量子力学答案(第二版)苏汝铿第三章课后答案3.17-3#11

合集下载

量子力学教程(二版)习题答案

量子力学教程(二版)习题答案

第一章 绪论1.1.由黑体辐射公式导出维恩位移定律:C m b b T m 03109.2 ,⋅⨯==-λ。

证明:由普朗克黑体辐射公式:ννπνρννd e ch d kT h 11833-=, 及λνc =、λλνd cd 2-=得1185-=kThc ehc λλλπρ,令kT hcx λ=,再由0=λρλd d ,得λ.所满足的超越方程为 15-=x xe xe用图解法求得97.4=x ,即得97.4=kThcm λ,将数据代入求得C m 109.2 ,03⋅⨯==-b b T m λ 1.2.在0K 附近,钠的价电子能量约为3eV,求de Broglie 波长.解:010A 7.09m 1009.72=⨯≈==-mEh p h λ #1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。

解:010A 63.12m 1063.1232=⨯≈===-mkTh mE h p h λ 其中kg 1066.1003.427-⨯⨯=m ,123K J 1038.1--⋅⨯=k #1.4利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。

(2)在均匀磁场中作圆周运动的电子的轨道半径。

已知外磁场T 10=B ,玻尔磁子123T J 10923.0--⋅⨯=B μ,求动能的量子化间隔E ∆,并与K 4=T 及K 100=T 的热运动能量相比较。

解:(1)方法1:谐振子的能量222212q p E μωμ+=可以化为()12222222=⎪⎪⎭⎫ ⎝⎛+μωμE q Ep的平面运动,轨道为椭圆,两半轴分别为22,2μωμEb E a ==,相空间面积为,2,1,0,2=====⎰n nh EEab pdq νωππ所以,能量 ,2,1,0,==n nh E ν方法2:一维谐振子的运动方程为02=+''q q ω,其解为()ϕω+=t A q sin速度为 ()ϕωω+='t A q c o s ,动量为()ϕωμωμ+='=t A q p cos ,则相积分为 ()()nh TA dt t A dt t A pdq T T==++=+=⎰⎰⎰2)cos 1(2cos 220220222μωϕωμωϕωμω, ,2,1,0=nνμωnh Tnh A E ===222, ,2,1,0=n(2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。

量子力学(二)习题参考答案

量子力学(二)习题参考答案

2µ (U1 − E ) h2 2µ E h2
ψ 2 '' ( x) + k 2ψ 2 ( x ) = 0, k =
西华师大物理与电子信息学院
4
四川省精品课程——量子力学补充习题参考答案
ψ 3'' ( x) − β 2ψ 3 ( x) = 0, β =
其解分别为:
2µ (U 2 − E ) h2
ψ 1 ( x) = A1eα x + B1e −α x ψ 2 ( x) = C sin(kx + δ ) ψ 3 ( x ) = A2e β x + B2 e− β x
2
2

而透射系数

2) 、当 E<U0 时,有ψ 2 '' ( x ) − k3 2ψ 2 ( x ) = 0 , k3 = 其解为:ψ 2 ( x ) = Ce
− k3 x
+ De k3 x = Ce − k3 x (ψ 2 有限条件)

以下可以重复前面的求解过程。 不过, 为了简单我们亦可以在前面得到的结果⑤中做代 换 k2 =i k3 ,得到
由(18)式, (16) 、 (17)变成 或由 (19) 式, (16) 、 (17) 变成
(20)或(21)式就是讲义上习题 2.7 的结果。 a) 将 δ = 0 代入ψ 2 ( x) 中有:ψ 2 ( x) = C sin kx 由连续性条件:ψ 2 ( a) = ψ 3 ( a ) → C sin( ka ) = B2 e − β a
ψ m (ϕ ) =
除了 m=0 的态之外, E m 圴是二重简并的。 5、梯形式——— U ( x ) =
0, x < 0 U 0 , x > 0

量子力学课后答案

量子力学课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫ ⎝⎛-⋅+--⋅=-kThc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学答案(第二版)苏汝铿第4章课后答案4.11-4#16

量子力学答案(第二版)苏汝铿第4章课后答案4.11-4#16
1 3

1 3

1 3

1 3 0 = 0
0 1 6 1 6
0 1 6 1 2
(ii)
0 1 0 2 Lx 1 0 1 2 0 1 0
tr ( Lx ) tr 0 2 6 0 2 12 2 12 2 12 2 12 2 4 2 12
e i sin 0
4.12 由下述三个纯态不相干混合而成的角动量为 1 的粒子体系,假定 每个态都等概率,这三个态是:

(1)
1 0 0

2
0 0 1 1 1 0 2 2 0 1
= =
1 m 1 1 ˆ 1 exp(it ) 1 a ˆ 0 exp( it ) 0 a i 2 2 2 m sin t 2
所以只有当态失为能量本征态时,x 和 p 的平均值不变
取 1,所以 L y =0 又因为 Lx , L y iLz
0 1 Lx L y L y Lx 1 0 2 0 1 i 0 i i 0 0 0 0 2 2 i i 0 i 0 0 i 0 0 i 0 0 1 0 1 i 0 i i 0 i 1 0 1 2 0 0 0 0 i 0 i 0 1 0 0 i i 0 0 0 0 0 0 0 0 0 i 0 i

3
0 0 1
(i) (ii)
求这个体系的密度矩阵 ,并证明 tr 1 选 1,角动量为 1 的矩阵由题(4.7)的矩阵给出,求 Lx , L y , Lz 的平 均值

量子力学教程习题答案

量子力学教程习题答案


d1 ( x) 0 ,得 dx
x0
x
1

x
x 时, 1 ( x) 0 。显然不是最大几率的位置。 由 1 ( x) 的表达式可知, x 0 ,
d 21 ( x) 2 3 2 2 2 2 3 2 x 2 而 [( 2 6 x ) 2 x ( 2 x 2 x )] e dx2 2 2 4 3 [(1 5 2 x 2 2 4 x 4 )]e x
23
2
23
T 100 K 时, E 1.381021 J 。
7
1.5 两个光子在一定条件下可以转化为正负电子对,如果两个光子的能量相等,问要实现这种转化,光子 波长最大是多少? 解:转化条件为 h ec 2 ,其中 e 为电子的静止质量,而
c h ,所以 ,即有 ec
其解为
2 ( x) A sin kx B coskx

13
根据波函数的标准条件确定系数 A,B,由连续性条件,得
2 (0) 1 (0)
2 ( a ) 3 ( a)
⑤ ⑥ ⑥

B0 A sin ka 0
A0 s i n ka 0 ka n
1 n [1 cos ( x a)]dx a 2 a
a a
A 2 A 2 a n x cos ( x a)dx 2 a 2 a a A 2 a n A a sin ( x a) 2 n a a
2 a
A 2 a
∴归一化常数 A
1 a
A2 2 T A2 2T pdq A 0 cos t dt 2 0 (1 cost )dt 2 nh , n 0,1,2,

量子力学 第三章习题与解答

量子力学 第三章习题与解答

第三章习题解答3.1 一维谐振子处在基态t i x e x ωαπαψ2222)(--=,求:(1)势能的平均值2221x U μω=; (2)动能的平均值μ22p T =;(3)动量的几率分布函数。

解:(1) ⎰∞∞--==dx e x x U x 2222222121απαμωμω μωμωππαμω ⋅==⋅=2222221111221ω 41= (2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ ⎰∞∞----=dx e dx d e x x 22222122221)(21ααμπα ⎰∞∞---=dx e x x 22)1(22222αααμπα][222222222⎰⎰∞∞--∞∞---=dx e x dx e x xααααμπα]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222 ω 41=或 ωωω 414121=-=-=U E T (3) ⎰=dx x x p c p )()()(*ψψ 212221⎰∞∞---=dx ee Px i xαπαπ⎰∞∞---=dx eePx i x222121απαπ⎰∞∞--+-=dx ep ip x 2222)(21 21αααπαπ ⎰∞∞-+--=dx ee ip x p 222222)(212 21αααπαπ παπαπα22122p e -=22221απαp e-=动量几率分布函数为 2221)()(2απαωp ep c p -==#3.2.氢原子处在基态0/301),,(a r e a r -=πϕθψ,求:(1)r 的平均值;(2)势能re 2-的平均值;(3)最可几半径; (4)动能的平均值;(5)动量的几率分布函数。

解:(1)ϕθθπτϕθψππd rd d r re a d r r r a r sin 1),,(0220/23020⎰⎰⎰⎰∞-==⎰∞-=0/233004dr a r a a r04030232!34a a a =⎪⎪⎭⎫⎝⎛=2203020/232020/232202/2322214 4 sin sin 1)()2(000a e a a e drr ea e d drd r e a e d drd r e ra e r e U a r a r a r -=⎪⎪⎭⎫ ⎝⎛-=-=-=-=-=⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-ππππϕθθπϕθθπ(3)电子出现在r+dr 球壳内出现的几率为 ⎰⎰=ππϕθθϕθψω02022 sin )],,([)(d drd r r dr r dr r e a a r 2/23004-=2/23004)(r e a r a r -=ω 0/2030)22(4)(a r re r a a dr r d --=ω令 0321 , ,0 0)(a r r r drr d =∞==⇒=,ω 当0)( ,0 21=∞==r r r ω时,为几率最小位置/22203022)482(4)(a r e r a r a a dr r d -+-=ω08)(230220<-=-=e a dr r d a r ω ∴ 0a r =是最可几半径。

曾谨言《量子力学导论》第二版的课后答案

曾谨言《量子力学导论》第二版的课后答案

(
)
d d 3 rψ 1* r ,.t ψ 2 r , t = 0 。 ∫ dt
( ) ( )
2.4)设一维自由粒子的初态ψ ( x,0 ) = e
⎛ p2 ⎞ i ⎜ p0 x − 0 t ⎟ / ℏ ⎜ 2 m ⎟ ⎝ ⎠
ip0 x / ℏ
, 求ψ ( x, t ) 。
解:
ψ ( x, t ) = e
∫p

x
⋅ dx = n x h ,
(n x
= 1, 2 , 3 , ⋯)
p x ⋅ 2a = n x h
∴ p x = n x h / 2a ,
( 2a :一来一回为一个周期)
同理可得,
p y = n y h / 2b ,
p z = n zห้องสมุดไป่ตู้h / 2c ,
n x , n y , n z = 1, 2 , 3 , ⋯
(4)
E = ∫ d 3r ⋅ w 。
(b)由(4)式,得
. . ⎤ . ∂w ℏ 2 ⎡ . * * * = ∇ ψ ⋅ ∇ ψ + ∇ ψ ⋅ ∇ ψ + ψ Vψ + ψ *V ψ ⎢ ⎥ ∂t 2m ⎣ ⎦
=
. . . . ⎛ .* 2 ℏ2 ⎡ ⎛ .* *⎞ 2 * ⎞⎤ * * ⎜ ⎟ ⎜ ⎟ ∇ ⋅ ψ ∇ ψ + ψ ∇ ψ − ψ ∇ ψ + ψ ∇ ψ + ψ V ψ + ψ V ψ ⎢ ⎟ ⎜ ⎟⎥ 2m ⎣ ⎜ ⎝ ⎠ ⎝ ⎠⎦
. ⎛ ⎞ ⎞ * ℏ2 2 � . ⎛ ℏ2 2 ⎟ ⎜ = −∇ ⋅ s + ψ * ⎜ − ∇ + V ψ + ψ − ⎜ 2m ⎟ ⎜ 2m ∇ + V ⎟ ⎟ψ ⎝ ⎠ ⎝ ⎠ . . ⎛ * � *⎞ = −∇ ⋅ s + E ⎜ ⎜ψ ψ + ψ ψ ⎟ ⎟ ⎝ ⎠ ∂ � ( ρ :几率密度) = −∇ ⋅ s + E ρ ∂t � = −∇ ⋅ s (定态波函数,几率密度 ρ 不随时间改变)

量子力学课后答案1.1到4.4题

量子力学课后答案1.1到4.4题

•第一章 绪论 •第二章 波函数和薛定谔方程 •第三章 力学量的算符表示 •第四章 态和力学量的表象 •第五章 微扰理论 •第六章 弹性散射 • 第七章 自旋和全同粒子1.1.由黑体辐射公式导出维恩位移定律:C m b b T m 03109.2 ,⋅⨯==-λ。

证明:由普朗克黑体辐射公式: ννπνρννd e c h d kT h 11833-=, 及λνc =、λλνd c d 2-=得 1185-=kT hc e hc λλλπρ, 令kThc x λ=,再由0=λρλd d ,得λ.所满足的超越方程为 15-=x x e xe 用图解法求得97.4=x ,即得97.4=kT hc m λ,将数据代入求得C m 109.2 ,03⋅⨯==-b b T m λ 第一章绪论 1.2.在0K 附近,钠的价电子能量约为3eV,求de Broglie 波长. 解:010A 7.09m 1009.72=⨯≈==-mE h p h λ # 1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。

解:010A 63.12m 1063.1232=⨯≈===-mkT h mE h p h λ 其中kg 1066.1003.427-⨯⨯=m ,123K J 1038.1--⋅⨯=k # 1.4利用玻尔—索末菲量子化条件,求:(1)一维谐振子的能量。

(2)在均匀磁场中作圆周运动的电子的轨道半径。

已知外磁场T 10=B ,玻尔磁子123T J 10923.0--⋅⨯=B μ,求动能的量子化间隔E ∆,并与K 4=T 及K 100=T 的热运动能量相比较。

解:(1)方法1:谐振子的能量222212q p E μωμ+=可以化为()12222222=⎪⎪⎭⎫ ⎝⎛+μωμE q E p 的平面运动,轨道为椭圆,两半轴分别为22,2μωμE b E a ==,相空间面积为 ,2,1,0,2=====⎰n nh E E ab pdq νωππ 所以,能量 ,2,1,0,==n nh E ν方法2:一维谐振子的运动方程为02=+''q q ω,其解为 ()ϕω+=t A q sin 速度为 ()ϕωω+='t A q cos ,动量为()ϕωμωμ+='=t A q p cos ,则相积分为 ()()nh T A dt t A dt t A pdq T T ==++=+=⎰⎰⎰2)cos 1(2cos 220220222μωϕωμωϕωμω, ,2,1,0=n νμωnh T nh A E ===222, ,2,1,0=n (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合,因此有 x,0 x,0 , 故 t=0 时 x * x,0 x x,0 dx 0

并且 x 不随时间变化。 3.18 考虑一质量为 m 的粒子在一维势场 U x U 0
x 中运动,其中 n 是正整数, a
n
其中 an n* x x, 0 dx

因此 x, t
a x e
n n n
iEn t /
对于谐振子 n x N n e
x / 2
2
H n x
2 2
an dxN n e
2 2
x /2
H n x Ae
3.17

t=0
时 , 处 在 谐 振 子 势 U
2
1 2 kx 中 的 一 颗 粒 子 的 波 函 数 是 2
x, 0 Ae x

2
/2
sin cos H 0 x 2 2 H 2 x 其 中 和 A 是 实 常 数 ,
x 2 e [ H n x ] dx
2
1
2
mk ,且厄米多项式归一化条件是

2
2n n !

(i)写出 x, t ; (ii)求出 x, t 态中测量粒子的能量的可能值和相对概率; (iii)求 t=0 时的 x ,并问 x 是否随时间 t 变化? 解: (1)系统的薛定谔方程为 i
x /2
sin cos H 0 x 2 2 H 2 x
A N0 cos n 0 N 2 2 2 sin n 2 2 2
所以有 x, t A 2
x 不会变小反而会变大。
N=1 时, U x 为邪振子势 U x 上式给出 E
n
U 0 x2 1 m 2 x 2 a2 2
1 ,与结果一致 2
2 2
ቤተ መጻሕፍቲ ባይዱ
n 时, U x 为无限深方势阱,上式给出 E
8ma 2
精确结果为
2
2ma 2
3.19 考虑一维对称势阱中粒子,熟知,在这种情形下至少有一个能级。现在在给定势阱深度
1/ 2 iE0t / sin 2 x eiE2t / cos 0 x e
(2)可能测到的能量为 E0
p cos 2 1 5 cot 2 和E2 = ,相对概率为 0 2 p2 sin 2 2
(3)由于 H 0 x 和H 2 x 都是 x 的偶函数,而且 x, 0 又仅为 0 x 与 2 x 的组
0 U 0
x a / 2 x a / 2
由于在 x a / 2 处, 势场 U 0 有限, 它并不是无限大的, 所以粒子完全有可能在 x a / 2 的 位子出现,也就是说粒子并不是一定在 x a / 2 范围内运动,所以 a 减小时说粒子的空间 位置越来越精确的说法错误;相反地,随着 a 的减小,粒子出现在阱外的几率会越来越大,
px
2b

2
b
x
2
1 b E U0 2m 2b a
2n
2 a 2n 2n2 b 2 n 1 dE 2 nU 0, b 求极值。即 0有 0 4mb3 a2n db 8mnU 0
1
U 2 a 2 n n 1 所以 E n 1 20 a n 8mnU 0
2n
U 0 0 ,定性讨论能量的本征值的分布和相应的本征函数的宇称,用不确定性原理估计基
态能量的数量级,并讨论 n=1 和 n 两种特殊情况。 解:由束缚态和一维薛定谔方程的普遍性质可知,U(x)中有无限多个束缚态,且各束缚态无 简 并 , 能 量 本 征 值 是 分 立 的 , 第 m 个 激 发 在 E<U(x) 区 域 应 有 m 个 节 点 , 则 有
x k m 1
由维里定理
,随着 m 的增大, x 也增大
2 2n
2 T 2n U 得 k x
2n
(m 1) k
2n
2mE 其中 2 k

所以 E k m+1 n 1
2
即一般来说随着 n 增加,能级间隔也增加。因为V x V x ,故所有的本征态都有确定 宇称,基态和第二,四· · ·激发态宇称为偶,其余本征态宇称为奇。 下面用不确定原理估计基态能量
2
U 0 的情况下,减少势阱宽度 a 使满足不等式:a 2
空间位置将越来越精确( x
mU 0
初看起来束缚在势阱中的粒子的
a )然而在任何情况下,动量的不确定度 p 应限制在数量级
mU 0 内,于是有不等式 px mU 0 a ,这个结果显然和不确定性原理矛盾,试指
出上述论证中的错误,并求出粒子坐标和动量不确定度的乘积。 解:势场 U x
x, t H x, t t
iEnt /
由于 H 不显含时间 t , 则有 n x, t n x e 而 H n x En n x 用能量本征函数展开 x, 0
x, 0 an n x
相关文档
最新文档