,故P的轨迹为以F1,F2为焦点的椭圆,其长半轴长为a-ep2=a2+c22a,短半轴长为a2+c224a2-c2=a2-c22a,故P的轨迹方程为:x2 a2+c2 2a2+y2a2-c22a2=1,其中y>0.取α=π2,PS2PT2=y S-y P2y S+y P2=y Sy P-12y Sy P+12,而a2≠a4+2a2c2+c44a2,故PS2PT2不是定值即β不是定值.故“当α取定值,β是定值”是错误的.又直线ST的参数方程为:x=x0+t cosαy=y0+t sinα,设S x0+t1cosα,y0+t1sinα,T x0+t2cosα,y0+t2sinα,由x0+t cosα2a2+y0+t sinα2b2=1整理得到:cos2αa2+sin2αb2t2+2x0cosαa2+y0sinαb2t+x20a2+y20b2-1=0,故t1+t2=-2x0cosαa2+y0sinαb2cos2αa2+sin2αb2t1t2=x20a2+y20b2-1cos2αa2+sin2αb2,而PS=βPT,故1-βt2=-2x0cosαa2+y0sinαb2cos2αa2+sin2αb2-βt22=x20a2+y20b2-1cos2αa2+sin2αb2,所以1-β2-4β=x0cosαa2+y0sinαb22cos2αa2+sin2αb2x20a2+y20b2-1,若β为定值,则1-β2-4β为定值,而1-β2-4βcos2αa2+sin2αb2=x0cosαa2+y0sinαb22x20a2+y20b2-1,故当P x0,y0变化时,x0cosαa2+y0sinαb22x20 a2+y20b2-1始终为定值,又x0cosαa2+y0sinαb22x20a2+y20b2-1=x20cos2αa4+2x0y0cosαsinαa2b2+y20sin2αb2x20a2+y20b2-1=x20cos2αa4+2x0y0cosαsinαa2b2+b22a21-x20a2+c224a2sin2αb2x20a2+b22a21-x20a2+c224a2b2-1=x20cos2αa4-b2sin2αa2+c22+2x0y0cosαsinαa2b2+b2sin2α4a2x201a2-b2a2+c22+b24a2-1故cos2αa4-b2sin2αa2+c221a2-b2a2+c22=b2sin2α4a2b24a2-1且cosαsinαa2b2=0,但α≠0,α∈0,π,故α=π2,所以1-β2-4β=y0b221b2x20a2+y20b2-1=y20b2x20a2+y20-1=y20b2×a2+c224a21-y20b24a2a2+y20-1=y20b2×a2+c224a2a2-1+1-a2+c22a2y20,但此时1-β2-4β随y 20的变化而变化,不是定值,故“当β取定值,α是定值”是错误的.故选:D .【点睛】思路点睛:对于圆锥曲线中的动态问题,注意利用圆锥曲线的几何性质去研究动点的轨迹,对于是否为定值的问题,注意构建不同变量之间的关系,结合特例来处理是否为定值的问题.6.(2023·江苏南通·二模)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点P 在双曲线上,PF 1⊥PF 2,圆O :x 2+y 2=94(a 2+b 2),直线PF 1与圆O 相交于A ,B 两点,直线PF 2与圆O 相交于M ,N 两点.若四边形AMBN 的面积为9b 2,则C 的离心率为()A.54B.85C.52D.2105【答案】D【分析】设PF 1 =n ,PF 2 =m ,有n -m =2a ,n 2+m 2=4c 2,mn =2b 2,由弦长公式可得MN =23c 2 2-n 2 2,AB=23c 2 2-m 2 2,四边形AMBN 的面积为12AB ⋅MN ,解得c 2=83b 2,可求双曲线的离心率.【详解】根据对称性不妨设点P 在第一象限,如图所示,圆O :x 2+y 2=94(a 2+b 2),圆心为O 0,0 ,半径为3c2,设PF 1 =n ,PF 2 =m ,点P 在双曲线上,PF 1⊥PF 2,则有n -m =2a ,n 2+m 2=4c 2,可得mn =2b 2,过O 作MN 的垂线,垂足为D ,O 为F 1F 2的中点,则OD =12PF 1 =n2,MN =23c 2 2-n 22,同理,AB =23c 2 2-m 2 2,由AB ⊥MN ,四边形AMBN 的面积为12AB ⋅MN =12×23c 2 2-m 22×23c 2 2-n 22=9b 2,481c 416-m 2+n 24 9c 24+m 2n 216 =481c 416-9c 44+b 44=81b 4,化简得c 2=83b 2,则有a 2=c 2-b 2=53b 2,则C 的离心率e =c a =85=2105.故选:D7.(2023·浙江金华·浙江金华第一中学校考模拟预测)如图,已知椭圆C 1和双曲线C 2具有相同的焦点F 1-c ,0 ,F 2c ,0 ,A 、B 、C 、D 是它们的公共点,且都在圆x 2+y 2=c 2上,直线AB 与x 轴交于点P ,直线CP 与双曲线C 2交于点Q ,记直线AC 、AQ 的斜率分别为k 1、k 2,若椭圆C 1的离心率为155,则k 1⋅k 2的值为()A.2B.52C.3D.4【答案】D【分析】设椭圆方程为x 2a 2+y 2b 2=1,双曲线方程为x 2s 2-y 2t 2=1,根据椭圆离心率得到b 2=25a 2,故椭圆方程为2x 2+5y 2=2a 2,联立x 2+y 2=c 2求出A 点坐标,从而由对称性得到B ,C ,P 点坐标,表达出CP :y =55x -306b,将A 点代入双曲线方程,结合s 2+t 2=a 2-b 2=32b 2得到s 2=b 22,t 2=b 2,得到双曲线方程2x 2b 2-y 2b 2=1,联立CP :y =55x -306b,得到两根之和,两根之积,表达出Q 73054b ,-6b27,从而求出k 1,k 2,得到乘积.【详解】设椭圆方程为x 2a 2+y 2b 2=1,双曲线方程为x 2s 2-y 2t 2=1,则a 2-b 2=s 2+t 2=c 2,由c a =155可得3a 2=5c 2,因为c 2=a 2-b 2,所以b 2=25a 2,故椭圆方程为2x 2+5y 2=2a 2,联立x 2+y 2=c 2可得:x 2=c 2-23b 2=32b 2-23b 2=56b 2,y 2=2b 23,则A 306b ,63b,由对称性可知A 、C 两点关于原点对称,A 、B 两点关于x 轴对称,则B 306b ,-63b,C -306b ,-63b ,所以P 306b ,0,故k CP =0+63b 306b +306b =55,直线CP :y =55x -306b,A 306b ,63b 代入x 2s 2-y 2t 2=1中得,5b 26s 2-2b 23t2=1①,又s 2+t 2=a 2-b 2=52b 2-b 2=32b 2②,②①结合得到s 2=5b 22或s 2=b 22,因为a 2=52b 2,显然s <a ,故s 2=b 22,所以t 2=32b 2-b 22=b 2,故双曲线方程为2x 2b 2-y 2b 2=1,联立CP :y =55x -306b 与2x 2b 2-y 2b2=1得:95x 2+3015bx -76b 2=0,设Q x 1,y 1 ,则-306bx 1=-76b 2⋅59,解得:x 1=73054b ,故y 1=5535930b -306b=-6b 27,所以Q 73054b ,-6b27,所以k 2=63b +6b27306b -73054b =25,其中k 1=63b +63b 306b +306b =255,故k 1k 2=25×255=4.故选:D【点睛】椭圆和双曲线共焦点时,焦距成为联系两个曲线的桥梁,要根据题目条件列出方程,寻找到椭圆中长半轴,短半轴,和双曲线中实半轴,虚半轴的关系,再求解离心率或其他相关问题,共焦点的椭圆和双曲线的重要结论:①具有公共焦点的椭圆和双曲线离心率分别为e 1,e 2,P 为它们的一个交点,且∠F 1PF 2=2θ,则sin θe 12+cos θe 22=1;②若点P x 0,y 0 是椭圆C 1:x 2a 2+y 2b 2=1a >b >0 与双曲线C 2:x 2m 2-y 2n 2=1m >0,n >0 的一个公共点,且它们在P x 0,y 0 处的切线互相垂直,则椭圆C 1与双曲线C 2有公共焦点.二、多选题1.(2023·广东·统考一模)已知拋物线E :y 2=8x 的焦点为F ,点F 与点C 关于原点对称,过点C 的直线l 与抛物线E 交于A ,B 两点(点A 和点C 在点B 的两侧),则下列命题正确的是()A.若BF 为△ACF 的中线,则AF =2BFB.若BF 为∠AFC 的角平分线,则AF =6C.存在直线l ,使得AC =2AFD.对于任意直线l ,都有AF +BF >2CF【答案】AD【分析】设l :x =ky -2,不妨令A (x 1,y 1),B (x 2,y 2)都在第一象限,C (-2,0),F (2,0),联立抛物线,根据已知及韦达定理得k 2>1、y 1+y 2=8k ,y 1y 2=16,则x 1+x 2=8k 2-4,x 1x 2=4,再根据各项描述、抛物线定义判断它们的正误.【详解】由题意,设l :x =ky -2,不妨令A (x 1,y 1),B (x 2,y 2)都在第一象限,C (-2,0),F (2,0),联立E :y 2=8x ,则y 2-8ky +16=0,且Δ=64(k 2-1)>0,即k 2>1,所以y 1+y 2=8k ,y 1y 2=16,则x 1+x 2=8k 2-4,x 1x 2=4,如上图所示.A :若BF 为△ACF 的中线,则y 2=y 12,所以y 1=42,所以x 1=4,故A (4,42),所以B (1,22),则AF =2BF =6,故A 正确;B :若BF 为∠AFC 的角平分线,则BC AB=CF AF,作AD ,BE 垂直准线x =-2于D ,E ,则|AF |=|AD |且BC AB=CE DE,所以CF AD=CE DE,即CF AD +CF=CE CD=BE AD,则4x 1+6=x 2+2x 1+2,将x 2=4x 1>0代入整理,得x 21-4x 1-12=(x 1-6)(x 1+2)=0,则x 1=6,所以AF =x 1+2=8,故B 错误;C :若AC =2AF ,即AC =2AD ,即△ACD 为等腰直角三角形,此时CD =AD ,即A (y 1-2,y 1),所以y 21=8y 1-16,所以y 21-8y 1+16=0,所以y 1=4,所以y 2=4,则此时A ,B 为同一点,不合题设,故C 错误;D :AF +BF =AD +BE =x 1+x 2+4=8k 2,而2CF =8,结合k 2>1,可得8k 2>8,即AF +BF >2CF 恒成立,故D 正确.故选:AD .2.(2023·广东深圳·深圳中学校联考模拟预测)已知P x 1,y 1 ,Q x 2,y 2 是椭圆x 24+9y 24=1上两个不同点,且满足x 1x 2+9y 1y 2=-2,则下列说法正确的是()A.2x 1+3y 1-3 +2x 2+3y 2-3 的最大值为6+25B.2x 1+3y 1-3 +2x 2+3y 2-3 的最小值为3-5C.x 1-3y 1+5 +x 2-3y 2+5 的最大值为25+2105D.x 1-3y 1+5 +x 2-3y 2+5 的最小值为10-22【答案】AD【分析】设x =m ,3y =n ,设C (m 1,n 1),D (m 2,n 2),可得OC =(m 1,n 1),OD =(m 2,n 2),可得C 、D 两点均在圆m 2+n 2=4的圆上,且∠COD =2π3,根据点到直线的距离公式及圆的性质可得2x 1+3y 1-3 5+2x 2+3y 2-35及x 1-3y 1+52+x 2-3y 2+52的最值,可得答案.【详解】由x 24+9y 24=1,可得x 2+9y 2=4,又P x 1,y 1 ,Q x 2,y 2 是椭圆x 2+9y 2=4上两个不同点,可得x 12+9y 12=4,x 22+9y 22=4,设x =m ,3y =n ,则m 2+n 2=4,设C (m 1,n 1),D (m 2,n 2),O 为坐标原点,可得OC =(m 1,n 1),OD=(m 2,n 2),可得m 12+n 12=4,m 22+n 22=4,且m 1m 2+n 1n 2=-2,所以OC ⋅OD =-2,cos OC ,OD =OC ⋅ODOC ⋅OD=-12,又OC ,OD ∈0,π ,可得C 、D 两点均在圆m 2+n 2=4的圆上,且∠COD =2π3,设CD 的中点为E ,则OE =2cosπ3=1,根据点到直线的距离公式可知:2x 1+3y 1-35+2x 2+3y 2-35=2m 1+n 1-35+2m 2+n 2-35为点C 、D两点到直线2x+y-3=0的距离d1、d2之和,设E到直线2x+y-3=0的距离d3,由题可知圆心到直线2x+y-3=0的距离为-322+1=35,则d1+d2=2d3≤2EO+3 5=21+35=2+65,d1+d2=2d3≥235-EO=235-1=65-2可得d1+d2的最大值为2+65,d1+d2的最小值为65-2;可得2x1+3y1-3+2x2+3y2-3=5(d1+d2),可得2x1+3y1-3+2x2+3y2-3的最大值为5×2+65=25+6,最小值为6-25,故A正确,B错误;同理,x1-3y1+52+x2-3y2+52=m1-n1+52+m2-n2+52为点C、D两点到直线x-y+5=0的距离d4、d5之和,设E到直线x-y+5=0的距离d6,由题可知圆心到直线x-y+5=0的距离为512+1=52,则d4+d5=2d6≤252+1=52+2,d4+d5=2d6≥252-1=52-2,可得x1-3y1+5+x2-3y2+5=2(d4+d5),可得2x1+3y1-3+2x2+3y2-3的最大值为10+22,最小值为10-22,故C错误,D正确.故选:AD.【点睛】关键点睛:本题的关键是把问题转化为圆上点到直线的距离问题,结合到直线的距离公式及圆的性质即得.3.(2023·浙江金华·浙江金华第一中学校考模拟预测)设F1,F2为椭圆x24+y23=1的左,右焦点,直线l过F1交椭圆于A,B两点,则以下说法正确的是()A.△ABF2的周长为定值8B.△ABF2的面积最大值为23C.AF12+AF22的最小值为8 D.存在直线l使得△ABF2的重心为16,14【答案】ACD【分析】利用椭圆的定义可判断A,根据基本不等式结合椭圆的定义可判断C,设直线l的方程为x= my-1,联立椭圆方程利用韦达定理法,可表示出△ABF2的面积,△ABF2的重心进而判断BD.【详解】由椭圆x24+y23=1,可得a=2,b=3,c=1,所以△ABF2为AF1+AF2+BF1+BF2=4a=8,故A正确;因为AF1+AF2=4,所以AF12+AF22≥AF1+AF222=8,当且仅当AF1=AF2取等号,故C正确;由题可设直线l 的方程为x =my -1,由x =my -1x24+y 23=1 ,可得3m 2+4 y 2-6my -9=0,设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,所以y 1-y 2 =y 1+y 22-4y 1y 2=6m3m 2+42-4-93m 2+4=12m 2+13m 2+4,所以△ABF 2的面积为S =12F 1F 2 y 1-y 2 =12m 2+13m 2+4,令t =m 2+1,则t ≥1,m 2=t 2-1,所以S =12m 2+13m 2+4=12t 3t 2+1=123t +1t,因为t ≥1,由对勾函数的性质可知3t +1t≥4,所以S =12m 2+13m 2+4=12t 3t 2+1=123t +1t≤3,当t =1,即m =0取等号,故B 错误;由上可知y 1+y 2=6m3m 2+4所以x 1+x 2=m y 1+y 2 -2=6m 23m 2+4-2=-83m 2+4,又F 21,0 ,所以△ABF 2的重心为131-83m 2+4,2m 3m 2+4,令131-83m 2+4 =162m 3m 2+4=14,解得m =2,所以当直线l 的方程为x =2y -1时△ABF 2的重心为16,14,故D 正确.故选:ACD .4.(2023·江苏连云港·统考模拟预测)已知抛物线C :y 2=2px p >0 的焦点为F ,直线l 与C 交于A x 1,y 1 ,B x 2,y 2 两点,其中点A 在第一象限,点M 是AB 的中点,作MN 垂直于准线,垂足为N ,则下列结论正确的是()A.若直线l 经过焦点F ,且OA ⋅OB=-12,则p =2B.若AF =3FB ,则直线l 的倾斜角为π3C.若以AB 为直径的圆M 经过焦点F ,则ABMN的最小值为2D.若以AB 为直径作圆M ,则圆M 与准线相切【答案】BC【分析】A 选项,考虑直线斜率为0和不为0两种情况,设出直线方程,联立抛物线方程,得到两根之和,两根之积,由OA ⋅OB=-12列出方程,求出p =4,A 错误;B 选项,先得到直线l 经过抛物线焦点,与A 一样,设出直线方程,联立抛物线方程,得到两根之和,两根之积,结合y 1=-3y 2求出直线l 的斜率,得到倾斜角;C 选项,设AF =m ,BF =n ,由抛物线定义结合基本不等式得到AB MN的最小值;D选项,与C 一样,考虑直线l 不经过焦点时,得到圆M 与准线相离,D 错误.【详解】A 选项,由题意得:F p 2,0,准线方程为x =-p2,当直线l 的斜率为0时,此时,直线l 与C 只有1个交点,不合题意,故设直线l :x =p2+my ,与y 2=2px 联立得:y 2-2pmy -p 2=0,故y 1+y 2=2pm ,y 1y 2=-p 2,则x 1x 2=y 1y 224p 2=p 24,所以OA ⋅OB =x 1x 2+y 1y 2=p 24-p 2=-12,解得:p =4,A 错误;B 选项,因为AF =3FB,所以A ,F ,B 三点共线,即直线l 经过抛物线焦点,当直线l 的斜率为0时,此时,直线l 与C 只有1个交点,不合题意,故设直线l :x =p2+my ,与y 2=2px 联立得:y 2-2pmy -p 2=0,故y 1+y 2=2pm ,y 1y 2=-p 2,因为AF =3FB ,所以y 1=-3y 2,代入y 1+y 2=2pm ,y 1y 2=-p 2中,得到y 2=-pm ,-3y 22=-p 2,即m 2=13,因为点A 在第一象限,所以y 1>0,故y 2<0,即-pm <0,m >0,解得:m =33故直线l 的斜率为1m=3,设直线l 的倾斜角为θ0≤θ<π ,则tan θ=3,解得:θ=π3,B 正确;C 选项,设AF =m ,BF =n ,过点A 作AQ ⊥准线于点Q ,过点B 作BP ⊥准线于点P ,因为以AB 为直径的圆M 经过焦点F ,所以AF ⊥BF ,则AB =m 2+n 2,由抛物线定义可知:MN =AQ +BP2=AF +BF2=m +n2,由基本不等式得:m 2+n 2≥2mn ,则2m 2+n 2 ≥2mn +m 2+n 2=m +n 2,当且仅当m =n 时,等号成立,故m 2+n 2≥m +n 2,即AB MN=m 2+n 2m +n2=2m 2+n 2m +n≥2,C 正确;D 选项,当直线l 不经过焦点F p2,0时,设AF =m ,BF =n ,由三角形三边关系可知:AF +BF >AB ,由抛物线定义可知结合C 选项可知:AF +BF =2MN >AB ,即MN >AB2,若以AB 为直径作圆M ,则圆M 与准线相离,D 错误.故选:BC【点睛】圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.5.(2023·辽宁·辽宁实验中学校考模拟预测)已知抛物线C :x 2=2py (p >0)的焦点为F ,斜率为34的直线l 1过点F 交C 于A ,B 两点,且点B 的横坐标为4,直线l 2过点B 交C 于另一点M (异于点A ),交C 的准线于点D ,直线AM 交准线于点E ,准线交y 轴于点N ,则()A.C 的方程为x 2=4yB.AB =254C.BD <AED.ND ⋅NE =4【答案】ABD【分析】对于A ,根据题意设得F ,B 的坐标,再由直线l 1的斜率求得p ,从而求得抛物线C 的方程,由此判断即可;对于B ,联立直线l 1与抛物线C 的方程,求得A ,B 的坐标,进而求得AB ,由此即可判断;对于D ,设M m ,m 24 ,从而利用直接法求得E ,D 的坐标关于m 的表达式,从而证得ND ⋅NE =4,由此判断即可;对于C ,举反例排除即可.【详解】对于A ,由题意得F 0,p 2 ,B 4,8p,所以k AB =8p-p 24=34,整理得p 2+6p -16=0,又p >0,解得p =2,所以C 的方程为x 2=4y ,故A 正确;对于B ,由选项A 知双曲线C 的准线方程为y =-1,B (4,4),F (0,1),直线l 1的方程为y =34x +1,联立x 2=4y y =34x +1 ,解得x =-1或x =4,所以A -1,14 ,则AB =4+12+4-142=254,故B 正确;对于D ,设点M m ,m 24 ,由题意知m ≠±1且m ≠±4,所以直线MA :y -14=m -14x +1 ,令y =-1,得x =-m +4m -1,即E -m +4m -1,-1 ,故NE =m +4m -1,同理可得D 4m -4m +4,-1,故ND =4m -4m +4,所以ND ⋅NE =4m -4m +4 ⋅m +4m -1 =4,故D 正确;对于C ,当m =2时,E (-6,-1),D 23,-1 ,则AE =5174,BD =5133,则BD >AE ,故C 错误.故选:ABD .【点睛】关键点睛:本题解决的关键是设M m ,m 24 ,从而利用熟练的运算能力将E ,D 的坐标表示为关于m 的表达式,从而得解.6.(2023·山东青岛·统考一模)已知A 、B 是平面直角坐标系xOy 中的两点,若OA =λOB λ∈R ,OA ⋅OB=r 2r >0 ,则称B 是A 关于圆x 2+y 2=r 2的对称点.下面说法正确的是()A.点1,1 关于圆x 2+y 2=4的对称点是-2,-2B.圆x 2+y 2=4上的任意一点A 关于圆x 2+y 2=4的对称点就是A 自身C.圆x 2+y -b 2=b 2b >0 上不同于原点O 的点M 关于圆x 2+y 2=1的对称点N 的轨迹方程是y =12bD.若定点E 不在圆C :x 2+y 2=4上,其关于圆C 的对称点为D ,A 为圆C 上任意一点,则AD AE为定值【答案】BCD【分析】利用题中定义可判断AB 选项;设点M x 0,y 0 ,其中x 0≠0,设点N x ,y ,可得出x 20+y 20=2by 0,根据题中定义并结合已知条件求出点N 的轨迹方程,可判断C 选项;证明出△AOD ∽△EOA ,可得出AD AE=OA OE,可判断D 选项.【详解】对于A 选项,取点A 1,1 ,设点A 关于圆x 2+y 2=4的对称点为B ,则存在e 使得,OB =e OA ,可得OA ⋅OB =e OA 2=2e =4,则e =2,所以,OB =2OA =2,2 ,因此,点1,1 关于圆x 2+y 2=4的对称点是2,2 ,A 错;对于B 选项,由题意可知OA=2,设点A 关于圆x 2+y 2=4的对称点为点B ,则存在实数k ,使得OB =kOA ,所以,OA ⋅OB =kOA 2=4k =4,可得k =1,即OB =OA ,因此,圆x 2+y 2=4上的任意一点A 关于圆x 2+y 2=4的对称点就是A 自身,B 对;对于C 选项,设点M x 0,y 0 ,其中x 0≠0,设点N x ,y ,因为点M 在圆x 2+y -b 2=b 2b >0 上,则x 20+y 0-b 2=b 2,可得x 20+y 20=2by 0,由题意可知,存在实数m ,使得ON =mOM ,即x =mx 0y =my 0 ,所以,OM ⋅ON =mOM 2=m x 20+y 20 =2bmy 0=2by =1,可得y =12b,因此,点N 的轨迹方程为y =12b,C 对;对于D 选项,设点E x 1,y 1 ,则x 21+y 21≠4,设点D x 2,y 2 ,由题意可知,存在实数t ,使得OD =tOE ,且OD ⋅OE =tOE 2=4,则t >0,所以,OD 、OE 同向,且OD ⋅OE =OD ⋅OE =4=OA 2,所以,OD OA =OA OE ,又因为∠AOD =∠EOA ,所以,△AOD ∽△EOA ,所以,AD AE=OA OE为定值,D 对.故选:BCD .【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标x 0、y 0,然后代入点P 的坐标x 0,y 0 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.7.(2023·山东济宁·统考一模)已知F 1,F 2是椭圆C 1:x 2a 12+y 2a 22=1(a 1>b 1>0)与双曲线C 2:x 2a 22-y 2a 22=1(a 2>0,b 2>0)的公共焦点,e 1,e 2分别是C 1与C 2的离心率,且P 是C 1与C 2的一个公共点,满足PF 1⋅PF 2=0,则下列结论中正确的是()A.a 12+b 12=a 22-b 22 B.1e 21+1e 22=2C.1e 1+3e 2的最大值为22 D.3e 1+1e 2的最大值为22【答案】BD【分析】根据共焦点得到a 12-b 12=a 22+b 22,A 错误,计算PF 1 =a 1+a 2,PF 2 =a 1-a 2,得到a 12+a 22=2c 2,B 正确,设1e 1=2sin θ,1e 2=2cos θ,代入计算得到C 错误,D 正确,得到答案.【详解】对选项A :椭圆和双曲线共焦点,故a 12-b 12=a 22+b 22,错误;对选项B :PF 1 ⋅PF 2 =0,即∠F 1PF 2=π2,PF 1 +PF 2 =2a 1,PF 1 -PF 2 =2a 2,故PF 1 =a 1+a 2,PF 2 =a 1-a 2,故a 1+a 2 2+a 1-a 2 2=4c 2,即a 12+a 22=2c 2,即1e 12+1e 22=2,正确;对选项C :设1e 1=2sin θ,1e 2=2cos θ,1e 1+3e 2=2sin θ+6cos θ=22sin θ+π3 ,若最大值为22,则θ+π3=π2+2k π,k ∈Z ,θ=π6+2k π,k ∈Z ,1e 1=22,即e 1=2>1,不成立,错误;对选项D :设1e 1=2sin θ,1e 2=2cos θ,3e 1+1e 2=6sin θ+2cos θ,=22sin θ+π6 ,若最大值为22,则θ+π6=π2+2k π,k ∈Z ,θ=π3+2k π,k ∈Z ,1e 1=62,即e 1=63,1e 2=22,e 2=2,成立,正确;故选:BD【点睛】关键点睛:本题考查了椭圆和双曲线的离心率相关问题,意在考查学生的计算能力,转化能力和综合应用能力,其中利用三角换元求最值可以简化运算,是解题的关键.8.(2023·山东济南·一模)在平面直角坐标系xOy 中,由直线x =-4上任一点P 向椭圆x 24+y 23=1作切线,切点分别为A ,B ,点A 在x 轴的上方,则()A.∠APB 恒为锐角B.当AB 垂直于x 轴时,直线AP 的斜率为12C.|AP |的最小值为4D.存在点P ,使得(PA +PO )⋅OA=0【答案】ABD【分析】对于A 项,利用椭圆的切点弦方程可得l AB 过椭圆左焦点,再判定以AB 为直径的圆与直线x =-4的位置关系即可;对于B 项,当AB 垂直于x 轴时,可直接解得切线方程判定即可;对于C 项,特殊值法判定即可;对于D 项,取OA 中点M ,易知PM ⊥OA ,建立方程计算即可.【详解】对于A 项,设切线方程为l :y =kx +m ,P -4,t 、A x 1,y 1 、B x 2,y 2 联立y =kx +m3x 2+4y 2-12=0得:4k 2+3 x 2+8km +4m 2-12=0,∵直线与椭圆相切,故Δ=0,则x 1=-4km 4k 2+3,y 1=3m 4k 2+3∴k =-3x 14y 1,m =3y 1,∴切线PA 的方程为l PA :x 1x 4+y 1y 3=1,同理切线PB 的方程为l :x 2x4+y 2y 3=1而P 点在l PA 、l PB 上,故-4x 14+y 1t 3=1-4x 24+y 2t 3=1,又A x 1,y 1 、B x 2,y 2 满足该方程组,故l AB :-4x 4+ty 3=1,显然l AB 过定点-1,0 即椭圆左焦点.以AB 为直径的圆半径最大无限接近a ,但该圆与x =-4一直相离,即∠APB 始终为锐角,A 正确;对于B 项,由A 得l AB :-4x 4+ty 3=1,AB ⊥x 轴时,t =0,易得A -1,32、P -4,0 ,∴k PA =32-0-1--4=12,故B 正确;对于C 项,由B 知AB ⊥x 轴时,A -1,32 、P -4,0 此时PA =352<4,故C 错误;对于D 项,取AO 中点M ,若(PA +PO )⋅OA =0则2PM ⋅AO=0,∴PM ⊥AO ,即△PAO 为等腰三角形,PA 2=x 1+4 2+y 1-t 2=PO 2=16+t 2,化简得x 12+y 12+8x 1-2ty 1=0,由A 知:ty 1=3x 1+3,y 12=31-x 124,整理得:x 12+8x 1-12=0,∴x 1=27-4,显然存在P 满足题意,故D 正确;故选:ABD【点睛】本题考查圆锥曲线的综合应用,属于压轴题.对于小题,提高效率可以用特殊值法,极端位置猜测,这里也需要积累一些比较常用的二级结论:(1)过椭圆x 2a 2+y 2b 2=1上一点x 0,y 0 的切线方程x 0x a 2+y 0y b2=1,(2)椭圆x 2a 2+y 2b 2=1外一点x 0,y 0 引两条切线,切点连线方程为x 0x a 2+y 0y b2=1;(3)椭圆x 2a 2+y 2b 2=1的准线方程:x =±a 2c ,过准线引椭圆的两条切线,切点连线过对应焦点.9.(2023·山东·沂水县第一中学校联考模拟预测)已知AB ,CD 是经过抛物线y 2=2x 焦点F 的互相垂直的两条弦,若AB 的倾斜角为锐角,C ,A 两点在x 轴上方,则下列结论中一定成立的是()A.AB 2+CD 2最小值为32B.设P x ,y 为抛物线上任意一点,则x +x -322+y -22的最小值为5C.若直线CD 的斜率为-3,则AF ⋅BF =4D.OA ⋅OB +OC ⋅OD =-32【答案】AD【分析】选项AC :数形结合推导出|AF |=p 1-cos α,|BF |=p1+cos α,应用公式求解和判断;选项B :根据抛物线定义和性质转化求解;选项D :联立方程,应用韦达定理证得:OA ⋅OB =OC ⋅OD =-34p 2即可判断;【详解】设直线AB 的倾斜角为α.AF =AA 1 =p +FH =p +AF cos α,则AF 1-cos α =p ,即AF =p 1-cos α,同理可得BF =p1+cos α.y 2=2x ,根据定义得:p =1,焦点坐标12,0;选项A :AB 2+CD 2=2p sin θ 2 2+2p sin θ+π2 22=4p 2sin θ 4+4p 2cos θ 4≥8sin θ 2cos θ 2(当且仅当θ=π4时等号成立)8sin θ 2cos θ 2=812sin2θ2=32sin 22θ≥32,因为sin2θ∈-1,1 ,所以AB 2+CD 2=32sin 22θ≥32,故A 正确;选项B :令Q 32,2 ,x +x -32 2+y -2 2=x +p2+x -322+y -2 2-p2转换成抛物线上的点到焦点的距离,x +x -322+y -2 2=PF +PQ -12≥FQ -12=32-122+2-0 2-12=5-12,故B 错误;选项C :tan θ=-3,根据三角函数间关系得:cos θ=-12,AF ⋅BF =p 1-cos α⋅p 1+cos α=43,故C 错误;选项D :因为AB 的斜率为k ,AB ⊥CD ,所以k CD =-1k ,设A (x 1,y 1),B (x 2,y 2),AB 的方程为y =k x -p2 ,由y =k x -p2y 2=2px可得,k 2x 2-p (k 2+2)x +14k 2p 2=0,x 1+x 2=p (k 2+2)k 2x 1x 2=14p2,OA ⋅OB =x 1x 2+y 1y 2=14p 2+k 2x 1-p 2 x 2-p 2=14p 2+k 2x 1x 2-p 2x 1+x 2 +14p 2 =14p 2+12k 2p 2-p 2(k 2+2)2=-34p 2与k 无关,同理OC ⋅OD =-34p 2,故OA ⋅OB +OC ⋅OD =-32p 2=-32,即OA ⋅OB +OC ⋅OD =-32故D 正确;故选:AD ;10.(2023·湖南·模拟预测)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,C 的一条渐近线l 的方程为y =3x ,且F 1到l 的距离为33,点P 为C 在第一象限上的点,点Q 的坐标为2,0 ,PQ 为∠F 1PF 2的平分线.则下列正确的是()A.双曲线的方程为x 29-y 227=1B.PF 1=3 PF 2C.OP =36D.点P 到x 轴的距离为3152【答案】ACD【分析】由F 1到l 的距离为33以及渐近线方程为y =3x 可求得a =3,b =33,c =6,即可得出方程,判断A ;由PF 1PF 2 =QF 1QF 2 可求出判断B ;结合双曲线定义可求得PF 1 =12,PF 2 =6,求出cos ∠F 1PF 2,即可求出PF 1 +PF 2,判断C ;利用等面积法可求得点P 到x 轴的距离,判断D .【详解】F 1-c ,0 到y =3x 的距离为33,3c2=33,解得c =6,又渐近线方程为y =3x ,则ba=3,结合a 2+b 2=c 2可解得a =3,b =33,则双曲线的方程为x 29-y 227=1,故A 正确;PQ 为∠F 1PF 2的平分线,PF 1 PF 2=QF 1 QF 2=84=2,故B 错误;由双曲线定义可得PF 1- PF 2 =6,则可得PF 1 =12,PF 2 =6,则在△PF 1F 2中,cos ∠F 1PF 2=122+62-1222×12×6=14,则|PF 1 +PF 2 |2=PF 1 2+2PF 1 ⋅PF 2 +PF 2 2=122+2×12×6×14+62=216,则PF 1 +PF 2 =2PO=66,即OP =36,故C 正确;在△PF 1F 2中,sin ∠F 1PF 2=1-cos 2∠F 1PF 2=154,设点P 到x 轴的距离为d ,则S △PF 1F 2=12×F 1F 2×d =12PF 1× PF 2 ×sin ∠F 1PF 2,即12×12×d =12×12×6×154,解得d =3152,故D 正确.故选:ACD .【点睛】关键点点睛:是根据已知求出双曲线方程,结合双曲线的定义求得焦点三角形的各边长.11.(2023·湖南·模拟预测)已知椭圆:Γ:x 2a2+y 23=1(a >3)的左、右焦点分别为F 1、F 2,右顶点为A ,点M 为椭圆Γ上一点,点I 是△MF 1F 2的内心,延长MI 交线段F 1F 2于N ,抛物线y 2=158(a +c )x (其中c为椭圆下的半焦距)与椭圆Γ交于B ,C 两点,若四边形ABF 1C 是菱形,则下列结论正确的是()A.|BC |=352 B.椭圆Γ的离心率是32C.1MF 1 +4MF 2的最小值为94 D.|IN ||MI |的值为12【答案】ACD【分析】对于A ,利用椭圆与抛物线的对称性得到m =12a -c ,从而将B m ,n 代入抛物线方程得到n =354,进而得以判断;对于B ,将B m ,n 代入椭圆Γ的方程得到a =2c ,由此得以判断;对于C ,利用椭圆的定义与基本不等式“1”的妙用即可判断;对于D ,利用三角形内心的性质与三角形角平分线的性质,结合比例的性质即可判断.【详解】对于A ,因为椭圆Γ:x 2a 2+y 23=1(a >3)的左、右焦点分别为F 1、F 2,右顶点为A ,则A a ,0 ,F 1-c ,0 ,F 2-c ,0 ,b 2=3,因为抛物线y 2=158(a +c )x (其中c 为椭圆下的半焦距)与椭圆Γ交于B ,C 两点,所以由椭圆与抛物线的对称性可得,B ,C 两点关于x 轴对称,不妨设B m ,n ,C m ,-n ,n >0,因为四边形ABF 1C 是菱形,所以BC 的中点是AF 1的中点,所以由中点坐标公式得2m =a -c ,则m =12a -c ,将B m ,n 代入抛物线方程y 2=158(a +c )x 得,n 2=158a +c m =1516a +c a -c =1516a 2-c 2,所以n 2=1516b 2=4516,则n =354,所以|BC |=2n =352,故A 正确;对于B ,由选项A 得B 12a -c ,354 ,再代入椭圆方程得14⋅a -c 2a2+4516×3=1,化简得a -c2a2=14,则a -c a =12,故a =2c ,所以e =c a =12,故B 错误;对于C ,由选项B 得a =2c ,所以b 2=a 2-c 2=3c 2=3,则c =1,a =2,所以MF 1 +MF 2 =2a =4,不妨设MF 1 =s ,MF 2 =t ,则s +t =4,且s >0,t >0,所以1MF 1 +4MF 2=1s +4t =14s +t 1s +4t =145+t s +4s t ≥145+2t s ⋅4s t =94,当且仅当t s =4s t 且s +t =4,即s =43,t =83,即MF 1 =43,MF 2 =83时,等号成立,所以1MF 1 +4MF 2 的最小值为94,故C 正确;对于D ,连接IF 1和IF 2,如图,因为△MF 1F 2的内心为I ,所以IF 1为∠MF 1F 2的平分线,则有MF 1 F 1N=MI IN,同理:MF 2 F 2N=MI IN,所以MF 1 F 1N=MF 2 F 2N=MI IN,所以MI IN=MF 1 +MF 2 F 1N +F 2N=2a 2c =2,所以|IN ||MI |=12,故D 正确.故选:ACD .【点睛】关键点睛:本题的关键点是利用椭圆与抛物线的对称性,可设B ,C 的坐标,再由菱形的性质与中点坐标公式推得m =12a -c ,从而求得a ,c 的值,由此得解.三、填空题1.(2023·广东揭阳·校考模拟预测)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点为F 1,F 2,P 是双曲线上一点,且∠F 1PF 2=π3.若ΔF 1PF 2的外接圆和内切圆的半径分别为R ,r ,且R =4r ,则双曲线的离心率为.【答案】2721.【分析】在△F 1PF 2中,利用正弦定理:2R =F 1F 2sin ∠F 1PF 2,求得R =233c ,r =14R =36c ,设PF 1 =m ,PF 2 =n ,再利用余弦定理求得mn ,然后由S △F 1PF 2=12mn sin π3=12m +n +2c r 求解.【详解】双曲线的焦点为F 1-c ,0 ,F 2c ,0 ,F 1F 2 =2c ,在△F 1PF 2中,由正弦定理得:2R =F 1F 2sin ∠F 1PF 2=2c sin π3=433c ,解得R =233c ,r =14R =36c ,设PF 1 =m ,PF 2 =n ,在△F 1PF 2中,由余弦定理得:4c 2=m 2+n 2-2mn cos π3=m -n 2+mn ,解得mn =4c 2-a 2 ,所以S △F 1PF 2=12mn sin π3=3c 2-a 2 ,因为m +n 2=m -n 2+4mn =4a 2+16c 2-a 2 =16c 2-12a 2又S △F 1PF 2=12m +n +2c r =3c m +n +2c12,所以3c 2-a 2=3c m +n +2c 12,则m +n =10c 2-12a 2c所以m +n 2=10c 2-12a 2c2=16c 2-12a 2整理得21c 4+36a 4-57a 2c 2=0,则c 2-a 2 21c 2-36a 2 =0解得e =c a =2217或e =1(舍去)故答案为:2217.【点睛】关键点点睛:本题的关键在于结合正余定理以及S △F 1PF 2=12mn sin π3=12m +n +2c r 化简求解.2.(2023·浙江·校联考三模)已知椭圆E :x 24+y 2=1,椭圆的左右焦点分别为F 1,F 2,点A (m ,n )为椭圆上一点且m >0,n >0,过A 作椭圆E 的切线l ,并分别交x =2、x =-2于C 、D 点.连接CF 1、DF 2,CF 1与DF 2交于点E ,并连接AE .若直线l ,AE 的斜率之和为32,则点A 坐标为.【答案】2,22 ##2,122 【分析】设直线l 的程y =kx +b ,利用直线与椭圆相切,联立方程,则Δ=0,即4k 2=b 2-1,最后得到切线方程为mx4+ny =1,再求出C ,D 坐标,写出直线直线DF 2,CF 1的方程,联立解出E 点坐标,最后得到m =2n ,再联立m 24+n 2=1,解出即可.【详解】由椭圆E :x 24+y 2=1可得F 1(-3,0),F 2(3,0),。
高中数学竞赛与强基计划试题专题:解析几何
高中数学竞赛与强基计划试题专题:解析几何一、单选题1.(2020·北京·高三强基计划)从圆224x y +=上的点向椭圆22:12x C y +=引切线,两个切点间的线段称为切点弦,则椭圆C 内不与任何切点弦相交的区域面积为()A .2πB .3πC .4πD .前三个答案都不对2.(2022·北京·高三校考强基计划)内接于椭圆22149x y +=的菱形周长的最大值和最小值之和是()A .B .CD .上述三个选项都不对3.(2020·湖北武汉·高三统考强基计划)已知直线1211::22l y x l y x =-=,,动点P 在椭圆22221(0)x y a b a b +=>>上,作1//PM l 交2l 于点M ,作2//PN l 交1l 于点N .若22PM PN +为定值,则()A .2ab =B .3ab =C .2a b =D .3a b=4.(2020·北京·高三强基计划)设直线3y x m =+与椭圆2212516x y +=交于A ,B 两点,O 为坐标原点,则OAB面积的最大值为()A .8B .10C .12D .前三个答案都不对5.(2022·贵州·高二统考竞赛)如图,1C ,2C 是离心率都为e 的椭圆,点A ,B 是分别是2C 的右顶点和上顶点,过A ,B 两点分别作1C 的切线1l ,2l .若直线1l ,2l 的斜率分别为1k ,2k ,则12k k 的值为()A .2eB .21e -C .21e -D .21e 6.(2020·湖北武汉·高三统考强基计划)过椭圆22149x y +=的中心作两条互相垂直的弦AC 和BD ,顺次连接,,,A B C D 得一四边形,则该四边形的面积可能为()A .10B .12C .14D .167.(2019·贵州·高三校联考竞赛)设椭圆C :()222210x y a b a b +=>>的左、右焦点分别为12,F F ,其焦距为2c .点322c N ⎛⎫⎪ ⎪⎝⎭在椭圆的内部,点M 是椭圆C 上的动点,且112||MF MN F +<恒成立,则椭圆C 的离心率的取值范围是()A .⎛ ⎝⎭B .⎫⎪⎪⎝⎭C .⎫⎪⎪⎝⎭D .⎝⎭二、多选题8.(2022·贵州·高二统考竞赛)如图,M ,N 分别是Rt ABC △两直角边上的动点,P 是线段MN 的中点,则以下结论正确的是()A .当△AMN 的面积为定值时,点P 的轨迹为双曲线一支B .当|MN |为定值时,点P 的轨迹为一圆弧C .当||||AM AN +为定值时,点P 的轨迹为不含端点线段D .当△AMN 的周长为定值时,点P 的轨迹为抛物线9.(2020·北京·高三校考强基计划)已知A ,B 分别为双曲线2214x y -=的左、右顶点,P 为该曲线上不同于A ,B 的任意一点设,,∠=∠= PAB PBA PAB αβ的面积为S ,则()A .tan tan αβ⋅为定值B .tantan22αβ⋅为定值C .tan()S αβ⋅+为定值D .cot()S αβ⋅+为定值10.(2020·北京·高三校考强基计划)已知点(1,1),(1,0)A Q ,P 为椭圆22143x y +=上的动点,则||||PA PQ +的()A .最大值为4B .最大值为4C .最小值为4-D .最小值为4三、填空题11.(2022·江苏南京·高三强基计划)设F ,l 分别为双曲线()22411212x y --=的右焦点与右准线,椭圆Γ以F和l 为其对应的焦点及准线,过F 作一条平行于y =的直线,交椭圆Γ于A 、B 两点,若Γ的中心位于以AB 为直径的圆外,则椭圆离心率e 的范围为___________.12.(2018·山东·高三竞赛)若直线65280x y --=交椭圆22221x ya b+=(0a b >>,且2a 、b 为整数)于点A 、C .设()0,B b 为椭圆的上顶点,而ABC 的重心为椭圆的右焦点2F ,则椭圆的方程为______.13.(2022·新疆·高二竞赛)设z 为复数,若方程2297--=z z 表示一条圆锥曲线,则此曲线的离心率=e ___________.14.(2021·全国·高三竞赛)已知集合{}22(,)|||||,0,(,)|1,044x y A x y x y t t B x y m m ⎧⎫=+>=+≤<<⎨⎩≤⎬⎭满足B A ⊆,若P 为集合B 的边界线C 上任意一点,12F F 、为曲线C 的焦点,I 为12PF F △的内心,直线1IF 和2IF 的斜率分别为12k k 、,且1213k k ⋅=-则t 的最小值为________.15.(2021·全国·高三竞赛)已知ABCD Y 的四个顶点均在双曲线2214y x -=上,点(0,1)P 在边AB 上,且12AP PB =,则ABCD Y 的面积等于_______.四、解答题16.(2022·湖北武汉·高三统考强基计划)设F 为椭圆C :22194x y +=的左焦点,P 为椭圆C 上的一点(1)作正方形FPAB (F ,P ,A ,B 按逆时针排列)当P 沿着椭圆运动一周,求动点B 的轨迹方程.(2)设()3,2Q 为椭圆外一点,求PQ PF +的取值范围.17.(2018·全国·高三竞赛)一束直线12,,l l 的每条均过xOy 平面内的抛物线2:C y x =的焦点,()1i l i ≥与抛物线C 交于点i A 、i B .若1l 的斜率为1,()2i l i ≥的斜率为1+2014l 的解析式.18.(2018·福建·高三竞赛)已知1F 、2F 分别为椭圆()2222:10x y C a b a b +=>>的左、右焦点,点3P ⎛⎫ ⎪⎝⎭在椭圆C 上,且12F PF △的垂心为5,33H ⎛⎫- ⎪ ⎪⎝⎭.(1)求椭圆C 的方程;(2)设A 为椭圆C 的左顶点,过点2F 的直线l 交椭圆C 于D 、D 两点.记直线AD 、AE 的斜率分别为1k 、2k ,若1212k k +=-,求直线l 的方程.19.(2018·江西·高三竞赛)若椭圆221259x y +=上不同的三点()11,A x y ,94,5B ⎛⎫ ⎪⎝⎭,()22,C x y 到椭圆右焦点的距离顺次成等差数列,线段AC 的中垂线l 交x 轴于点T ,求直线BT 的方程.20.(2018·湖北·高三竞赛)已知O 为坐标原点,()1,0N ,点M 为直线=1x -上的动点,MON ∠的平分线与直线MN 交于点P ,记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点11,22Q ⎛⎫-- ⎪⎝⎭作斜率为k 的直线l ,若直线l 与曲线E 恰好有一个公共点,求k 的取值范围.21.(2021·全国·高三竞赛)过抛物线22y px =(p 为不等于2的质数)的焦点F ,作与x 轴不垂直的直线l 交抛物线于M 、N 两点,线段MN 的垂直平分线交MN 于P 点,交x 轴于Q 点.(1)求PQ 中点R 的轨迹L 的方程;(2)证明:L 上有无穷多个整点(横、纵坐标均为整数的点),但L 上任意整点到原点的距离均不是整数.22.(2021·全国·高三竞赛)已知椭圆22:12+=x E y 的右焦点为(c,0)F ,上顶点为M ,圆222:()(0)F x c y r r -+=>,问:椭圆E 上是否存在两点P 、Q 使得圆F 内切于三角形MPQ 若存在,求出直线PQ 的方程;若不存在,请说明理由.23.(2021·全国·高三竞赛)如图所示,()(),0P a b a b <<为抛物线2:4F y x =外一点,过P 引抛物线Γ的两条切线PA PB 、,切点分别为A 、B .在线段PA 上取两点D 、E ,使得PD AE =.若过D 、E 两点的直线12l l 、分别切抛物线Γ于M 、N 两点(异于A ).求四边形MNAB 面积的最大值.24.(2021·全国·高三竞赛)已知椭圆22122:1(0)x y C a b a b+=>>,其右焦点为F ,过F 作直线l 交椭圆1C 于A 、B 两点(l 与x 轴不重合),设线段AB 中点为D ,连结OD (O 为坐标原点),直线OD 交椭圆1C 于M 、N 两点,若A 、M 、B 、N 四点共圆,且||8||3MN OD =,求椭圆1C 的离心率.25.(2018·甘肃·高三竞赛)已知椭圆2222:1x y C a b+=过点()0,2M ,且右焦点为()2,0F .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于,A B 两点,交y 轴于点P .若,PA mAF PB nBF ==,求证:m n +为定值;(3)在(2)的条件下,若点P 不在椭圆C 的内部,点Q 是点P 关于原点O 的对称点,试求三角形QAB 面积的最小值.26.(2018·山东·高三竞赛)已知圆22:4O x y +=与曲线:3C y x t =-,(),A m n ,(),B s p ,(),,,m n s p *∈N 为曲线C 上的两点,使得圆O 上任意一点到点A 的距离与到点B 的距离之比为定值()1k k >,求t 的值.27.(2022·福建·高二统考竞赛)已知椭圆C :()222210x y a b a b+=>>的离心率为12,1A 、2A 分别为椭圆C 的左、右顶点,1F 、2F 分别为椭圆C 的左、右焦点,B 为椭圆C 的上顶点,且11BA F ∆的外接圆半径为3.(1)求椭圆C 的方程;(2)设与x 不垂直的直线l 交椭圆C 于P 、Q 两点(P 、Q 在x 轴的两侧),记直线1A P 、2PA 、2A Q 、1QA 的斜率分别为1k 、2k 、3k 、4k .已知()142353k k k k +=+,求2F PQ ∆面积的取值范围.28.(2022·新疆·高二竞赛)如图,已知ABC 内接于抛物线2:=E x y ,且边,AB AC 所在直线分别与抛物线2:4=M y x 相切,F 为抛物线M 的焦点.求证:(1)边BC 所在直线与抛物线M 相切;(2)A ,C ,B ,F 四点共圆.(2021·全国·高三竞赛)已知(2,1)S 为椭圆22Γ:182x y+=上的点,对椭圆Γ上的任意两点P 、Q ,用如下办法定义它们的“和”P Q +:过点S 作一条平行于PQ (若点P 与Q 重合,则直线PQ 表示椭圆Γ在P 处的切线)的直线l 与椭圆Γ交于不同于S 的另一点,记作P Q +(若l 与椭圆Γ相切,则规定S 为P Q +).并规定n nP P P P=+++个.29.若点(0,P Q ,求P Q +、2P 以及100P 的坐标.30.在椭圆Γ上是否存在不同于S 的点P ,满足3P S =?若存在,求出所有满足条件的点P 的坐标;若不存在,请说明理由.高中数学竞赛与强基计划试题专题:解析几何答案一、单选题1.(2020·北京·高三强基计划)从圆224x y +=上的点向椭圆22:12x C y +=引切线,两个切点间的线段称为切点弦,则椭圆C 内不与任何切点弦相交的区域面积为()A .2πB .3πC .4πD .前三个答案都不对【答案】A【分析】算出椭圆内与切点弦不相交的点的边界的方程,从而可求区域的面积.【详解】设圆224x y +=上一点为(2cos ,2sin )P θθ,则对应切点弦所在直线l 的方程为2cos 2sin 12xy θθ⋅+⋅=即cos 2sin 1x y θθ+=,1≥,故椭圆C 内不与任何切点弦相交的区域面积即为椭圆2241x y +=围成的面积,其面积为1ππ122⨯⨯=.2.(2022·北京·高三校考强基计划)内接于椭圆22149x y +=的菱形周长的最大值和最小值之和是()A.B.CD .上述三个选项都不对【答案】D【分析】求出椭圆的极坐标方程,设内接于椭圆22149x y +=的菱形为ABCD ,()12,,,2A B πρθρθ⎛⎫+ ⎪⎝⎭,分别求出22,OA OB ,再根据222AB OA OB =+,结合三角恒等变换化简,再根据三角函数的性质求出AB 的最大值和最小值,即可得解.【详解】解:由22149x y +=,得229436x y +=,化为极坐标方程为223645cos ρθ=+,设内接于椭圆22149x y +=的菱形为ABCD ,则OA OB ⊥,设()12,,,2A B πρθρθ⎛⎫+ ⎪⎝⎭,则22123645cos OA ρθ==+,22222363645sin 45cos 2OB ρπθθ==+⎛⎫++ ⎪⎝⎭,所以2221222363645cos 45sin AB ρρθθ=+=+++2223613361325162025sin cos 36sin 24θθθ⨯⨯==+++,当2sin 20θ=时,2AB 取得最大值,即AB所以菱形的周长的最大值为当2sin 21θ=时,2AB 取得最小值,即AB 的最小值为13,所以菱形的周长的最小值为13,所以内接于椭圆22149x y +=的菱形周长的最大值和最小值之和是1313=.3.(2020·湖北武汉·高三统考强基计划)已知直线1211::22l y x l y x =-=,,动点P 在椭圆22221(0)x y a b a b +=>>上,作1//PM l 交2l 于点M ,作2//PN l 交1l 于点N .若22PM PN +为定值,则()A .2ab =B .3ab =C .2a b =D .3a b=【答案】C【分析】根据四边形OMPN 是平行四边形,得到2222PM PN OM ON +=+为定值,然后将取特殊位置(),0P a ,()0,P b 求解.,易知由四边形OMPN 是平行四边形,所以2222PM PN OM ON +=+为定值,取点(),0P a 时,由()1212y x a y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得24a x a y ⎧=⎪⎪⎨⎪=-⎪⎩,所以,24a a M ⎛⎫- ⎪⎝⎭,由对称性得:,24a a N ⎛⎫ ⎪⎝⎭,所以22258OM ON a +=,取点()0,P b 时,由1212y x b y x ⎧=+⎪⎪⎨⎪=-⎪⎩,解得2x bb y =-⎧⎪⎨=⎪⎩,所以,2b M b ⎛⎫- ⎪⎝⎭,由对称性得:,2b N b ⎛⎫ ⎪⎝⎭,所以22252OM ON b +=,所以225582a b =,即2a b =,4.(2020·北京·高三强基计划)设直线3y x m =+与椭圆2212516x y +=交于A ,B 两点,O 为坐标原点,则OAB面积的最大值为()A .8B .10C .12D .前三个答案都不对【答案】B【分析】联立直线方程和椭圆方程后消元,利用公式可求面积的表达式,再利用基本不等式可求面积的最大值.【详解】由22312516y x m x y =+⎧⎪⎨+=⎪⎩可得22241150254000x mx m ++-=,()22222500424125400160024116000m m m ∆=-⨯-=⨯->,故m而241241AB ==,故1122ABOS AB ==△2224120210241m m+-⨯==,当且仅当m=等号成立,故OAB面积的最大值为10,5.(2022·贵州·高二统考竞赛)如图,1C,2C是离心率都为e的椭圆,点A,B是分别是2C的右顶点和上顶点,过A,B两点分别作1C的切线1l,2l.若直线1l,2l的斜率分别为1k,2k,则12k k的值为()A.2e B.21e-C.21e-D.21e【答案】C【详解】不妨设22122:1x yCa b+=,222222:x yCa bλ+=(0,1)a bλ>>>,∴,(,0)(0,)A aB bλλ,11:()l y k x aλ=-代入1C的方程得:()2222322422211120b a k x a k x a k a bλλ+-+-=,()()()23222224222111Δ240a kb a k a k a bλλ=--+-=,化简得()221221bkaλ=-.22:l y k x bλ=+代入22221x ya b+=得()22222222222220b a k x a bk x a b a bλλ+-+-=.()()()222222222222Δ240a bkb a k a b a bλλ=-+-=.化简得()222221bkaλ-=.∴422124bk ka=,∴222212221b a ck k ea a-===-,6.(2020·湖北武汉·高三统考强基计划)过椭圆22149x y+=的中心作两条互相垂直的弦AC和BD,顺次连接,,,A B C D得一四边形,则该四边形的面积可能为()A.10B.12C.14D.16【答案】B【分析】设()11,A x y,()22,B x y,设x轴正方向旋转到与向量OA 同向所转过的角为α,利用三角函数的定义表示,A B的坐标,代入椭圆方程,求得223636,OA OB关于α的函数表达式,进而得到223636OA OB关于α的函数表达式,利用三角函数恒定变形化简,然后利用三角函数的性质求得其取值范围,进而得到四边形面积的取值范围,从而做出选择.【详解】设()11,A x y ,()22,B x y ,设x 轴正方向旋转到与向量OA同向所转过的角为α,并根据题意不妨设OA 到OB 为逆时针旋转π2,则11cos ,sin .x OA y OA αα⎧=⎪⎨=⎪⎩,22cos sin ,2sin cos .2x OB OB y OB OB πααπαα⎧⎛⎫=+=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+= ⎪⎪⎝⎭⎩22149x y +=,229436x y +=,2222369cos 4sin 5cos 4OA ααα=+=+, 22223694cos 5sin 4sin OBααα=+=+,2222236362516925cos sin 36sin 23636,44OA OBααα⎡⎤=+=+∈⎢⎥⎣⎦,∴36136,2OA OB ⎡⎤∈⎢⎥⎣⎦,1442,1213ABCD S OA OB ⎡⎤=∈⎢⎥⎣⎦,当4πα=时取到最小值14413,当0α=时取得最大值12.只有选项B 中的12在此范围内7.(2019·贵州·高三校联考竞赛)设椭圆C :()222210x y a b a b +=>>的左、右焦点分别为12,F F ,其焦距为2c .点322c N ⎛⎫⎪ ⎪⎝⎭在椭圆的内部,点M 是椭圆C上的动点,且112||MF MN F +<恒成立,则椭圆C 的离心率的取值范围是()A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.,121⎛⎫⎪ ⎪⎝⎭D.⎝⎭【答案】D【详解】由322c N ⎛⎫ ⎪ ⎪⎝⎭在椭圆的内部,得22229142c c a b +<,即222222924b c a c a b +<,从而422441590a a c c -+>,得到4291540e e -+>,因此()()2231340e e -->.因为0<e <1,所以3e 2-4<0,故3e 2<1,得到0e <<.又由112||MF MN F +<恒成立,即22||a MN MF +-<恒成立,等价于()2max2||a MN MF +-<,亦即22a NF +<,等价于2a ,即2a e >.e <<二、多选题8.(2022·贵州·高二统考竞赛)如图,M ,N 分别是Rt ABC △两直角边上的动点,P 是线段MN 的中点,则以下结论正确的是()A .当△AMN 的面积为定值时,点P 的轨迹为双曲线一支B .当|MN |为定值时,点P 的轨迹为一圆弧C .当||||AM AN +为定值时,点P 的轨迹为不含端点线段D .当△AMN 的周长为定值时,点P 的轨迹为抛物线【答案】ABC【详解】建立如图的直角坐标设(),P x y ,则(2,0)M x ,(0,2)N y ,0x >,0y >,对于A ,当Rt △AMN 面积为定值()20k k >时,12222x y k ⋅⋅=,∴(0)x y k k ⋅=>轨迹为双曲线一支,所以A 正确.对于B ,若2(0)MN d d =>,则222222444x y d x y d +=⋅+=,(0,0)x y >>是一圆弧,所以B 正确.对于C ,当2(0)AM AN t t +=>时,222(0,0)x y t x y +=>>,即(0,0)x y t x y +=>>为空端点线段,所以C 正确.对于D ,当Rt △AMN 的周长为定值2C 时,则222x y C ++,即(0,0)x y C x y +=>>,()C x y =-+,∴22222222x y C Cx Cy xy x y +=--+++,所以2(22)2x C y Cx C -=-,2222Cx C y x C-=-轨迹为双曲线一支,所以D 错误.9.(2020·北京·高三校考强基计划)已知A ,B 分别为双曲线2214x y -=的左、右顶点,P 为该曲线上不同于A ,B 的任意一点设,,∠=∠= PAB PBA PAB αβ的面积为S ,则()A .tan tan αβ⋅为定值B .tantan22αβ⋅为定值C .tan()S αβ⋅+为定值D .cot()S αβ⋅+为定值【答案】AC【分析】利用三角换元得到P 的坐标为2,tan ,0,cos 2P πθθθ⎛⎫⎛⎫∈⎪ ⎪⎝⎭⎝⎭,利用斜率公式可求,αβ与θ的关系,化简后可得,αβ的关系,故可判断AB 的正误,根据面积公式可求S (用θ表示),故可判断CD 的正误.【详解】不妨设2,tan ,0,cos 2P πθθθ⎛⎫⎛⎫∈⎪ ⎪⎝⎭⎝⎭,则tan sin tan 22(1cos )(2)cos θθαθθ==+--,tan sin tan 22(1cos )2cos θθβθθ=-=---,1||tan 2tan 2S AB θθ=⋅⋅=,因此2114tan ,tan ,221t t S t t αβ==-=-,其中tan 2t θ=.对于选项A ,1tan tan 4αβ=-为定值.对于选项B ,由于22224tantan22tan tan 1tan tan tantan 2222αβαβαβαβ=⎛⎫-++ ⎪⎝⎭,因此若tantan22αβ为定值,则tantan 22αβ+为定值,从而tan 2α和tan 2β是确定的值,矛盾,对于选项C ,D ,有()2112122tan()115122t t t t t tαβ--+==-+⋅,因此tan()S αβ⋅+是定值,cot()S αβ⋅+不是定值.10.(2020·北京·高三校考强基计划)已知点(1,1),(1,0)A Q ,P 为椭圆22143x y +=上的动点,则||||PA PQ +的()A.最大值为4B.最大值为4C.最小值为4-D.最小值为4【答案】BD【分析】利用椭圆的定义可求||||PA PQ +的最值.【详解】注意到Q 为椭圆的右焦点,设其椭圆的左焦点为(1,0)Q '-,则()()||||||44||PA PQ PA PQ PA PQ +=+-=-''+,而||PA PQ -'的取值范围是,AQ AQ ''-⎡⎤⎣⎦,即[,因此所求最大值为4,最小值为4三、填空题11.(2022·江苏南京·高三强基计划)设F ,l 分别为双曲线()22411212x y --=的右焦点与右准线,椭圆Γ以F 和l 为其对应的焦点及准线,过F作一条平行于y =的直线,交椭圆Γ于A 、B 两点,若Γ的中心位于以AB 为直径的圆外,则椭圆离心率e 的范围为___________.【答案】⎫⎪⎪⎭【详解】由双曲线方程可知其焦准距为3,则椭圆Γ的焦准距23b c=(同侧焦点和准线),如图,设椭圆中心为O,建立平面直角坐标系,设F :()222210x y a b a b+=>>,()11,A x y ,()22,B x y ,直线AB方程:)y x c =+,联立直线AB 和椭圆Γ可得:()222222223630b a x a cx a c a b +++-=,由韦达可得:212222212226+=-+33=+3a x x b a a c x x b a ⋅⎧⎪⎪⎨⎪⎪⎩,由椭圆中心O 位于以AB 为直径的圆外,则有12120OA OB x x y y ⋅=+>,结合韦达定理可得:222242222422222233330333a c a b b a c a b b b a b a b a----+=>+++,所以422441030a a c c -+<,即423e 10e 40-+<,e 1<<,12.(2018·山东·高三竞赛)若直线65280x y --=交椭圆22221x ya b+=(0a b >>,且2a 、b 为整数)于点A 、C .设()0,B b 为椭圆的上顶点,而ABC 的重心为椭圆的右焦点2F ,则椭圆的方程为______.【答案】2212016x y +=【详解】设()11,A x y ,()22,C x y ,由题意ABC 的重心为椭圆的右焦点2F ,整理得213x x c +=,21y y b +=-.由()11,A x y ,()22,C x y 在直线65280x y --=上,得到212165y y x x -=-.由()11,A x y ,()22,C x y 在椭圆()222210x y a b a b +=>>上,得到2211221x y a b +=,2222221x y a b+=.两式相减并整理得()()()()2212122121635y y y y b b a x x x x c +---==⋅+-,整理得225a bc =.①本号资料全部来源于微信公#众号:数学第六感因为()11,A x y ,()22,C x y 在直线65280x y --=上,所以有1165280x y --=,2265280x y --=.将123x x c +=,12y y b +=-代入得()635560c b ⨯---=,整理得18556c b +=.②联立①②,且注意到a 、b 为整数,解得2c =,4b =,220a =.故所求的椭圆方程为2212016x y +=.13.(2022·新疆·高二竞赛)设z 为复数,若方程2297--=z z 表示一条圆锥曲线,则此曲线的离心率=e ___________.【答案】4【详解】令||,|3|,|3|=-=+=z a z b z c ,则27-=a bc .由复数的几何意义知222218+=+b c a .所以由前两式知2()32-=b c,即||-=b c ,故||3||3||6--+=<z z .因此z6的双曲线,14.(2021·全国·高三竞赛)已知集合{}22(,)|||||,0,(,)|1,044x y A x y x y t t B x y m m ⎧⎫=+>=+≤<<⎨⎩≤⎬⎭满足B A ⊆,若P 为集合B 的边界线C 上任意一点,12F F 、为曲线C 的焦点,I 为12PF F △的内心,直线1IF 和2IF 的斜率分别为12k k 、,且1213k k ⋅=-则t 的最小值为________.【详解】因为12F F 、为曲线C 的焦点,I 为12PF F △的内心,若曲线C 的方程为22221x y a b +=,则I 的轨迹方程为22221x y c bc c a +=⎛⎫ ⎪+⎝⎭,故有22121.3bc c a c k k ⎛⎫ ⎪+⎝⎭=-=-⋅可知::2:a b c =,所以3m =.设(2cos )P θθ为曲线C上一点,则有|2cos ||t θθ≥+恒成立,即t ≥15.(2021·全国·高三竞赛)已知ABCD Y 的四个顶点均在双曲线2214y x -=上,点(0,1)P 在边AB 上,且12AP PB =,则ABCD Y 的面积等于_______.【答案】4【分析】由对称性,知O 为平行四边形的中心,设()00,A x y ,得()002,32B x y --,将点A 、B 的坐标代入双曲线方程,求得A 、B 的坐标,利用等面积法知4ABCD AOB S S = △,代入即可求解.【详解】由平行四边形的对称性与双曲线的对称性,知O 为平行四边形的中心,由A 、B 、C 、D 四点在两支双曲线上各有两点,不妨设A 、D 在左支上,B 、C 在右支上,如图:考虑A 、B 关于双曲线中心的对称点,A B '',因为单支双曲线上不存在四点构成平行四边形,知,A C B D =''=,所以ABCD Y 的对称中心为O .设()00,A x y ,由12AP PB =,得()002,32B x y --.将点A 、B 的坐标代入双曲线方程得()22002020*******y x y x ⎧-=⎪⎪⎨-⎪-=⎪⎩,解得:00814x y ⎧=⎪⎪⎨⎪=-⎪⎩或00814x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以A B x x ⎧=⎪⎪⎨⎪=⎪⎩或A B x x ⎧=⎪⎪⎨⎪=⎪⎩.故242||21ABCDADB AOB A B S S S OP x x ===⋅-=⨯⨯YV V.四、解答题16.(2022·湖北武汉·高三统考强基计划)设F 为椭圆C :22194x y +=的左焦点,P 为椭圆C上的一点(1)作正方形FPAB (F ,P ,A ,B 按逆时针排列)当P 沿着椭圆运动一周,求动点B 的轨迹方程.(2)设()3,2Q 为椭圆外一点,求PQ PF +的取值范围.【答案】(1)((22=149x x -+.(2)【详解】(1)如图所示,将椭圆C绕其左焦点()F 逆时针旋转90 ,得到椭圆'C,注意到在正方形FPAB 中,点B 可以看成也是由点P 绕点F 逆时针旋转90 而形成的,由于点P 在椭圆C 上运动,则点B 在椭圆'C 上运动.求B 的轨迹方程,也就是求椭圆'C 的方程.注意到椭圆'C的中心坐标为(,从而'C的方程为((22=149x x +.(2)如图所示,|||||PQ PFQF +≥当且仅当,,P F Q 三点共线,即P 运动到1P 位置时,等号成立.记椭圆C 的右焦点为)E,注意到()||||=||2||=||||6PQ PF PQ a PE PQ PE ++--+,显然有||||||=PQ PE QE -≤从而||||6PQ PF +≤+,当且仅当,,P E Q 三点共线,即P 运动到2P 位置时,等号成立.||||6PQ PF ≤+≤即PQ PF+的取值范围17.(2018·全国·高三竞赛)一束直线12,,l l 的每条均过xOy 平面内的抛物线2:C y x =的焦点,()1i l i ≥与抛物线C 交于点i A 、i B .若1l 的斜率为1,()2i l i ≥的斜率为1+2014l 的解析式.【答案】((()()201520152014201411112411y x -⎛⎫=⋅- ⎪⎝⎭-【详解】易知抛物线焦点1,04P ⎛⎫⎪⎝⎭.设()1:1,2,4i i l y k x i ⎛⎫=-= ⎪⎝⎭ ,并与2y x =联立知点i A 、i B 的横坐标i A x 、i B x 满足关于x 的方程()2222120216i i i k k x k x -++=且i i A B x x ≠.则i ii i A B A B x =-=221i i k k +=.从而,当2i≥时,有1111i i k k -==+.记{}n F 满足121F F ==及递推关系21n n n F F F ++=+则{}n F 为斐波那契数列其通项公式为n nn F ⎡⎤⎛⎥=- ⎥⎝⎭⎝⎭⎦.下面证明:1i i iF k F +=对一切正整数i 成立.由2111F k F ==,知i=1时结论成立.设i=t 时结论成立.则121111111t t t t t t t t t F F F F k k F F F +++++++=+=+==即i=t+1时结论也成立.由数学归纳法知1i i iF k F +=对一切正整数i 成立.特别地,201520142014F k F =.从而,2014l的解析式为((()()201520152014201411112411y x +-⎛⎫=⋅- ⎪⎝⎭-.【注】本题亦可用不动点方法求数列{}i k 的通项.18.(2018·福建·高三竞赛)已知1F 、2F 分别为椭圆()2222:10x y C a b a b +=>>的左、右焦点,点3P ⎛⎫ ⎪⎝⎭在椭圆C 上,且12F PF △的垂心为5,33H ⎛⎫- ⎪ ⎪⎝⎭.(1)求椭圆C 的方程;(2)设A 为椭圆C 的左顶点,过点2F 的直线l 交椭圆C 于D 、D 两点.记直线AD 、AE 的斜率分别为1k 、2k ,若1212k k +=-,求直线l 的方程.【答案】(1)22143x y +=(2)()21y x =-【详解】设()1,0F c -,()2,0F c .由12F PF的垂心为53H ⎫-⎪⎪⎝⎭,得12F H PF ⊥.所以12531F H PF k k -⋅==-,224593c -=,解得21c =.由点P ⎫⎪⎪⎝⎭在椭圆C 上,得2224119a b +=.结合2221a b c -==,解得24a =,23b =.所以椭圆C 的方程为22143x y +=.(2)由(1)知()2,0A -,()21,0F .若l 的斜率不存在,则由对称性,知120k k +=,不符合要求.若l 的存在,设为k ,则l 的方程为()1y k x =-.由()221143y k x x y ⎧=-⎪⎨+=⎪⎩,得()22224384120k x k x k +-+-=.①设()11,D x y ,()22,E x y ,则2122843k x x k +=+,212241243k x x k -=+.所以()()1212121212112222k x k x y y k k x x x x --+=+=+++++()()()12121234331122222x x k k x x x x ⎡⎤++⎛⎫=-+-=⋅-⎢⎥⎪++++⎢⎥⎝⎭⎣⎦()()221222121222834344322412824244343k x x k k k k k x x x x k k ⎡⎤⎛⎫+⎢⎥ ⎪⎡⎤+++⎝⎭⎢⎥=⋅-=⋅-⎢⎥⎢⎥-+++⎢⎥⎣⎦+⨯+⎢⎥++⎣⎦()222222238161221122412161612k k k k k k k k k k ⎡⎤++⎛⎫+⎢⎥=⋅-=⋅-=- ⎪-+++⎢⎥⎝⎭⎣⎦.又1212k k +=-,因此2k =,直线l 的方程为()21y x =-.19.(2018·江西·高三竞赛)若椭圆221259x y +=上不同的三点()11,A x y ,94,5B ⎛⎫ ⎪⎝⎭,()22,C x y 到椭圆右焦点的距离顺次成等差数列,线段AC 的中垂线l 交x 轴于点T ,求直线BT 的方程.【答案】252064x y -=【详解】用a 、b 、c 分别表示椭圆的半长轴、半短轴及半焦距之长度,则5a =,3b =,4c =,右焦点为()4,0F ,且准线方程为2a x c=,由21AFca a x c=-,22CF c a a x c=-,得1455AF x =-,2455CF x =-,根据等差性质,2AF CF BF +=,而95BF =,即12441855555x x ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以128x x +=.①设线段AC 的中点为D ,则其坐标为124,2y y D +⎛⎫ ⎪⎝⎭,又设点T 的坐标为()0,0T x ,则AC 的中垂线DT 的方程为()12121242y y x xy x y y +--=---.因()0,0T x 在此直线上,故有()1212012042y y x xx y y +--=---,即()221201242y y x x x --=-.②又根据A 、B 在椭圆上,得()221192525y x =-,()222292525y x =-,所以()()22121212925y y x x x x -=-+-,据①,即有()22121236225y y x x -=--.③再据②③得06425x =,即点T 的坐标为64,025T ⎛⎫⎪⎝⎭,于是直线BT 的方程为252064x y -=.20.(2018·湖北·高三竞赛)已知O 为坐标原点,()1,0N ,点M 为直线=1x -上的动点,MON ∠的平分线与直线MN 交于点P ,记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点11,22Q ⎛⎫-- ⎪⎝⎭作斜率为k 的直线l ,若直线l 与曲线E 恰好有一个公共点,求k 的取值范围.【答案】(1)()201y x x =≤<(2)11,132⎧⎫+⎪⎪⎛⎤-⎨⎬⎥⎝⎦⎪⎪⎩⎭ 【详解】(1).设()(),,1,P x y M t -,易知01x ≤<.因为OP 平分MON ∠,所以OM MP PN ON==,所以)11,x x +-①)0y t y -=-.②由①②可得21y t x =-,代入①得到11x x +=-E 的方程为()201y x x =≤<.(2).记()()1,1,1,1A B -,则11,3QA QB k k ==-.直线l 的方程为1122y k x ⎛⎫+=+ ⎪⎝⎭,与抛物线方程2y x =联立,消去x 得()21102ky y k -+-=当直线l 与抛物线2y x =相切于点T 时,()1210k k ∆=--=,解得1,2k =当1k k ==T y =T 在曲线E 上;当212k k ==时,T y =,切点T 不在曲线E 上.若直线l 与曲线E 恰好有一个公共点,则有QB QA k k k <≤或k =,故所求k的取值范围为1,13⎛⎤-⋃ ⎥⎝⎦⎪⎪⎩⎭.21.(2021·全国·高三竞赛)过抛物线22y px =(p 为不等于2的质数)的焦点F ,作与x 轴不垂直的直线l 交抛物线于M 、N 两点,线段MN 的垂直平分线交MN 于P 点,交x 轴于Q 点.(1)求PQ 中点R 的轨迹L 的方程;(2)证明:L 上有无穷多个整点(横、纵坐标均为整数的点),但L 上任意整点到原点的距离均不是整数.【答案】(1)24()(0)y p x p y =-≠;(2)证明见解析.【详解】(1)抛物线22y px =的焦点为(,0)2p ,设l 的直线方程为()(0)2p y k x k =-≠.由得222y pxp y k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩得222221(2)04k x pk p x p k -++=.设M 、N 的横坐标分别为12x x 、,由21222pk p x x k ++=,得22122222,()2222P Px x pk p pk p p px y k k k k+++===-=,而PQ l ⊥,故PQ 的斜率为1k -,PQ 的方程为2212()2p pk py x k k k +-=--.代入0Q y =得222223222Q pk p pk px p k k ++=+=.设动点R 的坐标为(),x y ,则:21()21()22p Q P Qp x x x p k p y y y k ⎧=+=+⎪⎪⎨⎪=+=⎪⎩,因此222()4(0)p p x p y y k-==≠,故PQ 中点R 的轨迹L 的方程为24()(0)y p x p y =-≠.(2)显然对任意非零整数t ,点2((41),)p t pt +都是L 上的整点,故L 上有无穷多个整点.反设L 上有一个整点(),x y 到原点的距离为整数()0m m ≥,不妨设0,0x y >>,则:22224()x y m y p x p ⎧+=⎨=-⎩①②,因为p 是奇质数,于是|p y ,从②可推出|p x ,再由①可推出|p m .令111,,x px y py m pm ===,则有22211121141x y m y x ⎧+=⎨=-⎩③④,由③,④得2211114x x m -+=,于是2211(81)(8)17x m +-=,即()()111181881817x m x m +++-=,于是111181817,8181x m x m ++=+-=,得111x m ==,故10y =,有10y py ==,但L 上的点满足0y ≠,矛盾!因此,L 上任意点到原点的距离不为整数.22.(2021·全国·高三竞赛)已知椭圆22:12+=x E y 的右焦点为(c,0)F ,上顶点为M ,圆222:()(0)F x c y r r -+=>,问:椭圆E 上是否存在两点P 、Q 使得圆F 内切于三角形MPQ 若存在,求出直线PQ的方程;若不存在,请说明理由.【答案】存在,PQ的方程为(260x y +-+-=.【详解】假设这样的P 、Q 存在,且设()()1122,,,P x y Q x y ,由题意知(0,1),(1,0)M F ,所以直线()111:10MP y x x y x --+=.因为该直线与圆F 相切,则d r =r =,两边平方化简得()()2222111111x y r x y ⎡⎤+-=+-⎣⎦,整理得()()()()22221111111210r x ryx y -+--+-=.因为()221121x y =-,消去1x 得()()()()()2222111112111210r y r yx y -⋅-+--+-=.因为11y ≠,两边同时除以11y -,得()()()()221111211120r y r y x -⋅++---=,整理得()()221121310x ryr -+-+-=,即点P 在直线()()2221310x r y r -+-+-=上.同理,点Q 也在直线()()2221310x r y r -+-+-=上,因此直线PQ 的方程为()()2221310x r y r -+-+-=.又因为直线PQ 圆Fr=,解得r =因此直线PQ 存在且直线PQ的方程为(260x y +-+-=.23.(2021·全国·高三竞赛)如图所示,()(),0P a b a b <<为抛物线2:4F y x =外一点,过P 引抛物线Γ的两条切线PA PB 、,切点分别为A 、B .在线段PA 上取两点D 、E ,使得PD AE =.若过D 、E 两点的直线12l l 、分别切抛物线Γ于M 、N 两点(异于A ).求四边形MNAB 面积的最大值.【详解】设()()()()11220000,,,,,,,A x y B x y M x y N x y '',则直线AP 的方程为()112y y x x =+,直线BP 的方程为()222y y x x =+,故有121242y y a y y b ⎧=⎪⎪⎨+⎪=⎪⎩,同理可得1010,22E D y y y yy y '++==,又因为PD AE =,所以1E D y y b y +=+,即002y y b +'=,故12121200424AB MN y y k k x x y y b y y '-=====-++,因此//AB MN .直线AB 的方程为22by x a =+,直线MN 的方程为0000004y y y x y y y y '''=+++,即0022y y by x '=+,故两平行线间的距离d ',||AB ===||MN =所以00|4|1(||||))24MNABy y a S d AB MN '-=⋅+=⋅,其中0204a y y b ≤'≤,可令22004,b a A b y y X '-=-=,则:1(4MNAB S A X =-218=+3183⎛≤ ⎝⎭当22001(4)9b y y b a '-=-时取到最大值.24.(2021·全国·高三竞赛)已知椭圆22122:1(0)x y C a b a b+=>>,其右焦点为F ,过F 作直线l 交椭圆1C 于A 、B 两点(l 与x 轴不重合),设线段AB 中点为D ,连结OD (O 为坐标原点),直线OD 交椭圆1C 于M 、N 两点,若A 、M 、B 、N 四点共圆,且||8||3MN OD =,求椭圆1C 的离心率.【分析】先将椭圆与直线联立,结合韦达定理表示出D 坐标,再结合直线OD 交椭圆1C 于M 、N 两点,若A 、M 、B 、N 四点共圆,且||8||3MN OD =,求出2,3M ⎛ ⎝⎭再代入椭圆求出a ,进而求出离心率.【详解】不妨设椭圆1C 的半焦距1c =,则221b a =-,椭圆右焦点为(1,0)F .设:1l x ky =+,将1x ky =+,代入22221x ya b+=消去x 化简整理得()()()222222222110a k k a y a ky a -++---=.显然,方程判别式Δ0>,设()(),,,A A B B A x y B x y .由韦达定理知()2222221A B a k y y a k k a-+=--+,从而()()22222222222211122222A B D A B a k x x ax ky ky a k k a a k k a ⎛⎫-+==++=-+= ⎪ ⎪-+-+⎝⎭,()2222211D D a k x y k a k k a--==--+,于是()22222222221,a k a D a k k a a k k a ⎛⎫-- ⎪ ⎪-+-+⎝⎭.所以直线OD 的方程为()221a x y a k =--.设圆AMBN 的方程为222:0C x y Dx Ey F ++++=,直线l 直线MN 的方程为()232:(1)01a C x ky x y a k ⎛⎫--+= ⎪ ⎪-⎝⎭,由于3C 经过12C C 、的交点,且123C C C 、、均为二次曲线,则存在常数12λλ、,使得()()2222212222(1)11a x y x ky x y x y Dx Ey Fa b a k λλ⎛⎫⎛⎫--+=+-+++++ ⎪ ⎪ ⎪-⎝⎭⎝⎭,比较方程两边xy 系数知()2201a k a k -+=-,即2221a k a =-,由对称性不妨设k =.代入点D 的坐标得1,22D a ⎛- ⎪ ⎪⎝⎭,又||8||3MN OD =,得点2,3M ⎛ ⎝⎭,而M 在1C上,故22222311a a ⎛⎛⎫ ⎪ ⎝⎭⎝⎭+=-,解得a =于是1C的离心率为3c e a ==.25.(2018·甘肃·高三竞赛)已知椭圆2222:1x y C a b+=过点()0,2M ,且右焦点为()2,0F .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于,A B 两点,交y 轴于点P .若,PA mAF PB nBF ==,求证:m n +为定值;(3)在(2)的条件下,若点P 不在椭圆C 的内部,点Q 是点P 关于原点O 的对称点,试求三角形QAB 面积的最小值.【详解】(1)由题意b=2,c=2,所以28a =,椭圆C 的方程为22184x y +=.(2)设A 、B 、P 的坐标分别为()()()1122,,,,0,x y x y t .由PA mAF = 知121m x m =+,11ty m=+.又点A 在椭圆C 上,则22211184m t m m ⎛⎫⎛⎫ ⎪ ⎪++⎝⎭⎝⎭+=,整理得222840m m t +-+=.由PB nBF =,同理得到222840n n t +-+=.由于A 、B 不重合,即m n ≠,故m 、n 是二次方程222840x x t +-+=的两根,所以m+n=-4,为定值.(3)依题意,直线l 的方程为12x yt+=,即()22t y x =--,与椭圆C 的方程联立,消去y 并整理,得()2222244160t xt x t +-+-=,()()42221642416321280t t tt ∆=-+-=+>,所以221212224416,22t t x x x x t t -+=⋅=++,而1212122QAB S t x x t x x ∆=⋅⋅-=⋅-()()22222121212=4QAB S t x x t x x x x ∆⎡⎤=-+-⎣⎦()42222216166422t t tt t ⎡⎤-⎢⎥=-⎢⎥++⎣⎦()2222321282t t t +=⋅+.()2243212t ⎡⎤⎢⎥=-⎢⎥+⎣⎦由已知,点P 不在椭圆C 的内部,得2t ,即24t ,所以2QAB S ∆的最小值为82563299⨯=,故三角形QAB 面积的最小值为163.26.(2018·山东·高三竞赛)已知圆22:4O x y +=与曲线:3C y x t =-,(),A m n ,(),B s p ,(),,,m n s p *∈N 为曲线C 上的两点,使得圆O 上任意一点到点A 的距离与到点B 的距离之比为定值()1k k >,求t 的值.【答案】43t =【详解】设(),P x y 为圆O 上任意一点,则由题意知PA k PB=.即222PA k PB =,于是()()()()22222x m y n k x s y p ⎡⎤-+-=-+-⎣⎦,整理得()()()()22222222222222111k s m kp nmn k s p x y x y k k k --+-++--=---.因此点P 的轨迹是一个圆.因为(),P x y 为圆上任意一点,所以此圆与圆22:4O x y +=必为同一个圆,于是有()22201k s m k --=-,()22201k p nk --=-,()()22222241mn k s p k +-+=-,整理得20k s m -=,20k p n -=,所以()()()()()22222424222222222411m n k s p k sk p k s p ks p k k +-++-+==+=--.因为s ,*p N ∈,所以21s ≥,21p ≥,从而22242k s p =≤+.又因为1k >,所以1s p ==,22k =,2m n ==.因此将()2,2A ,()1,1B ,代入3y x t =-,得43t =.27.(2022·福建·高二统考竞赛)已知椭圆C :()222210x y a b a b+=>>的离心率为12,1A 、2A 分别为椭圆C 的左、右顶点,1F 、2F 分别为椭圆C 的左、右焦点,B 为椭圆C 的上顶点,且11BA F ∆的外接圆半径为3.(1)求椭圆C 的方程;(2)设与x 不垂直的直线l 交椭圆C 于P 、Q 两点(P 、Q 在x 轴的两侧),记直线1A P 、2PA 、2A Q 、1QA 的斜率分别为1k 、2k 、3k 、4k .已知()142353k k k k +=+,求2F PQ ∆面积的取值范围.【答案】(1)2211612x y +=(2)0,2⎛ ⎝⎭【详解】(1)由椭圆C 的离心率为12,知12c a =,于是112BF a c OF ===,所以1=30F BO ∠︒,1=60BFO ∠︒,11=120BF A ∠︒,又AB ===,且11BA F ∆所以11==2sin sin1203AB BF A ∠⨯︒,解得=2c ,因此,=4a,b =所以,椭圆C 的方程为2211612x y +=.(2)如图,易知直线l 斜率不为0,设l 方程为x ty m =+,由22=++=11612x ty m x y ⎧⎪⎨⎪⎩,得()2223463480t y mty m +++-=,设()11,P x y ,()22,Q x y ,则122634mt y y t -+=+,212234834m y y t -=+,由(1)知,()14,0A -,()24,0A ,所以122211111222111134441643PA PA y y y y k k k k x x x y ⋅=⋅=⋅===-+---,同理,123434OA QA k k k k ⋅=⋅=-,因为()142353k k k k +=+,所以()2323335443k k k k --=+,()2323233543k k k k k k +-⋅=+,由l 与x 不垂直可得230k k +≠,所以23920k k =-,即22920PA QA k k ⋅=-,所以121294420y y x x ⋅=---,()()1212209440y y ty m ty m ++-+-=,于是()()()()22121292094940t y y t m y y m ++-++-=,()()()222223486920949403434m mt t t m m t t --+⋅+-⋅+-=++,整理得2340m m --=,解得1m =-或=4m ,因为P 、Q 在x 轴的两侧,所以2122348034m y y t -=<+,44m -<<,又1m =-时,直线l 与椭圆C 有两个不同的交点,因此1m =-,直线l 恒过点()1,0D -,。
北京西城学习探究诊断高中数学必修二第二章平面解析几何初步练习
第二章平面解析几何初步测试十平面直角坐标系中的基本公式Ⅰ学习目标理解和掌握数轴上的基本公式,平面上两点间的距离公式,中点坐标公式.Ⅱ基础训练题一、选择题1.点A(-1,2)关于y轴的对称点坐标为( )(A)(-1,-2) (B)(1,2) (C)(1,-2) (D)(2,-1)2.点A(-1,2)关于原点的对称点坐标为( )(A)(-1,-2) (B)(1,2) (C)(1,-2) (D)(2,-1)3.已知数轴上A,B两点的坐标分别是x1,x2,且x1=1,d(A,B)=2,则x2等于( )(A)-1或3 (B)-3或3 (C)-1 (D)34.已知点M(-1,4),N(7,0),x轴上一点P满足|PM|=|PN|,那么P点的坐标为( )(A)(-2,0) (B)(-2,1) (C)(2,0) (D)(2,1)5.已知点P(x,5)关于点Q(1,y)的对称点是M(-1,-2),则x+y等于( )9(A)6 (B)12 (C)-6 (D)2二、填空题6.点A(-1,5),B(3,-3)的中点坐标为______.7.已知A(a,3),B(3,a),|AB|=2,则a=______.8.已知M(-1,-3),N(1,1),P(3,x)三点共线,则x=______.9.设点A(0,1),B(3,5),C(4,y),O为坐标原点.若OC∥AB,则y=______;若OC⊥AB,则y=______.10.设点P,Q分别是x轴和y轴上的点,且中点M(1,-2),则|PQ|等于______.三、解答题11.已知△ABC的顶点坐标为A(1,-1),B(-1,3),C(3,0).(1)求证:△ABC是直角三角形;(2)求AB边上的中线CM的长.12.已知矩形ABCD相邻两个顶点A(-1,3),B(-2,4),若矩形对角线交点在x轴上,求另两个顶点C和D的坐标.13.已知AD是△ABC底边的中线,用解析法证明:|AB|2+|AC|2=2(|AD|2+|DC|2).Ⅲ拓展训练题14.利用两点间距离公式求出满足下列条件的实数x的集合:(1)|x-1|+|x-2|=3;(2)|x-1|+|x-2|>3;(3)|x-1|+|x-2|≤3.测试十一 直线的方程Ⅰ 学习目标1.理解直线斜率和倾斜角的概念,掌握两点连线的斜率公式.2.掌握直线方程的点斜式、斜截式及一般式.Ⅱ 基础训练题一、选择题1.已知直线AB 的斜率为21,若点A (m ,-2),B (3,0),则m 的值为( ) (A )1 (B )-1 (C )-7(D )7 2.如图所示,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )(A )k 1<k 2<k 3(B )k 3<k 1<k 2 (C )k 3<k 2<k 1 (D )k 1<k 3<k 23.直线l 经过二、三、四象限,l 的倾斜角为α,斜率为k ,则( )(A )k sin α>0 (B )k cos α>0 (C )k sin α=0 (D )k cos α符号不定4.一条光线从点M (5,3)射出,遇x 轴后反射,反射光线过点N (2,6),则反射光线所在直线方程是( )(A )3x -y -12=0 (B )3x +y +12=0(C )3x -y +12=0 (D )3x +y -12=05.直线x -2y +2k =0与两坐标轴围成的三角形面积不小于1,那么k 的取值范围是( )(A )k ≥-1 (B )k ≤1 (C )|k |≤1 (D )|k |≥1二、填空题6.斜率为-2且在x 轴上截距为-1的直线方程是______.7.y 轴上一点M 与点N (-3,1)所在直线的倾斜角为120°,则M 点坐标为______.8.已知直线3a x -2y -4a =0(a ≠0)在x 轴上的截距是它在y 轴上的截距的3倍,则a =______.9.已知直线l 过点A (-2,1)且与线段BC 相交,设B (-1,0),C (1,0),则直线l 的斜率k 的取值范围是______.10.如果直线l 沿x 轴负方向平移3个单位,接着再沿y 轴正方向平移1个单位后又回到原来的位置,则直线l 的斜率为______.三、解答题11.直线l 过原点且平分平行四边形ABCD 的面积.若平行四边形两个相对顶点为B (1,4),D (5,0),求直线l 的方程.12.直线l与直线y=1,x-y-7=0分别交于P、Q两点,线段PQ的中点为(1,-1).求直线l的方程.Ⅲ拓展训练题13.设A(0,3),B(3,3),C(2,0),直线x=a将△ABC分割成面积相等的两部分,求a 的值.14.一条直线l过点P(2,3),并且分别满足下列条件,求直线l的方程.(1)倾斜角是直线x-4y+3=0的倾斜角的两倍;(2)与x轴、y轴的正半轴交于A、B两点,且△AOB的面积最小;(3)|P A|²|PB|为最小(A、B分别为直线与x轴、y轴的正半轴的交点).测试十二 两条直线的位置关系(一)Ⅰ 学习目标掌握两条直线平行、垂直的条件,会利用两条直线平行、垂直的条件解决相关的问题.Ⅱ 基础训练题一、选择题1.如果直线ax +2y +2=0与直线3x -y -2=0平行,那么a 等于( )(A )-3 (B )-6 (C )-23 (D )32 2.如果直线ax +2y +2=0与直线3x -y -2=0垂直,那么a 等于( ) (A )-3 (B )-6 (C )-23 (D )32 3.若两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直,则( )(A )A 1A 2+B 1B 2=0 (B )A 1A 2-B 1B 2=0(C )2121B B A A =-1 (D )2121A A B B =1 4.设A ,B 是x 轴上两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程为( )(A )x +y -5=0 (B )2x -y -1=0(C )2y -x -4=0 (D )x +y -7=05.已知直线y =kx +2k +1与y =-21x +2的交点在第一象限,则k 的取值范围是( ). (A )-6<k <2(B )-21<k <21 (C )-61<k <21 (D )k <21 二、填空题6.以A (1,3)、B (-1,1)为端点的线段的垂直平分线方程是______.7.若三条直线l 1:2x -y =0,l 2:x +y -3=0,l 3:mx +ny +5=0交于一点,则实数m ,n 满足的关系式是______.8.直线y =2x +3关于点(2,3)对称的直线方程为______.9.直线2x -y +1=0绕着它与y 轴的交点逆时针旋转45°角,此时直线的方程为______.10.若三条直线x +y =2,x -y =0,x +ay =3构成三角形,则a 的取值范围是______.三、解答题11.求经过两条直线l 1:2x +3y +1=0和l 2:x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程.12.平行四边形ABCD 的两边AB ,AD 所在的直线方程分别为x +y -1=0,3x -y +4=0,其对角线的交点坐标为(3,3),求另两边BC ,CD 所在的直线方程.13.已知三角形三条边AB,BC,AC中点分别为D(2,1)、E(5,3)、F(3,-4).求各边所在直线的方程.14.已知两条直线l1:mx+8y+n=0和l2:2x+my-1=0,试确定m,n的值,使l1,l2分别满足下列条件:(1)l1,l2相交于点P(m,-1);(2)l1∥l2;(3)l1与l2重合.测试十三 两条直线的位置关系(二)Ⅰ 学习目标会应用点到直线的距离公式解决相关的问题.Ⅱ 基础训练题一、选择题1.点P (0,2)到直线y =3x 的距离是( )(A )1 (B )510 (C )2 (D )55 2.平行线3x +4y +2=0与3x +4y -12=0之间的距离为( ) (A )2 (B )310 (C )514 (D )33.若直线(2+m )x -y +5-n =0与x 轴平行且与x 轴相距5时,则m +n 等于( )(A )-2或8 (B )-2 (C )8 (D )04.直线l 1:ax -y +b =0与l 2:bx -y +a =0(ab ≠0,a ≠b )在坐标系中的位置可能是( )5.A 、B 、C 为△ABC 的三个内角, 它们的对边分别为a 、b 、c .已知原点到直线x sin A +y sin B +sin C =0的距离大于1,则此三角形形状为( )(A )锐角三角形 (B )直角三角形 (C )钝角三角形 (D )不能确定二、填空题6.若直线ax +4y -2=0与直线2x -5y +c =0垂直相交于点(1,m ),则a =____,c =_____,m =______.7.已知定点A (0,1).点B 在直线x +y =0上运动,当线段AB 最短时,点B 的坐标是____.8.两平行直线分别过点(1,0)与(0,5),且距离为5,它们的方程为______.9.若点A (1,1)到直线l :x cos θ+y sin θ=2(θ为实数)的距离为f (θ),则f (θ)的最大值是___.10.若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 中点M 到原点距离的最小值是______.三、解答题11.过点P (1,2)的直线l 与两点A (2,3),B (4,-5)的距离相等,求直线l 的方程.12.已知直线l :x +2y -2=0,试求:(1)与直线l 的距离为5的直线的方程;(2)点P (-2,-1)关于直线l 的对称点的坐标.13.已知△ABC的垂心H(5,2),且A(-10,2)、B(6,4),求点C的坐标.Ⅲ拓展训练题14.在△ABC中,点B(1,2),BC边上的高所在的直线方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0,求|BC|.测试十四 圆的方程Ⅰ 学习目标掌握圆的标准方程及一般方程,能根据已知条件求圆的方程.Ⅱ 基础训练题一、选择题1.圆x 2+y 2+ax =0的圆心的横坐标为1,则a 等于( )(A )1 (B )2 (C )-1 (D )-22.与圆C :x 2+y 2-2x -35=0的圆心相同,且面积为圆C 的一半的圆的方程是( )(A )(x -1)2+y 2=3 (B )(x -1)2+y 2=6(C )(x -1)2+y 2=9 (D )(x -1)2+y 2=183.曲线x 2+y 2+22x -22=0关于( )(A )直线x =2轴对称(B )直线y =-x 轴对称 (C )点(-2,2)中心对称 (D )点(-2,0)中心对称4.如果圆x 2+y 2+Dx +Ey +F =0与y 轴相交,且两个交点分别在原点两侧,那么( )(A )D ≠0,F >0 (B )E =0,F >0(C )F <0 (D )D =0,E ≠05.方程x -1=()211--y 所表示的曲线是( ) (A )一个圆 (B )两个圆(C )半个圆 (D )四分之一个圆二、填空题6.过原点的直线将圆x 2+y 2-2x +4y =0的面积平分,则此直线的方程为______.7.已知圆的方程(x -a )2+(y -b )2=r 2(r >0),试根据下列条件,分别写出a ,b ,r 应满足的条件.(1)圆过原点且与y 轴相切:______;(2)原点在圆内:______;(3)圆与x 轴相交:______.8.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是______. 9.P (x ,y )是圆x 2+y 2-2x +4y +1=0上任意一点,则x 2+y 2的最大值是______;点P 到直线3x +4y -15=0的最大距离是______.10.设P (x ,y )是圆(x -3)2+y 2=4上的点,则xy 的最小值是______. 三、解答题11.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,求a 的取值范围.12.求过三个点A (0,0),B (4,0),C (2,2)的圆的方程.13.已知圆C的圆心在直线x+y-1=0上,且A(-1,4)、B(1,2)是圆C上的两点,求圆C的方程.Ⅲ拓展训练题14.已知曲线C:x2+y2-4ax+2ay+20a-20=0.(1)证明:不论a取何实数,曲线C必过定点;(2)当a≠2时,证明曲线C是一个圆,且圆心在一条直线上.测试十五 直线与圆的位置关系Ⅰ 学习目标1.会用解析法及几何的方法判定直线与圆的位置关系,并会求弦长和切线方程; 2.会用几何的方法判定圆和圆的位置关系.Ⅱ 基础训练题一、选择题1.圆x 2+y 2-2x =0和x 2+y 2+4y =0的位置关系是( ) (A )相离 (B )外切 (C )相交 (D )内切2.直线3x +4y +2=0与圆x 2+y 2+4y =0交于A 、B 两点,则线段AB 的垂直平分线的方程是( )(A )4x -3y -2=0 (B )4x -3y -6=0 (C )3x +4y +8=0 (D )3x -4y -8=0 3.直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆心角为( ) (A )6π(B )4π (C )3π (D )2π 4.若圆x 2+y 2=r 2(r >0)上恰有相异两点到直线4x -3y +25=0的距离等于1,则r 的取值范围是( ) (A )[4,6] (B )(4,6] (C )(4,6) (D )[4,6) 5.从直线y =3上的点向圆x 2+y 2=1作切线,则切线长的最小值是( ) (A )22(B )7(C )3(D )10二、填空题6.以点(-2,3)为圆心且与y 轴相切的圆的方程是______.7.已知直线x =a (a >0)和圆(x -1)2+y 2=4相切,那么a 的值是______.8.设圆x 2+y 2-4x -5=0的弦AB 的中点为P (3,1),则直线AB 的方程是______.9.过定点(1,2)可作两直线与圆x 2+y 2+kx +2y +k 2-15=0相切,则k 的取值范围是____. 10.直线x +3y -m =0与圆x 2+y 2=1在第一象限内有两个不同的交点,则m 的取值范围是______. 三、解答题11.圆x 2+y 2=8内有一点P (-1,2),AB 为过点P 且倾斜角为α的弦. (1)当α=4π3时,求AB 的长; (2)当弦AB 被点P 平分时,求直线AB 的方程.12.求经过点P (6,-4)且被圆x 2+y 2=20截得的弦长为62的直线的方程.13.求过点P (4,-1)且与圆x 2+y 2+2x -6y +5=0外切于点M (1,2)的圆的方程.Ⅱ 拓展训练题14.已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为55. 求该圆的方程.测试十六空间直角坐标系Ⅰ学习目标1.理解空间直角坐标系的概念,能写出满足某些条件的点的坐标.2.会用空间两点间距离公式进行相关的计算.Ⅱ基础训练题一、选择题1.点A(2,0,3)在空间直角坐标系的位置是( )(A)y轴上(B)xOy平面上(C)xOz平面上(D)yOz平面上2.在空间直角坐标系中,点P(-2,-1,3)到原点的距离为( )(A)14(B)5(C)14 (D)53.点A(-1,2,1)在xOy平面上的射影点的坐标是( )(A)(-1,2,0) (B)(-1,-2,0)(C)(-1,0,0) (D)(1,-2,0)4.在空间直角坐标系中,两个点A(2,3,1)、A′(2,-3,1)关于( )对称(A)平面xOy (B)平面yOz(C)平面xOz(D)y轴5.设a是任意实数,则点P(a,1,2)的集合在空间直角坐标系中所表示的图形是( )(A)垂直于平面xOy的一条直线(B)垂直于平面yOz的一条直线(C)垂直于平面xOz的一条直线(D)以上均不正确二、填空题6.点M(4,-3,5)到x轴的距离为______.7.若点P(x,2,1)与Q(1,1,2)、R(2,1,1)的距离相等,则x的值为______.8.已知点A(-2,3,4),在y轴上求一点B,使|AB|=6,则点B的坐标为______.9.已知两点A(2,0,0),B(0,3,0),那么线段AB的中点的坐标是______.10.在空间直角坐标系中,点A(1,2,a)到点B(0,a,1)的距离的最小值为______.三、解答题11.在空间直角坐标系中,设点M的坐标为(1,-2,3),写出点M关于各坐标面对称的点、关于各坐标轴对称的点的坐标.12.在空间直角坐标系中,设点M的坐标为(1,-2,3),写出点M到原点、各坐标轴及各坐标面的距离.13.如图,正方体OABC-A1B1C1D1的棱长为a,|AM|=2|MB|,|B1N|=|NC1|,分别写出点M与点N的坐标.-1)的距离的两倍,求点P的坐标.测试十七 平面解析几何初步全章综合练习Ⅰ 基础训练题一、选择题1.方程y =k (x -2)表示( ) (A )经过点(-2,0)的所有直线 (B )经过点(2,0)的所有直线(C )经过点(2,0)且不垂直于x 轴的所有直线 (D )经过点(2,0)且去掉x 轴的所有直线2.点P (x ,y )在直线x +y -4=0上,O 为坐标原点,则|OP |的最小值为( ) (A )10(B )22(C )6(D )23.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) (A ))3π,6π[(B ))2π,6π((C ))2π,3π((D )]2π,6π[4.若直线(1+a )x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为( ) (A )1或-1 (B )2或-2 (C )1 (D )-15.如果直线l 将圆:x 2+y 2-2x -4y =0平分,且不通过第四象限,那么直线l 的斜率的取值范围是( ) (A )[0,2](B )[0,1](C )]21,0[(D ))21,0[二、填空题6.经过点P (-2,3)且在x 轴、y 轴上截距相等的直线方程为______.7.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 满足的关系式为______. 8.已知圆x 2+(y -1)2=1及圆外一点P (-2,0),过点P 作圆的切线,则两条切线夹角的正切值是______. 9.已知P 是直线3x +4y +8=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线.A 、B 是切点,C 是圆心,那么四边形P ACB 面积的最小值为______.10.已知两个圆x 2+y 2=1①与x 2+(y -3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为______. 三、解答题11.已知直线l 1:2x -y +3=0与直线l 2关于直线y =-x 对称,求直线l 2的方程.12.圆心在直线x -2y -3=0上,且圆与两坐标轴都相切,求此圆的方程.13.求通过直线2x +y -4=0及圆x 2+y 2+2x -4y +1=0的交点,并且有最小面积的圆的方程.14.在△ABC中,顶点A(2,4)、B(-4,2),一条内角平分线所在直线方程为2x-y=0,求AC边所在的直线方程.Ⅱ拓展训练题15.已知过原点O的一条直线与函数y=log8x的图象交于A、B两点(A在B的右侧),分别过点A、B作y轴的平行线与函数y=log2x的图象交于C、D两点.(1)证明:点C、D和原点O在同一条直线上.(2)当BC平行于x轴时,求点A的坐标.16*.已知圆C:(x-1)2+(y-2)2=25,及直线l:(2m+1)x+(m+1)y=7m+4(m∈R).(1)证明:不论m取什么实数,直线l与圆C恒相交;(2)求直线l被圆C截得的弦长最短长度及此时的直线方程.参考答案第二章 平面解析几何初步 测试十 平面直角坐标系中的基本公式一、选择题1.B 2.C 3.A 4.C 5.D 提示:1.点(a ,b )关于x 轴、y 轴、坐标原点O 、直线y =x 的对称点坐标为(a ,-b ),(-a ,b ),(-a ,-b ),(b ,a ). 二、填空题6.(1,1); 7.2或4; 8.5; 9.3,316-; 10.52. 提示:9.若AB =(x 1,y 1),CD =(x 2,y 2),则∥⇔x 1y 2-x 2y 1=0(应注意向量平行与直线平行的关系); 则⊥⇔x 1x 2+y 1y 2=0(即⋅=0); 三、解答题11.(1)证明:由已知计算得5||,52)31()11(||22==--++=BC AB5||=AC ,所以,|AB |2+|AC |2=|BC |2,所以△ABC 是直角三角形.另解:由已知=(-2,4),=(2,1), 所以,AB ²AC =-2³2+4³1=0, 所以,AB ⊥AC ,△ABC 是直角三角形. (2)解:由已知,AB 的中点M 的坐标为)231,211(+--,即M (0,1), 所以,.1013||22=+=CM12.设矩形对角线交点为M (x ,0),因为|MA |=|MB |,则22224)2(3)1(++=++x x ,解得x =-5,所以M (-5,0).设C (x 1,y 1),因为M 为AC 中点,所以023,52111=+-=-y x , 解得x 1=-9,y 1=-3,所以,C (-9,-3),同理,D (-8,-4).注:本题也可以利用向量平行、垂直的有关知识来解. 13.提示:通过建立适当的坐标系,利用坐标法来证明.14.(1){x |x =0,x =3};(2){x |x <0或x >3};(3){x |0≤x ≤3}.测试十一 直线的方程一、选择题1 B2 B3 B4 D5 D 提示:3.由题意知,l 的倾斜角α为钝角,cos α<0,k <0,故k cos α>0.4.反射光线过点N (2,6),同时,还经过点M (5,3)关于x 轴的对称点M ′(5,-3),所以,反射光线的斜率为352)3(6-=---,直线方程为3x +y -12=0.要注意,“光线”问题常用对称点的思路去思考问题.5.直线x -2y +2k =0与两坐标轴交点为A (-2k ,0).B (0,k ), 所以,2|||2|21||||21k k k OB OA S AOB =⋅-=⋅=∆,由题意k 2≥1, 得|k |≥1为所求.二、填空题6.2x +y +2=0; 7.(0,-2); 8.a =-2; 9.311-≤≤-k ; 10.⋅-31提示:10.提示:设A (x 0,y 0)为直线l 上一点,根据题意,A 点沿x 轴负方向平移3个单位,接着再沿y 轴正方向平移1个单位后仍应在直线l 上,即点(x 0-3,y 0+1)在直线l 上.所以直线l 的斜率为⋅-=---+31310000x x y y三、解答题11.提示:平分平行四边形面积的直线必过平行四边形的对角线交点,即过BD 的中点(3,2).所以,所求直线方程为2x -3y =0.12.略解:设P (x 1,1),因为PQ 的中点为(1,-1),根据中点坐标公式,可得Q (2-x 1,-3),因为点Q 在直线x -y -7=0上, 所以,(2-x 1)-(-3)-7=0,解得x 1=-2,所以,P (-2,1),Q (4,-3),⋅-=----=3242)3(1/k所以,l :2x +3y +1=0.13.略解:由已知得AB ∥x 轴,作CD ⊥AB 于D ,∵C (2,0),A (0,3),B (3,3).∴S △ADC >S △BDC . ∵x =a 将△ABC 面积平分,∴x =a 在直线CD 左侧,即0<a <2.由题意得)3(2123321p ABC y a S -⋅=⋅⋅=∆,其中y p 表示AC 与x =a 的交点的纵坐标. ∵直线AC 的方程为132=+yx .即3x +2y -6=0.当x =a 时,236,236ay a y p -=∴-=,代入上式,得.3±=a∵a ∈(0,2).3=∴a 为所求.14.(1)设直线l 的倾斜角为α,则所求直线倾斜角为2α,由已知,41tan =α,所以,tan2α=158tan 1tan 22=-αα,所以,所求直线l 方程为)2(1583-=-x y ,即8x -15y +29=0.(2)依题意,设直线l 方程为y -3=k (x -2),k <0,则)0,32(kA -,B (0,3-2k ),S △AOB 1266)292(621=+≥-+-+==kk y x B A ,此时,kk 292-=-,即.23±=k ,因为k <0,所以23-=k ,所求直线l 方程为)2(233--=-x y ,即3x +2y -12=0. (3)依题意,设直线l 方程为y -3=k (x -2),k <0,则)23,0(),0,32(k B kA --,12)1(6||164499||||222≥-+-⨯=+⨯=+⨯+=⋅kk k k k k PB PA , 此时,kk -=-1,即k =±1,因为k <0,所以k =-1, 所求直线l 方程为y -3=-(x -2),即x +y -5=0.测试十二 两条直线的位置关系(一)一、选择题1.B 2.D 3.A 4.A 5.C 提示:5.提示:可以求出两条直线的交点坐标)1216,1242(+++-k k k k ,解不等式组⎪⎪⎩⎪⎪⎨⎧>++>+-0121601242k k k k,可得⋅<<-2161k 另外,注意到直线y =kx +2k +1可变形为y -1=k (x +2),即此直线过定点(-2,1),又,直线221+-=x y 与x 轴、y 轴的交点坐标为(4,0),(0,2).利用数形结合的思路可得结论. 二、填空题6.x +y -2=0; 7.m +2n +5=0; 8.2x -y -5=0; 9.3x +y -1=0; 10.a ∈R ,a ≠±1且a ≠2. 提示:9.设直线2x -y +1=0的倾斜角为α,由已知,所求直线的倾斜角为α+45°,因为tan α=2,所以,345tan tan 145tan tan )45tan(-=-+=+ααα,又直线2x -y +1=0与y 轴的交点为(0,1),所以,所求直线方程为3x +y -1=0.10.直线x +ay =3与另两条直线不平行也不重合,并且三条直线不过同一点. 三、解答题11.4x -3y +9=0.12.CD :x +y -11=0,BC :3x -y -16=0. 13.方法一:用中点.DE 中点)2,27(G ,又G 为BF 的中点,∴B (4,8). 同理,EF 中点).2,6(),21,4(-∴-C HDF 中点).6,0(),23,25(-∴-A M.01227,627:=---=∴y x x y AB BC :y +2=-5(x -6),5x +y -28=0..01832,632:=---=y x x y AC 方法二:用斜率. EF 斜率为)2(271:27-=-∴⋅x y AB ,得7x -2y -12=0. FD 斜率为-5.∴BC :y -3=-5(x -5),得5x +y -28=0. DE 斜率为)3(324:32-=+∴⋅x y AC ,得2x -3y -18=0, 14.解:(1)由⎩⎨⎧=--=+-,012,082m m n m 解得m =1,n =7.(2)易知m ≠0,所以,当182-=/=n m m 时, 即m =4,n ≠-2,或m =-4,n ≠2时l 1∥l 2.(3)结合(2)的结果,当m =4,n =-2,或m =-4,n =2时,l 1与l 2重合.测试十三 两条直线的位置关系(二)一、选择题1.B 2.C 3.A 4.D 5.C 提示: 5.由已知,1sin sin |sin |22>+BA C ,所以,sin 2C >sin 2A +sin 2B .又R CcB b A a 2sin sin sin ===,所以,c 2>a 2+b 2, 由余弦定理,得02cos 222<-+=abc b a C ,所以,C 为钝角,三角形为钝角三角形. 二、填空题6.10,-12,-2; 7.)21,21(-; 8.y =0,y =5或5x -12y -5=0,5x -12y +60=0; 9.22+; 10..23提示:7.当AB 与已知直线垂直时,线段AB 最短. 9.|2)cos 22sin 22(2||2cos sin |cos sin |2cos sin |)(22-+=-+=+-+=θθθθθθθθθf)4πsin(22|2)4πsin(2|+-=-+=θθ,所以,f (θ)的最大值为.22+10.由已知,点M 到两直线l 1,l 2的距离相等.即点M 在直线x +y -6=0上,于是,问题变成“点M 在直线x +y -6=0上运动,求原点到点M 的最小距离”,可利用第7题的思路加以解决. 三、解答题11.提示:满足题目条件的直线l 或者与直线AB 平行,或者经过线段AB 的中点.当直线l 与直线AB 平行时,l :4x +y -6=0;当直线l 经过线段AB 的中点时,l :3x +2y -7=0. 12.解:(1)设所求直线方程为x +2y +c =0,根据题意55|2|=+c ,解得c =3或c =-7, 所以,所求直线方程为x +2y +3=0或x +2y -7=0. (2)设P (-2,-1)关于直线l 的对称点为P ′(x 0,y 0). 则k pp 'k l =-1,且PP ′的中点在直线l 上,即点)21,22(00--y x 在直线l 上. 所以,⎪⎪⎩⎪⎪⎨⎧-=-⋅++=--⨯+-1)21(2102212220000x y y x ,即⎩⎨⎧=+-=-+0320820000y x y x ,解得⋅==519,5200y x 即)519,52('P .13.解:AB 斜率为81,设C 坐标(x 0,y 0). 所以,85200-=--x y ……………………①因为AH 斜率为0,∴BC 斜率不存在,即BC 直线方程为x =6, 所以,x 0=6.…………………………②②代入①,得y 0=-6.∴C 点坐标(6,-6). 14.略解:解⎩⎨⎧==+-,0,012y y x 得A (-1,0),所以AB :x -y +1=0.设C (x 0,y 0),因为BC 与BC 边上的高线垂直,并且C 关于直线y =0(∠A 的平分线)的对称点C ′在直线AB 上.所以,k BC =-2,C ′(x 0,-y 0)在直线AB 上.所以,⎪⎩⎪⎨⎧=++-=--012120000y x x y 解得x 0=5,y 0=-6,即C (5,-6),故|BC |=54.测试十四 圆的方程一、选择题1.D 2.D 3.D 4.C 5.C 提示:4.只需坐标原点在圆内,即原点与圆心的距离小于半径,已知圆圆心为)2,2(ED --,半径为)04(242222>-+-+F E D F E D ,结合44)02()02(2222FE D E D -+<-+-及D 2+E 2-4F >0,可得F <0.5.方程2)1(11--=-y x 可以等价变形为(x -1)2+(y -1)2=1,且x -1≥0,1-(y -1)2≥0.即(x -1)2+(y -1)2=1,且x ≥1,0≤y ≤2.所以,方程2)1(11--=-y x 所表示的曲线是半个圆.二、填空题 6.2x +y =0;7.(1)a 2+b 2=r 2且|a |=r 或b =0,|a |=r ;(2)a 2+b 2<r 2;(3)|b |<r ; 8.21; 9.6,549+; 10.⋅-552 提示:9.x 2+y 2的几何意义是点P (x ,y )到原点距离的平方.利用这个几何意义求解. 10.xy的几何意义是点P (x ,y )与原点连线的斜率.利用这个几何意义求解. 三、解答题11.提示:将方程配方为222431)()2(a a a y a x --=+++,则,04312>--a a 即3a 2+4a -4<0,(3a -2)(a +2)<0,解得,⋅<<-322a12.提示:方法一:设圆的方程为x 2+y 2+D x +Ey +F =0,由已知三个点在圆上,可得⎪⎩⎪⎨⎧=+++=++=082204160F E D F D F 解得D =-4,E =0,F =0,所以,所求圆方程为x 2+y 2-4x =0.方法二:注意到k AC =1,k BC =-1,k AC k BC =-1,所以,三角形ABC 是直角三角形,∠C =90°,所以,所求圆心为AB 边中点,即(2,0)点,可求半径r =2, 所以,所求圆的方程为(x -2)2+y 2=4.13.提示:因为A (-1,4),B (1,2)是圆C 上的两点,所以圆心在线段AB 的中垂线上,因为AB 中点坐标为(0,3),k AB =-1,所以线段AB 的中垂线方程为x -y +3=0,解⎩⎨⎧=-+=+-0103y x y x 得圆心坐标为(-1,2),半径,2)22()11(22=-+--=r所以,圆C 的方程为(x +1)2+(y -2)2=4.14.分析:(1)曲线C 方程可变形为(x 2+y 2-20)+a (-4x +2y +20)=0,由⎩⎨⎧=++-=-+020*******y x y x ,解得⎩⎨⎧-==24y x . 即点(4,-2)满足曲线C 的方程,故曲线C 过定点(4,-2).(2)曲线C 方程(x -2a )2+(y +a )2=5(a -2)2,因为a ≠2,所以曲线C 是圆心为(2a ,-a ),半径为|2|5-a 的圆. 设圆心坐标为(x ,y ),则有⎩⎨⎧-==ay a x 2,消去a 可得x y 21-=,故圆心必在直线x y 21-=. 测试十五 直线与圆的位置关系一、选择题1.C 2.B 3.C 4.C 5.A 提示:5.圆方程x 2+y 2=1,圆心(0,0),半径1,切线长的平方=圆心到直线y =3距离的最小值的平方.22813222==-=-r二、填空题6.(x +2)2+(y -3)2=4; 7.3; 8.x +y -4=0; 9.⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--338,23,338 ; 10..23<<m提示:9.圆方程配方为,4316)1()2(222k y k x -=+++依题意,2224316)12()21(k k ->+++,且,043162>-k解得k <-3或k >2,且338338<<-k ,所以,⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--338,23,338 . 10.结合图形,求出直线与圆在第一象限相切时的m 值为2,求出直线过(0,1)点时的m值为3.进而得出m 值范围. 三、解答题11.提示:(1)方法一:由已知,AB :x +y -1=0,与圆方程联立,解方程组得,2151±=x 则.304πcos||||12=-=x x AB 方法二:圆心到直线AB 的距离,222|1|=-=d 所以.3021822||22=-=-=dr AB(2)当弦AB 被点P 平分时,AB ⊥OP ,又k OP =-2, 所以,.052:,21=+-=y x AB k AB 12.提示:注意到,过点P (6,-4)倾斜角为90°的直线不满足题意,设所求直线为y +4=k (x -6),由弦长为26,圆半径为20,所以圆心O 到所求直线的距离为2, 即21|46|2=++k k ,解得k =-1或177-=k ,所以所求直线方程为x +y -2=0或7x +17y +26=0.13.略解:圆(x +1)2+(y -3)2=5的圆心为(-1,3),设圆心(a ,b ),得⎪⎩⎪⎨⎧---=--++-=-+-,112312)1()4()2()1(2222a b b a b a解得⎩⎨⎧==13b a ,圆心(3,1),半径为5,所以,所求圆方程为(x -3)2+(y -1)2=5.14.分析:设所求圆的圆心为P (a ,b ),半径为r ,则P 到x 轴、y 轴的距离分别为|b |,|a |.由题设圆P 截x 轴所得劣弧所对圆心角为90°,圆P 截x 轴所得弦长为r 2, 故r 2=2b 2.又圆P 截y 轴所得弦长为2,所以有r 2=a 2+1,从而有2b 2-a 2=1. 又点P (a ,b )到直线x -2y =0的距离555|2|=-=b a d ,所以|a -2b |=1, 解⎩⎨⎧=-=-121|2|22a b b a ,得⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a . 由于r 2=2b 2,知2=r ,于是所求圆的方程为(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2.测试十六 空间直角坐标系一、选择题1.C 2.A 3.A 4.C 5.B 二、填空题6.34; 7.1; 8.(0,-1,0),(0,7,0); 9.)0,23,1(; 10.26.三、解答题11.答:点M 关于平面xOy 的对称点为(1,-2,-3);点M 关于平面yOz 的对称点为(-1,-2,3); 点M 关于平面xOz 的对称点为(1,2,3); 点M 关于x 轴的对称点为(1,2,-3);点M 关于y 轴的对称点为(-1,-2,-3);点M 关于z 轴的对称点为(-1,2,3). 12.答:点M 到原点的距离为14;点M 到平面xOy 的距离为3;点M 到平面yOz 的距离为1;点M 到平面xOz 的距离为2; 点M 到x 轴的距离为13;点M 到y 轴的距离为10; 点M 到z 轴的距离为5. 13.答:).,,21(),0,32,(a a a N a a M 14.答:(1,0,0)或(-1,0,0).测试十七 平面解析几何初步全章综合练习一、选择题1.C 2.B 3.B 4.D 5.A 提示:3.直线3:-=kx y l 过定点)3,0(-,直线2x +3y -6=0与x 轴、y 轴交点坐标为(3,0)、(0,2),作图分析可得答案. 二、填空题6.x +y -1=0,3x +2y =0; 7.0<m 2+n 2<3; 8.34; 9.22; 10.两圆(x -a )2+(y -b )2=r 2与(x -c )2+(y -d )2=r 2的对称轴的方程为2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0. 提示: 9.r PA S PACB ||212⨯=(r 是圆的半径),由已知r =1,所以,即求|P A |的最小值,又|P A |=12-PC ,而|PC |的最小值为C 到直线3x +4y +8=0的距离,即343|843|22=+++,所以,所求最小值为.22||212=⨯=r PA S PACB 三、解答题11.提示:直线l 1与l 2的交点坐标为(-1,1),直线l 1与y 轴交点坐标为(0,3),且(0,3)点关于直线y =-x 对称点坐标为(-3,0),所以,直线l 2过点(-3,0)和(-1,1),l 2:x -2y +3=0.12.提示:设圆心为(a ,b ),由已知|a |=|b |=r ,又a -2b -3=0,解⎩⎨⎧==--b a b a 032及⎩⎨⎧-==--b a b a 032得⎩⎨⎧-=-=33b a 或⎩⎨⎧-==11b a ,所以,所求圆方程为(x +3)2+(y +3)2=9或(x -1)2+(y +1)2=1.13.提示:所求圆即为以已知直线和已知圆相交的弦为直径的圆.解⎩⎨⎧=-+=+-++,042014222y x y x y x 得⎩⎨⎧==21y x 或⎪⎪⎩⎪⎪⎨⎧==51851y x .即直线与圆的交点坐标为)518,51(),2,1(,弦长为554, 所以圆心为)514,53(,半径为552, 所求圆方程为54)514()53(22=-+-y x . 14.提示:注意到点A (2,4)在直线2x -y =0上,所以,已知直线为∠A 的平分线l ,过B作与l 垂直的直线m :x +2y =0,l 与m 的交点为(0,0),B (-4,2)关于(0,0)的对称点为B ′(4,-2),AB ′所在直线即为AC 边所在的直线,所以AC 边所在的直线方程为3x +y -10=0.15.(1)证明:设A 、B 的横坐标分别为x 1、x 2,由题设知x 1>1、x 2>1,点A (x 1,log 8x 1),B (x 2,log 8x 2). 因为A 、B 在过点O 的直线上,⋅=∴228118log log x x x x又点C 、D 的坐标分别为(x 1,log 2x 1)、(x 2,log 2x 2), 由于,log 32log log log ,log 32log log log 28828221881812x x x x x x ====所以OC 的斜率和OD 的斜率分别为:228222118112log 3log ,log 3log x x x xk x x x x k OD OC ====由此得k OC =k OD ,即点O 、C 、D 在同一条直线上.(2)解:由BC 平行于x 轴,有log 2x 1=log 8x 2,解得x 2=31x .将其代入228118log log x x x x =,得1811831log 3log x x x x =. 由x 1>1,知log 8x 1≠0,故31x =3x 1,即31=x ,于是点A 的坐标为).3log ,3(816.分析:(1)直线l 的方程可化为x +y -4+m (2x +y -7)=0,则l 是过定点(3,1)的直线束.又(3-1)2+(1-2)2=5<25,∴点(3,1)在圆内部,因此不论m 为何实数,直线l 与圆恒相交.(2)由(1)可知,直线l 过点M (3,1),则过此点的直线l 与圆O 的半径垂直且M 为AB 中点时,l 被圆所截得的弦长|AB |最短.)542|(|22=-=OM r AB .此时212311=---=-=OMl k k , 直线方程为y -1=2(x -3),即2x -y -5=0.。
高中数学期末备考:解析几何09椭圆轨迹汇编含解析
9.椭圆的轨迹问题研究一.学习目标:能够在不同情境中应用椭圆的定义求出相关的轨迹方程,会用求轨迹的基本方法求解轨迹方程,了解椭圆的第二,三定义.二.知识梳理:1.定义法求轨迹方程的基本步骤:2.代入法求轨迹方程的基本步骤:三.典例分析.1.基于第一定义的椭圆轨迹问题.例1.若动点P 的坐标 ,x y 2,试判断动点P 的轨迹,并写出其标准方程.解析:由于点 ,P x y 2 ,P x y 到两个定点, 的距离之和等于常数x 轴上的椭圆,且a c ,故b ,故椭圆的标准方程为22163x y .例2.在ABC 中,若BC 的长为6,周长为16,则顶点A 在怎样的曲线上运动?解析:如图,建立坐标系,已知ABC 的周长为16,且(3,0)(3,0)B C ,,则106AB AC BC ,有2=10a AB AC ,得5a ,又3c ,所以22225916b a c ,所以ABC 的顶点A的轨迹方程为: 22102516x y y ,即顶点A 在椭圆 22102516x y y 上运动.例3.如图,圆 22116x y 的圆心为B ,点()1,0A ,点C 为圆上任意一点,求线段AC 的垂直平分线l 与线段CB 的交点P 的轨迹方程.解析:连接PA ,如下图:由题意可知,(1,0)B ,圆的半径||4r BC ,且()1,0A ,由垂直平分线定理可知,||||PA PC ,故||||||||||4||2PB PA PB PC BC AB 由椭圆定义可知,P 的轨迹为椭圆,设P 的轨迹方程为:22221x y a b(0a b ),从而24a ,即2a ,又因为()1,0A 、(1,0)B ,所以1c ,又由222b a c 可知,b ,从而P 的轨迹方程为:22143x y .例4.已知两圆222212:(2)18,:(2)2C x y C x y ,动圆M 在圆1C 内部且和圆1C 内切,和圆2C 外切.求动圆圆心M 的轨迹方程C .解析:设圆M 的半径的R ,则12124MC MC R R C C ,所以M 的轨迹是以12,C C 的焦点的椭圆,则2a ,24c ,所以a 2c ,2b ,故动圆圆心M 轨迹方程C 为14822 y x 2.基于第二定义的椭圆轨迹问题.例5.已知动点 ,M x y 到定点 1,0F 的距离和 ,M x y 到直线:2l x 的距离的比是常数2.求点M 的轨迹C .解析:∵动点 ,M x y 到定点 1,0F 的距离和 ,M x y 到直线:2l x 的距离的比是常数22,2212x y ,即点M 的轨迹C 为2212x y.3.基于第三定义的椭圆轨迹问题.例6.已知(A B ,直线,PA PB 的斜率之积为34,记动点P 的轨迹为曲线C .求C 的方程.解析:设(,)P xy ,则直线PA的斜率PA k x,直线PB的斜率PB k x,由题意22384PA PB y k k x,化简得221(86x y x .4.相关点法求轨迹.例7.如图,设P 是圆2522 y x 上的动点,作x PD 轴,D 为垂足,M 为PD 上一点,且45MDPD .当P 在圆上运动时,求点M 的轨迹C 的方程.解析:设点M 的坐标为 ,x y ,点P 的坐标为 ,x y ,因为x PD 轴且45MD PD ,得45x x y y,即54x x y y ,因为P 在圆上,得2225x y ,故225254x y ,整理得2212516x y ,故C 的方程为2212516x y .四.练习题10 为不含根式的形式是()A.2212516x y B.221259x y C.2251162x y D.221925x y 2.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为()A.224412125x y B.224412125x y C.224412521x y D.224412521x y 3.已知定圆 22151C x y :, 2225225C x y :,动圆C 满足与1C 外切且与2C 内切,则动圆圆心C 的轨迹方程为()A.2216439x y B.2213964x y C.221256241x y D.221241256x y4.已知动点 ,M x y 与定点 1,0F 的距离和它到直线3x 的距离的比是常数3.求动点M 的轨迹方程C .5.设圆222150x y x 的圆心为A ,直线l 过点 10B ,且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AC 的平行线交AD 于点E .证明EA EB 为定值,并写出点E 的轨迹方程.6.设M 为圆4:22 y x C 的动点,M 在x 轴的投影为N ,动点P 满足MN PN 32,动点P 的轨迹为E .求E 的方程.。
压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)
压轴题06解析几何压轴题题型/考向一:直线与圆、直线与圆锥曲线题型/考向二:圆锥曲线的性质综合题型/考向三:圆锥曲线的综合应用一、直线与圆、直线与圆锥曲线热点一直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离.判断方法:(1)点线距离法(几何法).(2)判别式法:设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0(A2+B2≠0),+By+C=0,x-a)2+(y-b)2=r2,消去y,得到关于x的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系,即内含、内切、相交、外切、外离.热点二中点弦问题已知A(x1,y1),B(x2,y2)为圆锥曲线E上两点,AB的中点C(x0,y0),直线AB 的斜率为k.(1)若椭圆E的方程为x2a2+y2b2=1(a>b>0),则k=-b2a2·x0y0;(2)若双曲线E的方程为x2a2-y2b2=1(a>0,b>0),则k=b2a2·x0y0;(3)若抛物线E的方程为y2=2px(p>0),则k=py0.热点三弦长问题已知A(x1,y1),B(x2,y2),直线AB的斜率为k(k≠0),则|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2或|AB|=1+1k2|y1-y2|=1+1k2(y1+y2)2-4y1y2.热点四圆锥曲线的切线问题1.直线与圆锥曲线相切时,它们的方程组成的方程组消元后所得方程(二次项系数不为零)的判别式为零.2.椭圆x2a2+y2b2=1(a>b>0)在(x0,y0)处的切线方程为x0xa2+y0yb2=1;双曲线x2a2-y2b2=1(a>0,b>0)在(x0,y0)处的切线方程为x0xa2-y0yb2=1;抛物线y2=2px(p>0)在(x0,y0)处的切线方程为y0y=p(x+x0).热点五直线与圆锥曲线位置关系的应用直线与圆锥曲线位置关系的判定方法(1)联立直线的方程与圆锥曲线的方程.(2)消元得到关于x或y的一元二次方程.(3)利用判别式Δ,判断直线与圆锥曲线的位置关系.二、圆锥曲线的性质综合热点一圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.热点二椭圆、双曲线的几何性质1.求离心率通常有两种方法(1)椭圆的离心率e=ca=1-b2a2(0<e<1),双曲线的离心率e=ca=1+b2a2(e>1).(2)根据条件建立关于a,b,c的齐次式,消去b后,转化为关于e的方程或不等式,即可求得e的值或取值范围.2.与双曲线x2a2-y2b2=1(a>0,b>0)共渐近线的双曲线方程为x2a2-y2b2=λ(λ≠0).热点三抛物线的几何性质抛物线的焦点弦的几个常见结论:设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),α是弦AB的倾斜角,则(1)x1x2=p24,y1y2=-p2.(2)|AB|=x1+x2+p=2psin2α.(3)1|FA|+1|FB|=2p.(4)以线段AB为直径的圆与准线x=-p2相切.三、圆锥曲线的综合应用求解范围、最值问题的常见方法(1)利用判别式来构造不等关系.(2)利用已知参数的范围,在两个参数之间建立函数关系.(3)利用隐含或已知的不等关系建立不等式.(4)利用基本不等式.○热○点○题○型一直线与圆、直线与圆锥曲线一、单选题1.过圆224x y +=上的动点作圆221x y +=的两条切线,则连接两切点线段的长为()A .2B .1C 32D 3【答案】D【详解】令点P 是圆224x y +=上的动点,过点P 作圆221x y +=的两条切线,切点分别为A ,B ,如图,则OA PA ⊥,而1||||12OA OP ==,于是260APB OPA ∠=∠= ,又||||3PB PA ==,因此PAB 为正三角形,||||3AB PA ==,所以连接两切点线段的长为3.故选:D2.过抛物线:()的焦点的直线交抛物线于,两点,若2AF BF AB ⋅=,则抛物线C 的标准方程是()A .28y x=B .26y x=C .24y x=D .22y x=3.若直线0x y a +-=与曲线A .[12,12]-+B .(1C .[2,12)+D .(1【答案】B4.已知抛物线22y px =的焦点为4x =A .4B .42C .8D .【答案】D5.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过FC 交于A ,B 两点,D 为AB 的中点,且DM l ⊥于点M ,AB 的垂直平分线交x 轴于点N ,四边形DMFN的面积为,则p =()A.B .4C.D.因为30DN DF DFN ⊥∠=︒,,故223DF DE p ==,FN6.已知圆22:4C x y +=,直线l经过点3,02P ⎛⎫⎪⎝⎭与圆C 相交于A ,B 两点,且满足关系OM =(O 为坐标原点)的点M 也在圆C 上,则直线l 的斜率为()A .1B .1±C .D .±故选:D.7.已知椭圆()222210x y a b a b+=>>的上顶点为B ,斜率为32的直线l 交椭圆于M ,N 两点,若△BMN 的重心恰好为椭圆的右焦点F ,则椭圆的离心率为()A .22BC .12D8.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,直线y =与C的左、右两支分别交于A ,B 两点,若四边形12AF BF 为矩形,则C 的离心率为()AB .3C1D 1+二、多选题9.在平面直角坐标系xOy 中,已知圆()()()222:210C x y r r -+-=>,过原点O 的直线l 与圆C 交于A ,B 两点,则()A .当圆C 与y 轴相切,且直线l 的斜率为1时,2AB =B .当3r =时,存在l ,使得CA CB⊥C .若存在l ,使得ABC 的面积为4,则r 的最小值为D .若存在两条不同l ,使得2AB =,则r 的取值范围为()1,3故选:BC10.已知0mn ≠,曲线22122:1x y E m n +=,曲线22222:1x y E m n-=,直线:1x y l m n +=,则下列说法正确的是()A .当3n m =时,曲线1E 离心率为3B .当3n m =时,曲线2E 离心率为103C .直线l 与曲线2E 有且只有一个公共点D .存在正数m ,n ,使得曲线1E 截直线l11.已知抛物线:4C x y =,过焦点F 的直线l 与交于1122两点,1与F 关于原点对称,直线AB 和直线AE 的倾斜角分别是,αβ,则()A .cos tan 1αβ⋅>B .AEF BEF∠=∠C .90AEB ∠>︒D .π22βα-<【答案】BD【详解】作AD y ⊥轴于D ,作BC y ⊥轴于C ,则,DAF DAEαβ=∠=∠由()()1122,,,A x y B x y ,则()()120,,0,D y C y ,故选:BD.12.已知双曲线22:145x y C -=的左、右焦点分别为12,F F ,过点2F 的直线与双曲线C 的右支交于,A B 两点,且1AF AB ⊥,则下列结论正确的是()A .双曲线C 的渐近线方程为2y x =±B .若P 是双曲线C 上的动点,则满足25PF =的点P 共有两个C .12AF =D .1ABF 2○热○点○题○型二圆锥曲线的性质综合一、单选题1.设1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 的直线交双曲线右支于A ,B 两点,若1123AF BF =,且223AF BF =,则该双曲线的离心率为()A B .2C D .32.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,12F F =P为C 上一点,1PF 的中点为Q ,2PF Q △为等边三角形,则双曲线C 的方程为().A .2212y x -=B .2212x y -=C .2222133x y -=D .223318y x -=A .6B .3或C .D .或4.已知双曲线221(0,0)a b a b-=>>的实轴为4,抛物线22(0)y px p =>的准线过双曲线的左顶点,抛物线与双曲线的一个交点为(4,)P m ,则双曲线的渐近线方程为()A .y x =B .y =C .23y x =±D .4y x =±故选:A5.2022年卡塔尔世界杯会徽(如图)正视图近似伯努利双纽线.在平面直角坐标系xOy中,把到定点()1,0F a -,()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线.已知点00(,)P x y 是双纽线C 上一点,有如下说法:①双纽线C 关于原点O 中心对称;②022a a y -≤≤;③双纽线C 上满足12PF PF =的点P 有两个;④PO .其中所有正确的说法为()A .①②B .①③C .①②③D .①②④6.如图所示,1F ,2F 是双曲线22:1(0,0)C a b a b-=>>的左、右焦点,双曲线C 的右支上存在一点B 满足12BF BF ⊥,1BF 与双曲线C 的左支的交点A 平分线段1BF ,则双曲线C 的离心率为()A .3B .C D7.已知椭圆1和双曲线2的焦点相同,记左、右焦点分别为1,2,椭圆和双曲线的离心率分别为1e ,2e ,设点P 为1C 与2C 在第一象限内的公共点,且满足12PF k PF =,若1211e e k =-,则k 的值为()A .3B .4C .5D .6个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点.设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,若从椭圆右焦点2F 发出的光线经过椭圆上的点A 和点B 反射后,满足AB AD ⊥,且3cos 5ABC ∠=,则该椭圆的离心率为().A .12B 22C D则113cos 5AB ABF BF ∠==,sin ABF ∠可设3AB k =,14AF k =,1BF =由1122AB AF BF AF BF AF ++=++二、多选题9.已知曲线E :221mx ny -=,则()A .当0mn >时,E 是双曲线,其渐近线方程为y =B .当0n m ->>时,E 是椭圆,其离心率为eC .当0m n =->时,E 是圆,其圆心为()0,0D .当0m ≠,0n =时,E是两条直线x =10.2022年卡塔尔世界杯会徽(如图)的正视图可以近似看成双纽线,在平面直角坐标系中,把到定点()1,0F a -和()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线,已知点()00,P x y 是双纽线C 上一点,则下列说法正确的是()A .若12F PF θ∠=,则12F PF △的面积为sin 2aθB .022a a y -≤≤C .双纽线C 关于原点O 对称D .双纽线上C 满足12PF PF =的点P 有三个【答案】BC11.已知椭圆()2:1039C b b+=<<的左、右焦点分别为1F 、2F ,点2M在椭圆内部,点N 在椭圆上,椭圆C 的离心率为e ,则以下说法正确的是()A .离心率e 的取值范围为0,3⎛ ⎝⎭B .存在点N ,使得124NF NF =C .当6e =时,1NF NM +的最大值为62+D .1211NF NF +的最小值为1如上图示,当且仅当2,,M N F12.已知P ,Q 是双曲线221x y a b-=上关于原点对称的两点,过点P 作PM x ⊥轴于点M ,MQ 交双曲线于点N ,设直线PQ 的斜率为k ,则下列说法正确的是()A .k 的取值范围是b bk a a-<<且0k ≠B .直线MN 的斜率为2kC .直线PN 的斜率为222b kaD .直线PN 与直线QN 的斜率之和的最小值为ba2222PN QNb k b k k ka a +=+≥,当且仅当但PN QN k k ≠,所以等号无法取得,选项○热○点○题○型三圆锥曲线的综合应用1.已知椭圆()2222:10x y C a b a b+=>>2倍,且右焦点为()1,0F .(1)求椭圆C 的标准方程;(2)直线():2l y k x =+交椭圆C 于A ,B 两点,若线段AB 中点的横坐标为23-.求直线l 的方程.【详解】(1)由椭圆C 的长轴长是短轴长的2倍,可得2a b =.所以()2222bb c =+.又()1,0F ,所以()2221bb =+,解得1b =.所以2a =.所以椭圆C 的标准方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,由()22122x y y k x ⎧+=⎪⎨⎪=+⎩,得()2222218820k x k x k +++-=.则2122821k x x k -+=+,21228221k x x k -=+.因为线段AB 中点的横坐标为23-,所以2122422213x x k k +-==-+.2.已知抛物线:2=2的焦点为(1,0),过的直线交抛物线于,两点,直线AO,BO分别与直线m:x=-2相交于M,N两点.(1)求抛物线C的方程;(2)求证:△ABO与△MNO的面积之比为定值.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,右焦点F 到其中一条渐近线的距离(1)求双曲线C 的标准方程;(2)(2)过右焦点F 作直线AB 交双曲线于,A B 两点,过点A 作直线1:2l x =的垂线,垂足为M ,求证直线MB 过定点.4.如图,平面直角坐标系中,直线l 与轴的正半轴及轴的负半轴分别相交于两点,与椭圆22:143x y E +=相交于,A M 两点(其中M 在第一象限),且,QP PM N = 与M关于x 轴对称,延长NP 交㮋圆于点B .(1)设直线,AM BN 的斜率分别为12,k k ,证明:12k k 为定值;(2)求直线AB 的斜率的最小值.5.已知双曲线C :221a b-=(0a >,0b >)的右焦点为F ,一条渐近线的倾斜角为60°,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点()0,0O ,()0,2M ,动直线l :y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷第1页,总2页 23.设抛物线的焦点为,点,线段的中点在抛物线上. 设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆. (1)求的值; (2)证明:圆与轴必有公共点; (3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.
24.设动点P(x,y)(x≥0)到定点F1,02错误!未找到引用源。的距离比到y轴的距
离大12错误!未找到引用源。.记点P的轨迹为曲线C. (1)求点P的轨迹方程; (2)设圆M过A(1,0),且圆心M在P的轨迹上,BD是圆M在y轴上截得的弦,当M运动时弦长BD是否为定值?说明理由;
(3)过F1,02错误!未找到引用源。作互相垂直的两直线交曲线C于G、H、R、S,求四边形GRHS面积的最小值. 25.已知抛物线C顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为322错误!未找到引用源。,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点. (1)求抛物线C的方程; (2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程; (3)当点P在直线l上移动时,求|AF|·|BF|的最小值. 26.已知圆C与两圆x2+(y+4)2=1,x2+(y-2)2=1外切,圆C的圆心轨迹方程为L,设L上的点与点M(x,y)的距离的最小值为m,点F(0,1)与点M(x,y)的距离为n. (1)求圆C的圆心轨迹L的方程. (2)求满足条件m=n的点M的轨迹Q的方程. (3)在(2)的条件下,试探究轨迹Q上是否存在点B(x1,y1),使得过点B的切线与两坐标轴围成的三角形的面积等于错误!未找到引用源。.若存在,请求出点B的坐标;若不存在,请说明理由. 27.已知直线y=-2上有一个动点Q,过点Q作直线l1垂直于x轴,动点P在l1上,且满足OP⊥OQ(O为坐标原点),记点P的轨迹为C. (1)求曲线C的方程. (2)若直线l2是曲线C的一条切线,当点(0,2)到直线l2的距离最短时,求直线l2的方程.
28.如图,直线:(0)lyxbb,抛物线2:2(0)Cypxp,已知点(2,2)P在抛
物线C上,且抛物线C上的点到直线l的距离的最小值为324. 试卷第2页,总2页
(1)求直线l及抛物线C的方程; (2)过点(2,1)Q的任一直线(不经过点P)与抛物线C交于A、B两点,直线AB与
直线l相交于点M,记直线PA,PB,PM的斜率分别为1k,2k, 3k.问:是否存在实数,使得123kkk?若存在,试求出的值;若不存在,请说明理由. 29.已知抛物线22(0)ypxp的焦点为双曲线22221(0,0)xyabab的一个焦点,且两条曲线都经过点(2,4)M. (1)求这两条曲线的标准方程; (2)已知点P在抛物线上,且它与双曲线的左,右焦点构成的三角形的面积为4,求点P 的坐标. 本卷由【在线组卷网www.zujuan.com】自动生成,请仔细校对后使用,答案仅供参考。
答案第1页,总9页 参考答案 23.(1) (2)见解析 (3)存在 【解析】 试题分析: (1)判断抛物线的焦点位置,得到焦点坐标,利用中点坐标公式得到FA的中点坐标带入抛物线即可求的P的值. (2)直线与抛物线相切,联立直线与抛物线,判别式为0即可得到k,m之间的关系,可以用k来替代m,得到P点的坐标,抛物线准线与直线的方程可得到Q点的坐标,利用中点坐标公式可得到PQ中点坐标,计算中点到x轴距离与圆半径(PQ为直径)的大小比较即可判断圆与x轴的位置关系(点线距离小于或者等于半径,即相交或者相切). (3)由(2)可以得到PQ的坐标(用k表示),根据抛物线对称性知点在轴上,设点坐
标为,则M点需满足,即向量内积为0,即可得到M点的坐标,M点的坐标如果为常数(不含k),即存在这样的定点,如若不然,则不存在. 试题解析:
(1)利用抛物线的定义得,故线段的中点的坐标为,代入方程得,解得。 2分 (2)由(1)得抛物线的方程为,从而抛物线的准线方程为 3分
由得方程,
由直线与抛物线相切,得 4分 且,从而,即, 5分 由,解得, 6分 ∴的中点的坐标为 圆心到轴距离, 本卷由【在线组卷网www.zujuan.com】自动生成,请仔细校对后使用,答案仅供参考。 答案第2页,总9页 ∵ 所圆与轴总有公共点. 8分 (或 由, ,以线段为直径的方程为:
令得 ,所圆与轴总有公共点). 9分 (3)假设平面内存在定点满足条件,由抛物线对称性知点在轴上, 设点坐标为, 10分
由(2)知, ∴ 。 由得, 所以,即或 13分 所以平面上存在定点,使得圆恒过点. 14分 证法二:由(2)知,,的中点的坐标为
所以圆的方程为 11本卷由【在线组卷网www.zujuan.com】自动生成,请仔细校对后使用,答案仅供参考。
答案第3页,总9页 分 整理得 12分 上式对任意均成立,
当且仅当,解得 13分 所以平面上存在定点,使得圆恒过点. 14分 考点:抛物线 直线与抛物线的位置关系 圆与直线的位置关系 向量内积 24.(1) y2=2x (2) BD=2,即弦长BD为定值 (3)8 【解析】
解:(1)由题意知,所求动点P(x,y)的轨迹为以F1,02错误!未找到引用源。为焦点,直线
l:x=-12错误!未找到引用源。为准线的抛物线,其方程为y2=2x. (2)是定值.解法如下:设圆心M2,2aa错误!未找到引用源。,
半径r=22212aa错误!未找到引用源。, 圆的方程为222ax错误!未找到引用源。+(y-a)2=a2+2212a错误!未找到引用源。, 令x=0,得B(0,1+a),D(0,-1+a), ∴BD=2,即弦长BD为定值.
(3)设过F的直线GH的方程为y=k12x错误!未找到引用源。,G(x1,y1),H(x2,y2),
由21,22,ykxyx错误!未找到引用源。得k2x2-(k2+2)x+24k错误!未找到引用源。=0, ∴x1+x2=1+22k错误!未找到引用源。,x1x2=14错误!未找到引用源。, ∴|GH|=21k错误!未找到引用源。·212124xxxx错误!未找到引用源。=2+2
2
k本卷由【在线组卷网www.zujuan.com】自动生成,请仔细校对后使用,答案仅供参考。 答案第4页,总9页 错误!未找到引用源。, 同理得|RS|=2+2k2.
S四边形GRHS=21222k错误!未找到引用源。(2+2k2)= 2212kk2错误!未找到引用源。≥8(当且仅当k=±1时取等号). ∴四边形GRHS面积的最小值为8.
25.(1) x2=4y (2) y=12错误!未找到引用源。x0x-y0 (3) 92 【解析】
解:(1)∵抛物线C的焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为322错误!未找到引用源。, ∴22c错误!未找到引用源。=322错误!未找到引用源。,得c=1, ∴F(0,1),即抛物线C的方程为x2=4y. (2)设切点A(x1,y1),B(x2,y2),
由x2=4y得y′=12错误!未找到引用源。x,
∴切线PA:y-y1=12x1(x-x1), 有y=12错误!未找到引用源。x1x-2112x错误!未找到引用源。+y1,而21x错误!未找到引用源。=4y1, 即切线PA:y=12x1x-y1,
同理可得切线PB:y=12错误!未找到引用源。x2x-y2. ∵两切线均过定点P(x0,y0), ∴y0=12错误!未找到引用源。x1x0-y1,y0=12x2x0-y2,
由此两式知点A,B均在直线y0=12错误!未找到引用源。xx0-y上, ∴直线AB的方程为y0=12错误!未找到引用源。xx0-y, 即y=12错误!未找到引用源。x0x-y0. (3)设点P的坐标为(x′,y′), 由x′-y′-2=0, 得x′=y′+2,
则|AF|·|BF|=22111xy错误!未找到引用源。·22221xy错误!未找到引用本卷由【在线组卷网www.zujuan.com】自动生成,请仔细校对后使用,答案仅供参考。 答案第5页,总9页 源。 =21241yy错误!未找到引用源。·22241yy错误!未找到引用源。
=211y错误!未找到引用源。·221y错误!未找到引用源。 =(y1+1)·(y2+1) =y1y2+(y1+y2)+1.
由24,12xyyxxy错误!未找到引用源。 得y2+(2y′-x′2)y+y′2=0, 有y1+y2=x′2-2y′,y1y2=y′2, ∴|AF|·|BF|=y′2+x′2-2y′+1 =y′2+(y′+2)2-2y′+1
=212y2+92错误!未找到引用源。,
当y′=-12错误!未找到引用源。,x′=32错误!未找到引用源。时, 即P31,22时,|AF|·|BF|取得最小值92错误!未找到引用源。. 26.(1) y=-1 (2) x2=4y (3) 存在 点B的坐标为(2,1)或(-2,1),理由见解析 【解析】(1)两圆的半径都为1,两圆的圆心分别为C1(0,-4),C2(0,2), 由题意得|CC1|=|CC2|,可知圆心C的轨迹是线段C1C2的垂直平分线,C1C2的中点为(0,-1),直线C1C2的斜率不存在,故圆心C的轨迹是线段C1C2的垂直平分线,其方程为y=-1,即圆C的圆心轨迹L的方程为y=-1. (2)因为m=n,所以M(x,y)到直线y=-1的距离与到点F(0,1)的距离相等,故点M的轨迹Q是以y=-1为准线,以点F(0,1)为焦点,顶点在原点的抛物线,错误!未找到引用源。=1,即p=2,所以,轨迹Q的方程是x2=4y. (3)假设存在点B满足条件.由(2)得y=错误!未找到引用源。x2,y'=错误!未找到引用源。x,所以过点B的切线的斜率为k=错误!未找到引用源。x1, 切线方程为y-y1=错误!未找到引用源。x1(x-x1). 令x=0得y=-错误!未找到引用源。+y1, 令y=0得x=-错误!未找到引用源。+x1. 因为点B在x2=4y上,所以y1=错误!未找到引用源。, 故y=-错误!未找到引用源。,x=错误!未找到引用源。x1, 所以切线与两坐标轴围成的三角形的面积为 S=错误!未找到引用源。|x||y|=错误!未找到引用源。|错误!未找到引用源。x1||-错误!未找到引用源。|=错误!未找到引用源。|错误!未找到引用源。|, 所以错误!未找到引用源。|错误!未找到引用源。|=错误!未找到引用源。,解得|x1|=2, 所以x1=±2. 当x1=2时,y1=1,当x1=-2时,y1=1,所以点B的坐标为(2,1)或(-2,1).