曾谨言《量子力学导论》第二版的课后答案
曾谨言《量子力学导论》第二版的课后答案

+a
= 2mω a 2 ⋅
得 a2 = (3)
π = mωπ a 2 = n h 2
代入(2) ,解出
E n = nℏω ,
积分公式:
n = 1, 2 , 3 , ⋯ a 2 − u 2 du = u a2 u a2 − u2 + arcsin + c 2 2 a
(4)
∫
2π
1.4 设一个平面转子的转动惯量为 I,求能量的可能取值。 提示:利用
)
[ (
) (
)
]
其 中 T 的 第 一 项 可 化 为 面 积 分 , 而 在 无 穷 远 处 归 一 化 的 波 函 数 必 然 为 0 。 因 此
ℏ2 T= d 3 r∇ψ * ⋅ ∇ψ ∫ 2m
结合式(1) 、 (2)和(3) ,可知能量密度
(3)
w=
且能量平均值
ℏ2 ∇ψ * ⋅ ∇ψ + ψ *Vψ , 2m
(1)
1 mω 2 x 2 。 2
−a
0 a x (2)
a = 2 E / mω 2 ,
x = ± a 即为粒子运动的转折点。有量子化条件
+a
∫ p ⋅ dx = 2 ∫
nh 2ℏn = mωπ mω
−a
1 2m( E − mω 2 x 2 ) dx = 2mω 2 ∫ a 2 − x 2 dx 2 −a
∫= 1, 2 , ⋯ , pϕ 是平面转子的角动量。转子的能量 E = pϕ / 2I 。
解:平面转子的转角(角位移)记为 ϕ 。
.
它的角动量 pϕ = I ϕ (广义动量) , pϕ 是运动惯量。按量子化条件
∫
∴
因而平面转子的能量
曾谨严量子力学习题解答2

1 [ϕ1 (x ) + ϕ 2 (x )] 2 1 1 ⎡ϕ1 ( x ) e − iE1t / h + ϕ 2 ( x ) e − iE2t / h ⎤ ⎡ϕ1 ( x, t ) + ϕ 2 ( x, t ) ⎤ = 则有:ϕ ( x, t ) = ⎣ ⎦ ⎦ 2⎣ 2 (2)求 x (t ) = ?
⎧ ⎛ nπ pa ⎞ ⎛ nπ pa ⎞ ⎫ a sin ⎜ − + ⎛ nπ pa ⎞ sin ⎜ ⎟ ⎟ i⎜ − ⎟ ⎪ n +1 ⎪ ⎝ 2 2h ⎠ ⎪ 2 2h ⎠ ⎪ ⎝ = π h e ⎝ 2 2h ⎠ ⎨ + ( −1) nπ pa nπ pa ⎬ 2i ⎪ ⎪ − + 2 2h 2 2h ⎭ ⎪ ⎪ ⎩
3. 《曾 P.163-5》 一维无限深势阱(如右图)中的粒子,设处于 ϕ n ( x ) 态。求其动量分布概率。当 n >> 1 时, 与经典粒子运动比较。 解:利用已知解:
⎧ 2 nπ x sin , ⎪ ϕn ( x ) = ⎨ a a ⎪0, ⎩
V ( x)
0
a
(0 < x < a) ( x < 0, x > a )
∗
5π 2 h 2 5 1 = = E1 = ( E1 + E2 ) 2ma 2 2 2
2 (4)求 H = ?
H = ∫ ϕ ∗ ( x ) H 2ϕ ( x )dx
2 −∞
+∞
=∫
+∞
−∞ a
1 1 ⎡ϕ1 ( x ) + ϕ 2 ( x ) ⎤ ⋅ H 2 ⋅ ⎡ϕ1 ( x ) + ϕ 2 ( x ) ⎤ dx ⎣ ⎦ ⎣ ⎦ 2 2
曾谨严量子力学习题解答7

(
)
(8)
t = 0 时,体系的初始状态为
ψ (t = 0 ) = ψ 1 =
Ω ω Ω +ω ψ E+ + ψ E 2Ω 2Ω
(9) (10)
其中 Ω = ω 2 + 4γ 2 h 2 . 因此, t
≥ 0 时波函数为
Ω ω Ω +ω ψ E+ eiE+t h + ψ E e iEt 2Ω 2Ω
h
1 3 2 1 1 1 2 1 1 2 = 1 1 + 1 0 Y11β + Y10α 2 2 3 2 3 3 3
(2)
1
3 1 2 1 1 1 2 1 1 0 + 1 1 = Y10 β + Y11α 2 2 3 2 2 3 3 3 3 3 1 1 = 1 1 Y11β 2 2 2
r
r
r
r
(6)
3 1 2 3 1 2
3 r r ε r i 2 1 r r ε r i 2
2
=
2
1 2 2 2 r (ε x + ε y ) 6 2 2 2 r εz 9
=
2
1
3 2
1 r r ε r i 2
=
2
1 2 2 2 r (ε x + ε y ) 18
3 1 2
1 1 2
3 r r ε r i 2
(
)
(
)
初态: l = m = 0 , j =
i = 0 1 2
1 1 , m j = sz = 2 2 1 1 = 0 0 Y00α 2 2
(1)
终态: l = 1, j = l ±
1 3 1 3 1 = , ,mj = ± ,± . 2 2 2 2 2
曾谨言--量子力学习题及解答

dv , 1
(1) (2) (3)
v c , v dv v d ,
dv d c d v ( ) d ( ) v c
8hc 5
1 e
hc kT
, 1
1
这里的 的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。 本题关注的是λ取何值时, 取得极大值,因此,就得要求 对λ的一阶导数为零, 由此可求得相应的λ的值,记作 m 。但要注意的是,还需要验证 对λ的二阶导数在 m 处的取值是否小于零,如果小于零,那么前面求得的 m 就是要求的,具体如下:
2
k
2 E
2
k
cos 2d (2 ) cos d ,
2 E
k
这里 =2θ,这样,就有
2
A B E
k
d sin 0
(2)
根据式(1)和(2) ,便有
A E
这样,便有
k n h 2
E
k
E
n h 2 k
nh
其中 h
k
,
h 2
最后,对此解作一点讨论。首先,注意到谐振子的能量被量子化了;其次,这量子化的 能量是等间隔分布的。 (2)当电子在均匀磁场中作圆周运动时,有
R p qBR
2
qB
这时,玻尔——索末菲的量子化条件就为
又因为动能耐 E
p2 ,所以,有 2
2
2 如果所考虑的粒子是非相对论性的电子( E 动 e c ) ,那么
[理学]《量子力学导论》习题答案曾谨言版_北京大学1
![[理学]《量子力学导论》习题答案曾谨言版_北京大学1](https://img.taocdn.com/s3/m/02e1f545bceb19e8b8f6bafe.png)
第一章 量子力学的诞生1.1设质量为m 的粒子在一维无限深势阱中运动, ⎩⎨⎧<<><∞=ax ax x x V 0,0,0,)(试用de Broglie 的驻波条件,求粒子能量的可能取值。
解:据驻波条件,有 ),3,2,1(2=⋅=n n a λn a /2=∴λ (1)又据de Broglie 关系 λ/h p = (2) 而能量(),3,2,12422/2/2222222222==⋅===n ma n a m n h m m p E πλ (3)1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。
解:除了与箱壁碰撞外,粒子在箱内作自由运动。
假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。
动量大小不改变,仅方向反向。
选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。
利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn h n dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量 ⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n mp p p m E z y x z y x n n n zy x π ,3,2,1,,=z y x n n n1.3设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。
提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰)(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:221()2x a E V x m a ω===。
量子力学曾谨言第二章第三章答案

量子力学曾谨言的答案详解,希望能给研友带来帮助目次第二章:波函数与波动方程………………1——25 第三章:一维定态问题……………………26——80 第四章:力学量用符表达…………………80——168 第五章:对称性与守衡定律………………168——199 第六章:中心力场…………………………200——272 第七章:粒子在电磁场中的运动…………273——289 第八章:自旋………………………………290——340 * * * * * 参考用书1.曾谨言编著:量子力学上册 科学。
1981 2.周世勋编:量子力学教程 人教。
19793.L .I .席夫著,李淑娴,陈崇光译:量子力学 人教。
19824.D .特哈尔编,王正清,刘弘度译:量子力学习题集 人教。
1981 5.列维奇著,李平译:量子力学教程习题集 高教。
1958 6.原岛鲜著:初等量子力学(日文) 裳华房。
19727.N.F.Mott.I.N.Sneddon:Wave Mechanics and its Applications 西联影印。
1948 8.L.Pauling.E.B.Wilson:Introduction to Quantum- Mechanics(有中译本:陈洪生译。
科学) 19519. A.S.Davydov: Quantum Mechanics Pergamon Press 1965 10. SIEGFRIED.Fluegge:Practical Quantum- Mechanics(英译本) Springer Verlag 197311. A.Messian:Quantum Mechanics Vol I.North.Holland Pubs 1961 ndau,E.Lifshitz:Quantum-Mechanics1958 量子力学常用积分公式 (1)dx e x an e x a dx e x axn ax n ax n ⎰⎰--=11 )0(>n (2) )cos sin (sin 22bx b bx a ba e bxdx e axax-+=⎰ (3) =⎰axdx e axcos )sin cos (22bx b bx a b a e ax++ (4)ax x a ax aaxdx x cos 1sin 1sin 2-=⎰ (5) =⎰axdx x sin 2ax a xaax a x cos )2(sin 2222-+(6)ax a xax aaxdx x sin cos 1cos 2+=⎰(7ax aa x ax a x axdx x sin )2(cos 2cos 3222-+=⎰))ln(2222c ax x a ac c ax x ++++ (0>a ) (8)⎰=+dx c ax 2)arcsin(222x c a ac c ax x --++ (a<0) ⎰20sin πxdx n2!!!)!1(πn n - (=n 正偶数)(9) =⎰20cos πxdx n!!!)!1(n n - (=n 正奇数) 2π(0>a ) (10)⎰∞=0sin dx xax2π- (0<a )(11))1!+∞-=⎰n n ax an dx x e (0,>=a n 正整数) (12)adx e ax π2102=⎰∞- (13) 121022!)!12(2++∞--=⎰n n ax n a n dx ex π(14)1122!2+∞-+=⎰n ax n a n dx e x (15)2sin 022adx x ax π⎰∞=(16)⎰∞-+=222)(2sin b a abbxdx xe ax (0>a ) ⎰∞-+-=022222)(c o s b a b a b x d x xeax(0>a )第二章:函数与波动方程[1] 试用量子化条件,求谐振子的能量[谐振子势能2221)(x m x V ω=] (解)(甲法)可以用Wilson-Sommerfeld 的量子化条件式:⎰=nh pdq在量子化条件中,令⋅=x m p 为振子动量,x q = 为振子坐标,设总能量E则 22222x m m P E ω+= )2(222x m E m p ω-=代入公式得:nh dx x m E m =-⎰)2(222ω量子化条件的积分指一个周期内的位移,可看作振幅OA 的四倍,要决定振幅a ,注意在A 或B 点动能为0,2221a m E ω=,(1)改写为: nh dx x a m aa=-⎰-222ω (2)积分得:nh a m =πω2遍乘πω21得 ωπω n h E ==2[乙法]也是利用量子化条件,大积分变量用时间t 而不用位移x ,按题意振动角频率为ω,直接写出位移x ,用t 的项表示:t a x q ωsin ==求微分:tdt a dx dq ωωcos == (4) 求积分:t ma x m p ωωcos ==⋅(5) 将(4)(5)代量子化条件:nh tdt ma pdq T==⎰⎰222cos ωωT 是振动周期,T=ωπ2,求出积分,得 nh a m =πω2 ωπωn n h E ==23,2,1=n 正整数#[2]用量子化条件,求限制在箱内运动的粒子的能量,箱的长宽高分别为.,,c b a(解)三维问题,有三个独立量子化条件,可设想粒子有三个分运动,每一分运动是自由运动.设粒子与器壁作弹性碰撞,则每碰一次时,与此壁正交方向的分动量变号(如ppxx-→),其余分动量不变,设想粒子从某一分运动完成一个周期,此周期中动量与位移同时变号,量子化条件:p pn q p xax x xxadx h d 220===⎰⎰ (1)pp n q p yby yyyb dy h d 220===⎰⎰ (2)p pn q p zcz z zzc dz hd 220===⎰⎰(3)p p p zyx,,都是常数,总动量平方222z y x p p p p ++=总能量是:)(2122222z y x p p p mm p E ++===])2()2()2[(21222ch b h a h m n n n z y x ++ =])()()[(82222cb a m h n n n z y x ++ 但3,2,1,,=n n n z y x 正整数.[3] 平面转子的转动惯量为I ,求能量允许值.(解)解释题意:平面转子是个转动体,它的位置由一坐标(例如转角ϕ)决定,它的运动是一种刚体的平面平行运动.例如双原子分子的旋转.按刚体力学,转子的角动量I ω,但⋅=ϕω是角速度,能量是221ωI =E 利用量子化条件,将p 理解成为角动量,q 理解成转角ϕ,一个周期内的运动理解成旋转一周,则有nh d pdq =I =I =⎰⎰ωπϕωπ220(1)(1) 说明ω是量子化的(2) I=I =n nh πω2 (3,2,1=n ……..) (2) (3) 代入能量公式,得能量量子化公式:I=I I =I =2)(2212222 n n E ω (3)#[4]有一带电荷e 质量m 的粒子在平面内运动,垂直于平面方向磁场是B,求粒子能量允许值.(解)带电粒子在匀强磁场中作匀速圆周运动,设圆半径是r ,线速度是v ,用高斯制单位,洛伦兹与向心力平衡条件是:rm v c Bev 2= (1) 又利用量子化条件,令=p 电荷角动量 =q 转角ϕnh mrv mrvd pdq ===⎰⎰πϕπ220(2)即 nh mrv = (3) 由(1)(2)求得电荷动能=mcnBe mv 2212 = 再求运动电荷在磁场中的磁势能,按电磁学通电导体在磁场中的势能=cBr ev c c *****2π==场强线圈面积电流场强磁矩,v 是电荷的旋转频率, r v v π2=,代入前式运动电荷的磁势能=mcnBe 2 (符号是正的) 点电荷的总能量=动能+磁势能=E=mcnBe 2 ( 3,2,1=n )#[5]对高速运动的粒子(静质量m )的能量和动量由下式给出:2221c v mc E -=(1)2221c v mv p -=(2)试根据哈密顿量 2242p c c m E H +== (3)及正则方程式来检验以上二式.由此得出粒子速度和德布罗意的群速度相等的关系.计算速度并证明它大于光速.(解)根据(3)式来组成哈氏正则方程式组:pqiiH ∂∂=⋅,本题中v qi=⋅,p p i=,因而224222242pc c m p c p c c m pv +=+∂∂= (4)从前式解出p (用v 表示)即得到(2).又若将(2)代入(3),就可得到(1)式. 其次求粒子速度v 和它的物质波的群速度vG间的关系.运用德氏的假设: k p =于(3)式右方, 又用ω =E 于(3)式左方,遍除h :)(22242k k c c m ωω=+=按照波包理论,波包群速度vG是角频率丢波数的一阶导数:22242k c c m kv G +∂∂==22422222422pc c m p c k c c m k c +=+最后一式按照(4)式等于粒子速度v ,因而v vG=。
量子力学_答案_曾谨言

第一章量子力学的诞生1.1设质量为m 的粒子在一维无限深势阱中运动,⎩⎨⎧<<><∞=a x ax x x V 0,0,0,)(试用de Broglie 的驻波条件,求粒子能量的可能取值。
解:据驻波条件,有 ),3,2,1(2=⋅=n n a λn a /2=∴λ (1)又据de Broglie 关系λ/h p = (2)而能量(),3,2,12422/2/2222222222==⋅===n ma n a m n h m m p E πλ (3)1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。
解:除了与箱壁碰撞外,粒子在箱内作自由运动。
假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。
动量大小不改变,仅方向反向。
选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。
利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn hn dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n m p p p m E z y x z y x n n n zy x π ,3,2,1,,=z y x n n n1.3设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。
提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰)(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:2221)(x m x V E a x ω===。
《量子力学导论》习题答案(曾谨言版,北京大学)(2)

第六章 中心力场6.1) 利用6.1.3节中式(17)、(18),证明下列关系式相对动量 ()21121p m p m M r p-==∙μ (1) 总动量 21p p R M P+==∙ (2)总轨迹角动量p r P R p r p r L L L⨯+⨯=⨯+⨯=+=221121 (3)总动能 μ222222222121M P m p m p T +=+= (4)反之,有 ,11r m R rμ+= r m R r22μ-= (5) p P m p +=21μ,p P m p -=12μ(6)以上各式中,()212121 ,m m m m m m M +=+=μ证: 212211m m r m r m ++=, (17) 21r r r -=, (18)相对动量 ()21122121211p m p m M r r m m m m r p-=⎪⎪⎭⎫ ⎝⎛-+==∙∙∙μ (1’) 总动量 ()2121221121p p m m r m r m m m R M P+=+++==∙∙∙ (2’)总轨迹角动量 221121p r p r L L L⨯+⨯=+=)5(2211p r m uR p r m u R ⨯⎪⎪⎭⎫⎝⎛-+⨯⎪⎪⎭⎫ ⎝⎛+= ()()2112211p m p m Mr p p R -⨯++⨯= )2)(1(⨯+⨯=由(17)、(18)可解出21,r r,即(5)式;由(1’)(2’)可解出(6)。
总动能()22112262221212222m p P m m p P m m p m p T ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=+=μμ2122222122112222122222m m pP u m p m m u m m p P u m p m m u⋅-++⋅++=()()⎪⎪⎭⎫⎝⎛+++++=2122221222211112122m m p P m m m P m m m μ2222M P += (4’) [从(17),(18)式可解出(5)式;从(1),(2)式可解出(6)式].6.2) 同上题,求坐标表象中p 、和的算术表示式r i ∇-= R i ∇-= ,p r P R L⨯+⨯=解: ()()211221121r r m m Mi p m p m M p ∇-∇-=-=(1) 其中 1111z y x r ∂∂+∂∂+∂∂=∇, 而x X M m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂1111, 同理,y Y M m y ∂∂+∂∂=∂∂11zZ M m z ∂∂+∂∂=∂∂11; (利用上题(17)(18)式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
[ (
) (
)
]
其 中 T 的 第 一 项 可 化 为 面 积 分 , 而 在 无 穷 远 处 归 一 化 的 波 函 数 必 然 为 0 。 因 此
ℏ2 T= d 3 r∇ψ * ⋅ ∇ψ ∫ 2m
结合式(1) 、 (2)和(3) ,可知能量密度
(3)
w=
且能量平均值
ℏ2 ∇ψ * ⋅ ∇ψ + ψ *Vψ , 2m
第一章 1.1 设质量为 m 的粒子在一维无限深势阱中运动,
量子力学的诞生
⎧∞, x < 0, x > a V ( x) = ⎨ ⎩0, 0 < x < a
试用 de Broglie 的驻波条件,求粒子能量的可能取值。 解:据驻波条件,有
λ 2 ∴ λ = 2a / n a = n⋅
又据 de Broglie 关系
�
E = ∫ d 3r ⋅ w ,
(能量密度)
w=
ℏ2 ∇ψ *ψ + ψ *Vψ 2m ∂w � +∇⋅s = 0 ∂t
(b)证明能量守恒公式
2
⎞ ℏ 2 ⎛ ∂ψ * ∂ψ � ⎜ s =− ∇ψ + ∇ψ * ⎟ ⎜ ⎟ 2m ⎝ ∂ t ∂t ⎠
证: (a)粒子的能量平均值为(设ψ 已归一化)
= mh,
m = 1, 2 , 3 , ⋯
pϕ = mh ,
2 E m = pϕ / 2I = m 2 ℏ 2 / 2I ,
m = 1, 2 , 3 ,⋯
ödinger 方程 第二章 波函数与 Schr Schrö 2.1 设质量为 m 的粒子在势场 V ( r ) 中运动。 (a)证明粒子的能量平均值为
(
)
d d 3 rψ 1* r ,.t ψ 2 r , t = 0 。 ∫ dt
( ) ( )
2.4)设一维自由粒子的初态ψ ( x,0 ) = e
⎛ p2 ⎞ i ⎜ p0 x − 0 t ⎟ / ℏ ⎜ 2 m ⎟ ⎝ ⎠
ip0 x / ℏ
, 求ψ ( x, t ) 。
解:
ψ ( x, t ) = e
令 ξ2 =
t ⎛ mx ⎞ ⎜p− ⎟ ,则 2mℏ ⎝ t ⎠
1 imx 2 2ℏt 2mℏ −iξ 2 ψ ( x, t ) = e ⋅ e dξ 2π ℏ t −∫ ∞ = = 1 2mℏ imx 2 2 ℏt ⋅ e ⋅ π e − iπ / 4 2π ℏ t ⎡ ⎛ mx 2 π ⎞⎤ m exp ⎢i⎜ − ⎟ ⎜ ⎟⎥ 2π ℏt ⎣ ⎝ 2ℏt 4 ⎠⎦
+∞
2
ψ ( x, t ) =
2
m 。 2π ℏt
2.6 设一维自由粒子的初态为ψ ( x,0 ) ,证明在足够长时间后,
2 m ⎡ imx ⎤ ⎛ mx ⎞ ψ ( x, t ) = exp[− iπ 4] ⋅ exp ⎢ ⋅ ϕ⎜ ⎟ ℏt ⎣ 2ℏt ⎥ ⎦ ⎝ ℏt ⎠
式中 ϕ (k ) =
∫
0
2 pϕ dϕ = nh, n = 1, 2 , ⋯ , pϕ 是平面转子的角动量。转子的能量 E = pϕ / 2I 。
解:平面转子的转角(角位移)记为 ϕ 。
.
它的角动量 pϕ = I ϕ (广义动量) , pϕ 是运动惯量。按量子化条件
∫
∴
因而平面转子的能量
2π 0
p ϕ dx = 2π pϕ
(4)
E = ∫ d 3r ⋅ w 。
(b)由(4)式,得
. . ⎤ . ∂w ℏ 2 ⎡ . * * * = ∇ ψ ⋅ ∇ ψ + ∇ ψ ⋅ ∇ ψ + ψ Vψ + ψ *V ψ ⎢ ⎥ ∂t 2m ⎣ ⎦
=
. . . . ⎛ .* 2 ℏ2 ⎡ ⎛ .* *⎞ 2 * ⎞⎤ * * ⎜ ⎟ ⎜ ⎟ ∇ ⋅ ψ ∇ ψ + ψ ∇ ψ − ψ ∇ ψ + ψ ∇ ψ + ψ V ψ + ψ V ψ ⎢ ⎟ ⎜ ⎟⎥ 2m ⎣ ⎜ ⎝ ⎠ ⎝ ⎠⎦
− iℏ
∂ * ℏ2 2 * ψ =− ∇ ψ + (V1 − iV2 ) ψ* ∂t 2m
(2)
ψ * × (1)-ψ × (2),得 iℏ
∂ * ℏ2 * 2 ψ ψ =− ψ ∇ ψ − ψ∇ 2ψ * + 2iψ *V2ψ ∂t 2m ℏ2 =− ∇ ⋅ ψ *∇ψ − ψ∇ψ * + 2iV2ψ *ψ 2m
(能流密度)
⎛ ℏ2 2 ⎞ 3 ⎟ E = ∫ψ * ⎜ − ∇ + V ⎜ 2m ⎟ψ d r = T + V ⎝ ⎠
(1)
V = ∫ d 3 rψ *Vψ
3 *
(势能平均值)
(2)
⎛ ℏ2 2 ⎞ T = ∫ d rψ ⎜ ( ⎜ − 2m ∇ ⎟ ⎟ψ ⎝ ⎠ ℏ2 =− d 3 r ∇ ⋅ ψ *∇ψ − ∇ψ * ⋅ (∇ψ ) 2m ∫
1 ϕ ( p )eipx ℏ dp , ∫ 2πℏ − ∞ 1 2π ℏ
+∞
ϕ ( p) =
1 2π ℏ
+∞ −ipx ℏ ∫ ϕ (x,0)e dx =
−∞
−∞
∫ δ ( x )e
−ipx ℏ
dx =
1 2π ℏ
,
5
∴
ψ ( x, t ) =
1 2πℏ
+∞
−∞
∫ ϕ ( p )e
i ( px − Et ) / ℏ
[
]
)
=−
ℏ2 d 3 r ∇ ⋅ ψ 2 ∇ψ 1* − ψ 1*∇ψ 2 − (∇ψ 2 ) ⋅ ∇ψ 1* + ∇ψ 1* ⋅ (∇ψ 2 ) ∫ 2m
[ ( [ (
)
(
) (
]
=−
ℏ2 d 3 r ∇ ⋅ ψ 2 ∇ψ 1* − ψ 1*∇ψ 2 ∫ 2m
)]
=−
即
� ℏ2 (无穷远边界面上,ψ 1 ,ψ 2 → 0 ) ψ 2 ∇ψ 1* − ψ 1*∇ψ 2 ⋅ dS = 0 , ∫ 2m
(
)
(
)
(
)
∴
2V ∂ * ℏ ψ ψ =− ∇ ⋅ ψ *∇ψ − ψ∇ψ * + 2 ψ *ψ ∂t 2im ℏ
(
)
(
)
(
)
(3)
即
� 2V ∂ρ +∇⋅ j = 2 ρ ≠ 0 , ∂t ℏ
此即几率不守恒的微分表达式。 (b)式(3)对空间体积 τ 积分,得
∂ ℏ 2 d 3 r ψ *ψ = − ∇ ⋅ ψ *∇ψ − ψ∇ψ * d 3 r + ∫∫∫ d 3 rV2 ψ *ψ ∫∫∫ ∫∫∫ ∂t τ 2im τ ℏ τ � 2 ℏ * * =− ψ ∇ ψ − ψ ∇ ψ ⋅ d S + ∫∫∫ d 3 rV2ψ *ψ 2im ∫∫ ℏ τ S
∫p
即
x
⋅ dx = n x h ,
(n x
= 1, 2 , 3 , ⋯)来自p x ⋅ 2a = n x h
∴ p x = n x h / 2a ,
( 2a :一来一回为一个周期)
同理可得,
p y = n y h / 2b ,
p z = n z h / 2c ,
n x , n y , n z = 1, 2 , 3 , ⋯
dp
( E = p 2 2m )
=
1 e 2π ℏ −∫ ∞
⎞ i ⎛ p2 +∞ − ⎜ t − px ⎟ ⎟ ℏ ⎜ 2m ⎝ ⎠
dp
(指数配方)
=
2 +∞ ⎡ it ⎛ 1 imx 2 2 ℏt mx ⎞ ⎤ e exp − p − ⎜ ⎟ ⎥ dp ⎢ ∫ 2π ℏ 2 m ℏ t ⎝ ⎠ ⎥ ⎢ −∞ ⎣ ⎦
1 mω 2 x 2 中运动,用量子化条件求粒子能量 E 的可能取值。 2
∫ p ⋅ d x = nh,
n = 1, 2 , ⋯ ,
p = 2m[ E − V ( x)]
V ( x)
1
解:能量为 E 的粒子在谐振子势中的活动范围为
x ≤a
其中 a 由下式决定: E = V ( x) x = a = 由此得
+a
= 2mω a 2 ⋅
得 a2 = (3)
π = mωπ a 2 = n h 2
代入(2) ,解出
E n = nℏω ,
积分公式:
n = 1, 2 , 3 , ⋯ a 2 − u 2 du = u a2 u a2 − u2 + arcsin + c 2 2 a
(4)
∫
2π
1.4 设一个平面转子的转动惯量为 I,求能量的可能取值。 提示:利用
1 2π
+∞
−∞
∫ψ (x,0)e
α →∞
−ikx
dx 是ψ ( x,0 ) 的 Fourier 变换。
所以
∂w � +∇⋅s = 0 。 ∂t
2.2 考虑单粒子的 Schr ödinger 方程 Schrö
3
iℏ V1 与 V2 为实函数。
∂ � ℏ2 2 � � � � ψ (r , t ) = − ∇ ψ (r , t ) + [V1 (r ) + iV2 (r )] ψ (r , t ) ∂t 2m
(3)
ψ 2 × (3) − ψ 1* × (2),得
∂ * ℏ2 − iℏ ψ 1 ψ 2 = − ψ 2 ∇ 2ψ 1* − ψ 1*∇ 2ψ 2 ∂t 2m
(
)
(
)
对全空间积分: