信号与系统实验报告——信号采样与重构 声音的延时与混响

合集下载

实验三 信号采样与重建(实验报告)

实验三 信号采样与重建(实验报告)

《信号与系统》实验报告学院 专业 班级姓名 学号 时间实验三 信号采样与重建一、实验目的1、进一步学习MATLAB 的函数及其表示。

2、掌握及验证信号的SHANNON 采样定理。

3、由采样序列重构恢复原信号。

二、实验内容1、对连续时间信号y(t)=sin(24πt)+ sin(40πt),它有12Hz 和20Hz 两个等幅度分量。

用MATLAB 作图求出Nyquist 频率2fmax 。

t in 1/4sec.y (t )Analog Signalt in 1/12sec.s i n (24*p i *t )t in 1/20sec.s i n (40*p i *t )作图法判断频谱法判断2、设连续信号x(t)=exp(-1000|t|)时A、求傅利叶变换X(jw)。

(先书面求出变换公式,可判断出在2000Hz以上,其频谱幅度已经很小,因此,该处频率就可近似当成信号的最高频率)。

B、现在取采样频率fs=5000Hz,可得到信号序列x1[n],求离散DFT频谱X1(e jw)C、减小采样频率至fs=1000Hz,则可得到序列x2[n],求频谱X2(e jw)D、分别针对x1[n]与x2[n],试重建恢复(用三次样条函数或sinc函数)出对应的连续信号x1(t)与x2(t),并与原信号x(t)作对比。

最后根据抽样定理的知识,简单说明采样频率的大小对信号重建质量的影响。

5000Hz采样序列的重构情况 1000Hz采样序列的重构情况三、思考题:①连续时间信号的傅利叶变换matlab求法,这里采用的近似公式是什么?②从序列重构连续信号所采用的matlab函数是什么?采用三次样条内插函数,即利用Xa=spline(nTs,X,t)来实现。

其中X和nTs分包含在nTs 时刻和样本X(n)的数组,但存在一些误差。

③shannon采样定理中的信号Nyquist频率是指什么?与采样频率有什么不同?Nyquist频率是指是指最低允许的抽样率,是带限信号频率宽度的2倍,并且Nyquist 频率信号带宽是采样频率的一半。

信号与系统软件实验实验报告

信号与系统软件实验实验报告

信号与系统软件实验实验报告一、实验目的本次信号与系统软件实验的主要目的是通过使用相关软件工具,深入理解和掌握信号与系统的基本概念、原理和分析方法,并通过实际操作和实验结果的观察与分析,提高对信号处理和系统性能的认识和应用能力。

二、实验环境本次实验使用的软件工具为_____,运行环境为_____操作系统。

计算机配置为_____处理器,_____内存,_____硬盘。

三、实验内容1、信号的表示与运算生成常见的连续时间信号,如正弦信号、余弦信号、方波信号、锯齿波信号等,并观察其波形和特征参数。

对生成的信号进行加、减、乘、除等运算,分析运算结果的波形和频谱变化。

2、系统的时域分析构建简单的线性时不变系统,如一阶惯性系统、二阶振荡系统等。

输入不同类型的信号,如阶跃信号、冲激信号等,观察系统的输出响应,并分析系统的稳定性、瞬态性能和稳态性能。

3、系统的频域分析对给定的系统进行频率响应分析,计算系统的幅频特性和相频特性。

通过改变系统的参数,观察频率响应的变化规律,并分析系统对不同频率信号的滤波特性。

4、信号的采样与重构对连续时间信号进行采样,研究采样频率对信号重构的影响。

采用不同的重构方法,如零阶保持重构、一阶线性重构等,比较重构信号与原始信号的误差。

四、实验步骤1、打开实验软件,熟悉软件的操作界面和功能菜单。

2、按照实验内容的要求,依次进行各项实验操作。

在信号表示与运算实验中,通过软件提供的函数生成所需的信号,并使用绘图功能显示信号的波形。

然后,利用软件的计算功能进行信号运算,并观察运算结果的波形。

对于系统时域分析实验,首先在软件中构建指定的系统模型,然后输入相应的激励信号,使用仿真功能获取系统的输出响应。

通过观察输出响应的波形,分析系统的性能指标,如上升时间、调节时间、超调量等。

在系统频域分析实验中,利用软件的频率响应分析工具,计算系统的幅频特性和相频特性曲线。

通过调整系统的参数,如增益、时间常数等,观察频率响应曲线的变化情况,并总结规律。

信号与系统采样实验报告

信号与系统采样实验报告

实验5采样采样定理给定了一些条件,在这些条件之下,一个带限的连续时间信号能够完全用它的离散样本表示。

所得到的离散时间信号)(][nT x n x c =包含了在连续时间信号中的全部信息。

只要这个连续时间信号是充分在频率上带限的,即T j X c π≥Ω=Ω,0)(。

当满足这一条件时,原连续时间信号能够完全用样本][n x 之间的内插予以重建。

如果][n x 满足采样定理,就有可能完全在离散时间域中处理][n x 而得到另一个序列,这个序列本该以不同的采样率对)(t x c 采样而得到。

这个处理称为采样率转换。

离散时间系统的灵活性对于连续时间LTI 系统的实现提供了一种强有力的手段,这就是连续时间信号的离散时间系统处理。

在这一技术中,一个带限的连续时间输入被采样,用一个离散时间系统所得到的样本,然后将这个离散时间系统的输出样本进行内插,给出连续时间输出信号。

本章练习将研究涉及信号采样和重建中的许多问题。

注意,该章用Ω代表连续时间频率变量,而用ω代表离散时间频率变量。

§5.1由欠采样引起的混叠目的这个练习讨论信号经采样后其频谱的变化以及由于欠采样而在而在带限内插重建信号上引起的混叠效果。

相关知识如果一个连续时间信号)(t x 每隔T 秒采样一次,那么信号的样本就形成了离散时间序列)(][nT x n x =。

奈奎斯特采样定理说的是,如果)(t x 的带宽小于s π=Ω2,即2,0)(s c j X Ω≥Ω=Ω,那么)(t x 就完全可以由它的样本)(nT x 予以重建。

带限内插或信号重建是最容易将)(t x 首先乘以冲激串后而看出来的 ∑∞-∞=-=n p nT t nT x t x )()()(δ 用一个截止频率2s Ω的理想低通滤波器对)(t x p 滤波,就能从)(t x p 中将)(t x 恢复出来。

定义)(t x r 为低通过滤)(t x p 而得到的重建信号。

若)(t x 的带宽大于2s Ω,那么样本)(nT x 就不能完全确定)(t x ,)(t x r 一般说来不等于)(t x 。

信号与系统实验报告——信号采样与重构 声音的延时与混响

信号与系统实验报告——信号采样与重构 声音的延时与混响

《信号与系统》——课程设计实验一信号的采样与重构一、实验内容:1.应用MATLAB实现连续信号的采样与重构仿真,了解MATLAB软件,学习应用MATLAB软件的仿真技术。

2.加深理解采样与重构的概念,掌握利用MATLAB分析系统频率响应的方法和掌握利用MATLAB实现连续信号采用与重构的方法。

计算在临界采样、过采样、欠采样三种不同条件下重构信号的误差。

3. 加深对采样定理的理解和掌握,以及对信号恢复的必要性;掌握对连续信号在时域的采样与重构的方法。

二、实验原理(1)连续时间信号连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点以外,信号都有确定的值与之对应。

严格来说,MATLAB并不能处理连续信号,而是用等时间间隔点的样值来近似表示连续信号。

当取样时间间隔足够小时,这些离散的样值就能较好地近似连续信号。

(2)采样定理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs,重复出现一次。

为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。

时域采样定理从采样信号恢复原信号必需满足两个条件:>各处为零;(对信a、必须是带限信号,其频谱函数在号的要求,即只有带限信号才能适用采样定理。

)b 、 取样频率不能过低,必须>2 (或>2)。

一个理想采样器可以看成是一个载波为理想单位脉冲序列)(t T 的幅值调制器。

图2 信号的采样(4) 信号重构设信号)(t f 被采样后形成的采样信号为)(t f s ,信号的重构是指由)(t f s 经过内插处理后,恢复出原来信号)(t f 的过程,又称为信号恢复。

三、实验步骤及代码(一).%%%%%%%%%%% 产生一个连续sin ()信号 %%%%%%%%%%%%%%%%%%f=100;t=(1:50)/2000; %时间轴步距 x=sin(2*pi*t*f); figuresubplot(211);plot(x); %绘制x(t)的图形图片号加底框 xlabel('t');ylabel('x(t)');title('连续时间信号sin ()的波形'); %图片命名 grid;n=0:255; %长度N=256; %设采样点的N 值 Xk=abs(fft(x,N));subplot(212); %频域波形 plot(n,Xk);axis([0 N 1.2*min(Xk) 1.2*max(Xk)]); %可用axis 函数来调整图轴的范围 xlabel('时域频谱波形图');ylabel('|Xk|');title('信号sin()的频谱波形');(二)%%%%%%%%%%%%对原始信号进行采样并滤波重构 %%%%%%%%%%%% t1=3*t;f1=sin(2*pi*t1*f);figuresubplot(211);stem(t1,f1);xlabel('kTs');ylabel('f(kTs)');title('欠采样的信号波形');[B,A]=butter(2,450/500); %设置低通滤波器参数[H,w]=freqz(B,A,512,2000);fa=filter(B,A,f1);subplot(212);plot(fa)xlabel('t');ylabel('fa(t)');title('欠采样信号重构后的波形');t2=0.5*t;f2=sin(2*pi*t2*f);Figure,subplot(211); stem(t2,f2);xlabel('kTs');ylabel('f(kTs)');title('临界采样的信号波形');[B,A]=butter(2,450/500); %设置低通滤波器参数[H,w]=freqz(B,A,512,2000);fb=filter(B,A,f2);subplot(212);plot(fb),xlabel('t'),ylabel('fb(t)');title('临界采样信号重构后的波形');t3=0.2*t;f3=sin(2*pi*t3*f);figuresubplot(211); stem(t3,f3);xlabel('kTs');ylabel('f(kTs)');title('过采样的信号波形');[B,A]=butter(2,450/500);[H,w]=freqz(B,A,512,2000);fc=filter(B,A,f3);subplot(212);plot(fc)xlabel('t');ylabel('fc(t)');title('过采样信号重构后波形');四、实验总结经过此次MATLAB课程设计我学到了很多知识和学习方法。

数字信号处理实验报告-信号采集与重建

数字信号处理实验报告-信号采集与重建

数字信号处理实验报告-信号采集与重建实验二信号的采样与重建一.实验目的(1)通过观察采样信号的混叠现象,进一步理解奈奎斯特采样频率的意义。

(2)通过实验,了解数字信号采样转换过程中的频率特征。

(3)对实际的音频文件作内插和抽取操作,体会低通滤波器在内插和抽取中的作用。

二.实验内容(1)采样混叠,对一个模拟信号Va(t)进行等间采样,采样频率为200HZ,得到离散时间信号V(n).Va(t)由频率为30Hz,150Hz,170Hz,250Hz,330Hz的5个正弦信号的加权和构成。

Va(t)=6cos(60pi*t)+3sin(300pi*t)+2cos(340pi*t)+4cos(500pi*t)+10sin(660pi*t)观察采样后信号的混叠效应。

程序:clear,close all, t=0:0.1:20; Ts=1/2; n=0:Ts:20;V=8*cos(0.3*pi*t)+5*cos(0.5*pi*t+0.6435)-10*sin(0.7*pi*t);Vn=8*cos(0.3*pi*n)+5*cos(0.5*pi*n+0.6435)-10*sin(0.7*pi*n); subplot(221)plot(t,V), grid on,subplot(222) stem(n,Vn,'.'), grid on,40200-20-4040200-20-400510152021101520(2)输入信号X(n)为归一化频率f1=0.043,f2=0.31的两个正弦信号相加而成,N=100,按因子M=2作抽取:(1)不适用低通滤波器;(2)使用低通滤波器。

分别显示输入输出序列在时域和频域中的特性。

程序:clear;N=100; M=2;f1=0.043; f2=0.31; n=0:N-1;x=sin(2*pi*f1*n)+sin(2*pi*f2*n); y1=x(1:2:100);y2=decimate(x,M,'fir'); figure(1);stem(n,x(1:N));title('input sequence'); xlabel('n');ylabel('fudu'); figure(2); n=0:N/2-1; stem(n,y1);title('output sequence without LP'); xlabel('n');ylabel('fudu'); figure(3); m=0:N/M-1;stem(m,y2(1:N/M));title('output sequence with LP'); xlabel('n');ylabel('fudu'); figure(4);[h,w]=freqz(x);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the input sequence');xlabel('w');ylabel('fudu'); figure(5);[h,w]=freqz(y1);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the output sequence without LP');xlabel('w');ylabel('fudu'); figure(6);[h,w]=freqz(y2);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the output sequence without LP');xlabel('w');ylabel('fudu');input sequence21.510.5fudu0-0.5-1-1.5-202120304050n60708090100output sequence without LP21.510.5fudu0-0.5-1-1.5-20510152025n3035404550output sequence with LP1.510.5fudu0-0.5-1-1.50510152025n3035404550frequency spectrum of the inputsequence5045403530fudu252021105000.511.5wfrequency spectrum of the output sequence without LP3022.533.52520fudu15105000.511.5w22.533.5感谢您的阅读,祝您生活愉快。

实验报告五_信号的采样与恢复

实验报告五_信号的采样与恢复
TS
称抽样频率。
s t
t
τ
TS
图 5-1 矩形抽样脉冲 对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经
过平移的原信号频率。平移的频率等于抽样频率 f s 及其谐波频率 2 f s 、 3 f s „„。当抽 样信号是周期性窄脉冲时,平移后的频率幅度按
sin x
课程名称:
信号与系统
实验项目名称:
信号的采样与恢复
学院:
信息工程
专业:
电Hale Waihona Puke 信息指导教师:报告人: 学号: 班级:
实验时间:
实验报告提交时间:
教务部制
实验目的与要求:
1、了解信号的采样方法与过程以及信号恢复的方法。 2、验证抽样定理。
实验内容:
1、观察抽样脉冲、抽样信号、抽样恢复信号。 2、观察抽样过程中,发生混叠和非混叠时的波形。
采样信号 1
恢复信号 1
采样信号 2
恢复信号 2
采样信号 3
恢复信号 3
实验结果与分析
1.由实验原理理论得当选用
fs>2 fmax 采样频率对连续信号进行
采样,信号采样后能不失真地还原,但实验中往往不能达到理想的 效果。 如实验中对频率为 500hz 的正弦波信号采样并通过低通滤波 器恢复时,当 fs=4 fmax=1968hz 时,信号采样后能不失真地还原。 2.若原信号为方波或三角波,可用示波器观察到离散的采样信 号,但由于本装置难以实现一个理想的低通滤波器,以及高频窄脉 (即冲激函数) ,所以方波或三角波的离散信号经低通滤波器后只 能观测到它的基波分量,无法恢复原信号。实验结果 2 和 3 验证了 这一结果。实验结果显示方波采样后的信号是一系列谐波的合成, 从细节图中可以明显的看出方波没有完全恢复,而是转变成一系列 谐波的合成波。 因为方波或者三角波分解成傅里叶级数后存在频率 很高的谐波分量,在本实验条件下无法还原成原信号,只能是低频 波的合成,还原后图像是原信号的大致波形。 3. 实验中由于采样信号不是标准的冲击信号,低通滤波器也 不能达到标准理论值,所以非标准的正余弦信号恢复不到原信号。

信号与系统实验总结

信号与系统实验总结

信号与系统实验总结引言信号与系统是电子工程、通信工程和控制工程等学科中的基础课程之一。

通过实验,我们可以深入了解信号与系统的基本概念和工程应用,加深对理论的理解,并提高实际操作的能力。

本文将对信号与系统实验进行总结,主要包括实验目的、实验原理、实验步骤、实验结果及分析等内容。

实验一:信号的采样与重构实验目的通过实验学习信号的采样与重构过程,掌握采样定理及重构滤波器的设计方法。

实验原理信号的采样是将连续时间下的信号转换成离散时间下的信号的过程。

采样过程中需要满足采样定理,即采样频率要大于信号带宽的两倍。

采样定理的基本原理是避免采样过程中发生混叠现象。

信号的重构是将离散时间下的信号恢复为连续时间下的信号的过程。

重构过程中需要使用重构滤波器对采样信号进行滤波,以恢复原始信号。

实验步骤1.连接信号发生器和示波器,并设置信号发生器的输出信号为正弦波。

2.改变信号发生器的频率,观察示波器上采样信号的形状。

3.根据采样定理计算信号的理论最大采样频率,并将信号发生器的频率设置为该值。

4.连接重构滤波器和示波器,并观察重构滤波器输出信号的形状。

5.改变重构滤波器的参数,观察重构信号的变化。

实验结果及分析在实验中,我们观察到当信号发生器的频率超过采样定理的最大采样频率时,示波器上的采样信号出现混叠现象,即无法完整地还原原始信号。

而当信号发生器的频率等于或小于采样定理的最大采样频率时,重构滤波器能够较好地恢复原始信号。

实验结果表明,采样定理是保证信号采样和重构过程正确进行的基本条件。

实验二:线性时不变系统的时域响应实验目的通过实验学习线性时不变系统的时域响应,掌握线性时不变系统的时域特性及系统输出的计算方法。

实验原理线性时不变系统的特性由其冲击响应函数或单位冲击响应函数来描述。

系统的输入信号通过系统的冲击响应函数或单位冲击响应函数进行卷积运算,得到系统的输出信号。

实验步骤1.连接信号发生器、线性时不变系统和示波器,并设置信号发生器的输出信号为正弦波。

信号与系统实验报告(00002)

信号与系统实验报告(00002)

信号与系统实验报告(00002)信号与系统是电子信息专业的一门重要课程,是研究信号与系统特性及其处理方法的学科。

本次实验中,我们学习了离散信号的采样和重构,了解了离散信号的采样定理和重构方法。

一、实验目的1. 了解采样和重构的基本概念和原理;2. 掌握离散信号的采样和重构方法;3. 学习MATLAB软件的使用,实现离散信号的采样和重构。

二、实验原理采样:将连续时间信号x(t)在时间轴上等间隔取样,得到一系列的样本点x(nT),则x(nT)为离散时间信号。

采样定理是:在任意带限信号中,采样频率大于最大频率的两倍时(即fs>2fmax),能够完全重构原信号,其中fmax为信号的最高频率成分。

重构:对离散信号进行插值恢复,得到连续时间信号x(t)。

插值重构方法主要有零阶保持、插值多项式、样条插值等。

三、实验步骤1. 绘制示波器测试信号,包括正弦信号、方波信号、三角形信号;2. 利用MATLAB软件编写程序进行采样,设置采样周期T和采样频率fs,得到离散信号;3. 对离散信号进行插值恢复,通过更改插值方法:零阶保持、一次插值、样条插值等,观察重构信号的差异。

四、实验结果及分析1. 绘制示波器测试信号在实验室中,我们使用示波器测试仪器观察了三种不同的测试信号:方波信号、正弦信号和三角形信号,并对其进行了记录和分析。

对于离散信号采样来说,方波信号是最合适的信号。

2. 采样在完成信号采样时,我们使用MATLAB软件的系统函数进行采样,输入需要采样的数据和采样周期,可以准确地得到离散信号。

3. 插值和重构我们使用了三种不同的插值方法分别对离散信号进行插值重构,包括零阶保持、一次插值和样条插值。

在零阶保持方法中,重构的信号呈现出了一个高度离散化的状态。

而一次插值方法实现了信号的比较平滑的重构,同时样条插值方法可以实现更为平滑的结果。

因此,样条插值方法是一种更为实用和常用的方法。

五、结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《信号与系统》——课程设计实验一信号的采样与重构一、实验内容:1.应用MATLAB实现连续信号的采样与重构仿真,了解MATLAB软件,学习应用MATLAB软件的仿真技术。

2.加深理解采样与重构的概念,掌握利用MATLAB分析系统频率响应的方法和掌握利用MATLAB实现连续信号采用与重构的方法。

计算在临界采样、过采样、欠采样三种不同条件下重构信号的误差。

3. 加深对采样定理的理解和掌握,以及对信号恢复的必要性;掌握对连续信号在时域的采样与重构的方法。

二、实验原理(1)连续时间信号连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点以外,信号都有确定的值与之对应。

严格来说,MATLAB并不能处理连续信号,而是用等时间间隔点的样值来近似表示连续信号。

当取样时间间隔足够小时,这些离散的样值就能较好地近似连续信号。

(2)采样定理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs,重复出现一次。

为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。

时域采样定理从采样信号恢复原信号必需满足两个条件:>各处为零;(对信a、必须是带限信号,其频谱函数在号的要求,即只有带限信号才能适用采样定理。

)b 、 取样频率不能过低,必须>2 (或>2)。

一个理想采样器可以看成是一个载波为理想单位脉冲序列)(t T 的幅值调制器。

图2 信号的采样(4) 信号重构设信号)(t f 被采样后形成的采样信号为)(t f s ,信号的重构是指由)(t f s 经过内插处理后,恢复出原来信号)(t f 的过程,又称为信号恢复。

三、实验步骤及代码(一).%%%%%%%%%%% 产生一个连续sin ()信号 %%%%%%%%%%%%%%%%%%f=100;t=(1:50)/2000; %时间轴步距 x=sin(2*pi*t*f); figuresubplot(211);plot(x); %绘制x(t)的图形图片号加底框 xlabel('t');ylabel('x(t)');title('连续时间信号sin ()的波形'); %图片命名 grid;n=0:255; %长度N=256; %设采样点的N 值 Xk=abs(fft(x,N));subplot(212); %频域波形 plot(n,Xk);axis([0 N 1.2*min(Xk) 1.2*max(Xk)]); %可用axis 函数来调整图轴的范围 xlabel('时域频谱波形图');ylabel('|Xk|');title('信号sin()的频谱波形');(二)%%%%%%%%%%%%对原始信号进行采样并滤波重构 %%%%%%%%%%%% t1=3*t;f1=sin(2*pi*t1*f);figuresubplot(211);stem(t1,f1);xlabel('kTs');ylabel('f(kTs)');title('欠采样的信号波形');[B,A]=butter(2,450/500); %设置低通滤波器参数[H,w]=freqz(B,A,512,2000);fa=filter(B,A,f1);subplot(212);plot(fa)xlabel('t');ylabel('fa(t)');title('欠采样信号重构后的波形');t2=0.5*t;f2=sin(2*pi*t2*f);Figure,subplot(211); stem(t2,f2);xlabel('kTs');ylabel('f(kTs)');title('临界采样的信号波形');[B,A]=butter(2,450/500); %设置低通滤波器参数[H,w]=freqz(B,A,512,2000);fb=filter(B,A,f2);subplot(212);plot(fb),xlabel('t'),ylabel('fb(t)');title('临界采样信号重构后的波形');t3=0.2*t;f3=sin(2*pi*t3*f);figuresubplot(211); stem(t3,f3);xlabel('kTs');ylabel('f(kTs)');title('过采样的信号波形');[B,A]=butter(2,450/500);[H,w]=freqz(B,A,512,2000);fc=filter(B,A,f3);subplot(212);plot(fc)xlabel('t');ylabel('fc(t)');title('过采样信号重构后波形');四、实验总结经过此次MATLAB课程设计我学到了很多知识和学习方法。

仅凭我在信号与系统课上所学的那点知识是不够的。

所以为了做好这次的课程设计,我上网搜索了许多与此有关的知识,这个过程中我也学会了好多。

在这次设计中,我学到了对信号的采样定理的应用,以及信号的重构,并通过观察MATLAB所生成的频谱图,进一步了解了有关信号的采样与重构,对信号的采样程度进行比较其误差,了解不同采样程度的重构信号和原信号所产生的差异。

网上有很多类似的程序而且很多都是对sinc()函数做的,我就想能不能换个连续函数试试,不过在换的过程中我也发现了不少的问题,调试也一直出错让人很头疼。

不过功夫不负有心人,就算是一点一点的扣,程序我也完全看懂了,很是欣慰。

实验二 语音信号的处理——延时和混响一、实验目的:1.加深对线性时不变系统的理解2.加深对滤波器滤波特性的理解3.掌握信号混响原理,并利用matlab 实现。

二、实验内容:选择语音信号作为分析的对象,对其进行频谱分析,在时域将信号加入混响,再分析其频谱,并对原始信号频谱进行比较三、实验原理1. 混响效果主要是用于增加音源的融合感。

自然音源的延时声阵列非常密集、复杂,所以模拟混响效果的程序也复杂多变。

常见参数有以下几种:(1)混响时间:(2)高频滚降:(3)扩散度:(4)预延时: (5)声阵密度:(6)频率调制:(7)调治深度:2.延时就是将音源延迟一段时间后,再欲播放的效果处理。

依其延迟时间的不同,可分别产生合唱、镶边、回音等效果。

3.设计集中混响器(滤波器),实现混响。

(1) 单回声滤波器,系统函数为:()1,1mH z a z a -=+<(2) 单重回声滤波器:1(),11N N mmaz H z a a z ---=<- (3) 无限个回声滤波器:(),11mmzHz a a z --=<- (4) 全通结构混响器,(),11m ma z Hz a a z--+=<-四、实验步骤1获取一段语音信号[x1,fs,bits]=wavread('F:\applause.wav');2进行频谱分析及延时处理x1=x1(:,1);subplot(221);plot(x1); %做原始语音信号的时域图形title('原始语音信号');grid on;xlabel('时间 n');ylabel('音量 n');y1=fft(x1); %做length(x1)点的FFTy1=fftshift(y1);%平移,是频率中心为0derta_fs = fs/length(x1); %设置频谱的间隔,分辨率Subplot(222)plot([-fs/2:derta_fs:fs/2-derta_fs],abs(y1));%画出原始语音信号的频谱图title('原始语音信号的频谱');grid on;3.用设计的混响器对信号进行处理并分析比较y2=[x1;zeros(200,1)];y3=y2+z;%混响后信号叠加(两个信号必须长度相等)Figure,plot(y3);title('混响的时域图');grid on;Y3=fft(y3);%混响信号fft变换Y4=fftshift(y3);%平移,中心为0频率derta_Fs = Fs/length(y3);figure,plot([-Fs/2:derta_Fs: Fs/2-derta_Fs],abs(Y4)); title('混响后的频域图');grid on;Bz=[0,0,0,0,0,0,0,0,0,0,1];Az=[1,0,0,0,0,0,0,0,0,0,-a];yy1=filter(Bz,Az,x1);subplot(223);plot(yy1);title('无限个回声滤波器时域波形');grid on;YY1=fft(yy1);YY2=fftshift(yy1);%平移至中心为0频率derta_fs = fs/length(yy1);subplot(224);plot([-fs/2:derta_fs: fs/2-derta_fs],abs(YY2));title('无限个回声滤波器频谱图 ');grid on;五、实验总结:通过本此的课程设计对信号处理有了更进一步的熟悉,实际操作加深了对课本上的知识的理解。

通过上网搜索资料,查阅课本及课外书籍,动手设计滤波器,采集语音,语音分析等工作,加强了对MATLAB程序的编写能力以及对信号处理的相关知识的理解。

平时所学的知识如果不加以实践的话等于纸上谈兵。

实验二的内容网上有现成的程序,于是我也找了一些进行比较,发现都是大同小异,关键是要能够理解实验的内涵及原理。

在读程序的过程中遇到了一些不懂的地方:fftshift的功能 FFTSHIFT is useful for visualizing the Fourier transform with the zero-frequency component in the middle of the spectrum.对自己的以后的要求是:因为要考信号的研究生,以后也是免不了要编程序,先学着自己去读懂程序,然后自己去试着编写这些程序。

相关文档
最新文档